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Probabilistic Linear Regression @ | [ Pote g yperrars 1)

e e i are fixed and not shown for brevity

» The linear model with Gaussian noise corresponds to a Gaussian likelihood

NLL corresponds to squared

W -
P(YnlXn, W, B) = N (Yalw " Xpn, B7) — ioss prop 10 (3, - wTzy)?
= Assuming responses to be i.i.d. given features and weights . 5o

p(y|x Waﬁ) — H.{;J:IN(yn‘wan:B_l) — N(y|qu )B_IIN)

N X 1 response vector PWa)= N (wqg|0, A1)

" The above is equivalent to the following

y = Xw + € where € ~ N0, 57 Iy)

Neg. log-prior corresponds to £,

- Assume the fO”O\ng Gau55|an prlor on w, regularizer with A being the reg. constant

3 2 4 0 1w 2 3

D D D
A N2 A
p(w) = Hp(wd) = HN(wd]O,)\_l) =N(w|0. X\ p)=(—) exp|—Zw'w The precision A of
27 2 the Gaussian prior
d=1 d=1 p
Can even use different A's for different controls how
wy's. Useful in sparse modeling (later) aggressively the prior
* Then y = Xw + € is simply a linear Gaussian model pushes the elements
towards mean (O)

= Can use all the rules of linear Gaussian models to perform inference/predictions © CST72A: PML



. Will only look at fully A\
The Posterior

e e 571 |
, reter to
slides or book e"»
" The posterior over w (for now, assume hyperparams f and 4 to be known)
p(w|A)ply|lw, X, B
p(y|X, 3, )

o p(w|\)p(y|w, X, 3)

Marginal likelihood for this regression model.
Note that it is conditioned on X too which is
assumed given and not being modeled

p(W\y,X, /8: }‘) DCN(W|0:)\_1ID) X N(y ijﬁ_llm)

» Using the "completing the squares” trick (or linear Gaussian model results)

Note that A and 8 can be

}|:)(|,.|"|,|||I'b.ﬂ:| X:| /6_} A) — N(“N; ZN) learned under the

probabilistic set-up (though
assumed fixed as of now)

(Banan +Ap) ' = (;S’XTX + Mp)~"  (posterior’s covariance matrix)
n=1

N
B Z YnXn
n=1

Must be a Gaussian
due to conjugacy

where Xy =

By = Xy

=Xy [ﬁXTy} = (X'X+ %ID)_IXTy (posterior's mean)



The Posterior: A Visualization

= Assume a lin. reg. problem with true w = [wg, wq],wy = —0.3,w; = 0.5

* Assume data generated by a linear regression model y = w, + wyx + "noise”
= Note: It's actually 1-D regression (wy is just a bias term), or 2-D reg. with feature [1, x]

" Figures below show the "data space” and posterior of w for different number of
observations (note: with no observations, the posterior = prior)

Each red line

represents the data
‘data” generated space .
for a randomly

drawn w from the .
current posterior '

Y

|
un

Posterior o

0
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Posterior Predictive Distribution

" [o get the prediction y, for a new input x,, we can compute its PPD

Only w is unknown with a
posterior distribution so only

P(y* |x*, X, _y, 5, >\) = / P(y* |X*, W, 5)P(W|X, y, B, )\)dW w has to be integrated out
N(y*lex*’ﬁ—l) N(WlﬂN, 2:N)
* The above is the marginalization of w from N (y,|w'x,, ~1). Using Gaussian results

Can also derive it by writing y, = w'x, + €

p(y*|x*, X,y, 57 /\) = N([,LLX*, B“1+XIZNX*) { where w ~ N (uy, Zy) and € ~ N(0,871)

= So we have a predictive mean upx, as well as an input-specific predictive variance
" |n contrast, MLE and MAP make "plug-in” predictions (using the point estimate of w)

p(y«|x., wme) = N(Wn—;LE"* ’ 5—1) - MLE prediction Since PPD also takes into
T 3 o account the uncertainty in w,
P(y«|Xeswmap) = N(Wpyppxs,B ") - MAP prediction the predictive variance is larger

» Unlike MLE/MAP variance of y, also depends on the input x, (this, as we will see later,
will be very useful in sequential decision-making problems such as active learning),, ...



Posterior Predictive Distribution: An Illustration

" Black dots are training examples

Small predictive

ol e .
.
3 . 5 P 2 ./ variance here
. ~ A
®
. . - ; =
s .

Large predictive

/ variance here

Line showing
predictive mean

y :

X

= Width of the shaded region at any x denotes the predictive uncertainty at that x (+/-
one std-dev)

= Regions with more training examples have smaller predictive variance
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Nonlinear Regression
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" Can extend the linear regression model to handle nonlinear regression problems

= One way is to replace the feature vectors x by a nonlinear mapping ¢ (x)

Can be pre-defined or extracted by a

p(y|x, W) = N(WT(ﬁ(X), /8_1) pretrained deep neural net

= Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

= More on nonlinear regression when we discuss Gaussian Processes
CS772A: PML



More on Visualization of Uncertainty

" Figures below: Green curve is the true function and blue circles are observations
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= Posterior of the nonlinear regression model: Some curves drawn from the posterior
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» PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty
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Hyperparameters

" The probabilistic linear reg. model we saw had two hyperparams (S, 1)
» Thus total three unknowns (w, 8, 1)

Need posterior over
all the 3 unknowns

p(y|X, w, B, \)p(w, X, 3)

p(w, B, A|X,y) =
( ) p(y[X)
PPD would requite | p(y|X, w, B, A)p(w|X)p(B)p(N)
unknowns J P(yIX, w, B)p(w[A\)p(B)p(A) dw dAdS
pexe.X.y) = [ plyelxe, w, B)p(w. 5. AIX,y) dw d o>
= Posterior and PPD computation s intractable. Several ways to address this
= MLE-ll for (B,A): B:A=arg max p(y[X,5,A) . Use them to infer the posterior of 8 and PPD

= Use alternating estimation ||ke EM (e.g., E step computes w, M step computes (S, 4))
= Jse MCMC or Variational Inference to approximate the above posterior and PPD
CS772A: PML



For any model where A

I\/I L E _ | | hyperparams are estimated by Lo /
MLE-II, the posterior and PPD is e’»

approximated in a similar fashion

» -or the probabilistic linear regression model, the overall posterior over unknowns

p(w,B,AX,y) = p(w|X,y,3,\)p(B,A[X, y)
= With MLE-Il approx of (B, A), p(B, A|X,y) = 5(5, 3\), a point mass at ,B’\,/T

Same as the posterior of w with

p(w, ,8.} /\‘x, y) ~ p(W‘X y ; :\) the hyperparameters fixed

" | ikewise, the PPD will be approximated as follows

pr-x-.X,y) = [ plyalxe, w. B)p(w, 5. AIX, y) dw dB d

[ by lx., w, B)p(WIX, y, B, \)p(B, A|X, y)dB dA dw

A Only need to integrate

X w w | X A) dw | overw, since other two

/p(y*l « W, B)p(w|X,y, B, A) are fixed at their MLE-]
solutions

Same form for the PPD as in
the case of fixed hyperparams
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Exp. Family (Pitman, Darmois, Koopman, 1930s)

" Defines a class of distributions. An Exponential Family distribution is of the form

p(x10) = gy h0x) Rl o(x)] = h(x) expldTo(x) ~ A)

1

»x € X™is the rv. being modeled (X denotes some space, e.g., R or {0,1})

=9 € R%: Natural parameters or canonical parameters defining the distribution

= p(x) € R?: Sufficient statistics (another random variable)
= Why “sufficient”: p(x]0) as a function of 8 depends on x only via ¢ (x)

=7(0) = [ h(x)exp[6T ¢ (x)]dx: Partition Function

"A(8) = log Z(0):

" h(x): A constant (doesn't depend on 8)

| og-partition function (also called cumulant function)
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Expressing a Distribution in Exp. Family Form

= Recall the form of exp-fam distribution p(x|0) = h(x)exp[0Tp(x) — A(6)]
= To write any exp-fam dist p() in the above form, write it as exp(log p())

exp (log Binomial(x|N, p)) = exp ('Og (N> A ”)NX)

X

X

- (i’) exp (xlog 1 f# — Nlog(1 —#))

= Now compare the resulting expression with the exponential family form

p(x|6) = h(x)exp[0 ' p(x) — A(0)]

. o identity the natural parameters, sufficient statistics, log-partition function, etc.

—  exp (Iog (N) + xlog i+ (N — x) log(1 — ,u))
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(Univariate) Gaussian as Exponential Family

" | et’s try to write a univariate Gaussian in the exponential family form
p(x|0) = h(x)exp[0" ¢(x) — A(0)]

» Recall the PDF of a univar Gaussian (already has exp, so less work needed :))

1 (x — p)’ 1 7 1, p
N(x ,-:72 — exp | — — exp| —x — —x — — —logo
(x|p, 0%) Y7 -2 P 202 V2 P o2 202 202 &

1 [ > Tx 1 n
— ex o — — Og T
V2 = 2‘:%2 x° 202 &

-[3]-) el = l-[E

h(x) = = A(f) = £, +logo = 72+ — Liog(~26,) — L log(2n)
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Other Examples

= Many other distribution belong to the exponential family
= Bernoulli
" Beta
" Gamma
= Multinoulli/Multinomial
= Dirichlet
= Multivariate Gaussian
" . and many more ( https://en.wikipedia.org/wiki/Exponential family )

= Note: Not all distributions belong to the exponential family, e.g.,
= Uniform distribution (x ~ Unif(a, b))
= Student-t distribution
= Mixture distributions (e.g., mixture of Gaussians)
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https://en.wikipedia.org/wiki/Exponential_family

Next class

= Continue and wrap up the discussion on exp. family distributions
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