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Probabilistic Linear Regression

▪ The linear model with Gaussian noise corresponds to a Gaussian likelihood

▪ Assuming responses to be i.i.d. given features and weights 

▪ The above is equivalent to the following

▪ Assume the following Gaussian prior on 𝐰, 

▪ Then 𝒚 = 𝑿𝒘 + 𝝐 is simply a linear Gaussian model

▪ Can use all the rules of linear Gaussian models to perform inference/predictions ☺
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𝒚 = 𝑿𝒘 + 𝝐 where 𝝐 ∼ 𝒩 0, 𝛽−1𝐈𝐍

𝑁 × 𝐷 feature matrix

𝑁 × 1 response vector

The precision 𝜆 of 

the Gaussian prior 

controls how 

aggressively the prior 

pushes the elements 

towards mean (0)

NLL corresponds to squared 

loss prop. to 𝑦𝑛 − 𝒘⊤𝒙𝑛
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Neg. log-prior corresponds to ℓ2
regularizer with 𝜆 being the reg. constant

Can even use different 𝜆’s for different 

𝑤𝑑 ’s. Useful in sparse modeling (later)

Plate diagram. Hyperparams (𝜆, 𝛽)
are fixed and not shown for brevity
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The Posterior

▪ The posterior over 𝒘 (for now, assume hyperparams 𝛽 and 𝜆 to be known)

▪ Using the “completing the squares” trick (or linear Gaussian model results)
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Marginal likelihood for this regression model. 

Note that it is conditioned on 𝐗 too which is 

assumed given and not being modeled
Must be a Gaussian 

due to conjugacy

Note that 𝜆 and 𝛽 can be 

learned under the 

probabilistic set-up(though 

assumed fixed as of now) 

Will only look at fully 

Bayesian inference. For 

MLE/MAP, refer to CS771 

slides or book
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The Posterior: A Visualization

▪ Assume a lin. reg. problem with true 𝒘 = 𝑤0, 𝑤1 , 𝑤0 = −0.3, 𝑤1 = 0.5

▪ Assume data generated by a linear regression model 𝑦 = 𝑤0 + 𝑤1𝑥 + "noise"
▪ Note: It’s actually 1-D regression (𝑤0 is just a bias term), or 2-D reg. with feature [1, 𝑥]

▪ Figures below show the “data space” and posterior of 𝒘 for different number of 
observations (note: with no observations, the posterior = prior)
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Each red line 

represents the 

“data” generated 

for a randomly 

drawn 𝒘 from the 

current posterior
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Posterior Predictive Distribution

▪ To get the prediction 𝑦∗ for a new input 𝒙∗, we can compute its PPD

▪ The above is the marginalization of 𝒘 from 𝒩(𝑦∗|𝒘
⊤𝒙∗, 𝛽

−1). Using Gaussian results

▪ So we have a predictive mean 𝝁𝑁
⊤𝒙∗ as well as an input-specific predictive variance 

▪ In contrast, MLE and MAP make “plug-in” predictions (using the point estimate of 𝒘)

▪ Unlike MLE/MAP, variance of 𝑦∗ also depends on the input 𝒙∗ (this, as we will see later, 
will be very useful in sequential decision-making problems such as active learning)
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Only 𝒘 is unknown with a 

posterior distribution so only 

𝒘 has to be integrated out

𝒩(𝑦∗|𝒘
⊤𝒙∗, 𝛽

−1) 𝒩(𝒘|𝝁𝑁, 𝚺𝑁)

Can also derive it by writing 𝑦∗ = 𝒘⊤𝒙∗ + 𝜖

where 𝒘 ∼ 𝒩(𝝁𝑁, 𝚺𝑁) and 𝜖 ∼ 𝒩(0, 𝛽−1)

Since PPD also takes into 

account the uncertainty in 𝒘, 

the predictive variance is larger
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Posterior Predictive Distribution: An Illustration

▪ Black dots are training examples

▪ Width of the shaded region at any 𝑥 denotes the predictive uncertainty at that 𝑥 (+/-
one std-dev)

▪ Regions with more training examples have smaller predictive variance
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Nonlinear Regression

▪ Can extend the linear regression model to handle nonlinear regression problems

▪ One way is to replace the feature vectors 𝒙 by a nonlinear mapping 𝜙(𝒙)

▪ Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

▪ More on nonlinear regression when we discuss Gaussian Processes
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Can be pre-defined or extracted by a 

pretrained deep neural net
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More on Visualization of Uncertainty

▪ Figures below: Green curve is the true function and blue circles are observations

▪ Posterior of the nonlinear regression model: Some curves drawn from the posterior

▪ PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty
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Hyperparameters

▪ The probabilistic linear reg. model we saw had two hyperparams (𝛽, 𝜆)
▪ Thus total three unknowns (𝒘,𝛽, 𝜆)

▪ Posterior and PPD computation is intractable. Several ways to address this
▪ MLE-II for (𝛽, 𝜆):                                     . Use them to infer the posterior of 𝜃 and PPD

▪ Use alternating estimation like EM (e.g., E step computes 𝒘, M step computes(𝛽, 𝜆))

▪ Use MCMC or Variational Inference to approximate the above posterior and PPD
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Need posterior over 

all the 3 unknowns

PPD would require 

integrating out all 3 

unknowns
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MLE-II

▪ For the probabilistic linear regression model, the overall posterior over unknowns

▪With MLE-II approx of (𝛽, 𝜆),                               , a point mass at 𝛽, መ𝜆

▪ Likewise, the PPD will be approximated as follows
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Same as the posterior of 𝒘 with 

the hyperparameters fixed

Only need to integrate 

over 𝒘, since other two 

are fixed at their MLE-II 

solutions

Same form for the PPD as in 

the case of fixed hyperparams

For any model where 

hyperparams are estimated by 

MLE-II, the posterior and PPD is 

approximated in a similar fashion
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Exp. Family (Pitman, Darmois, Koopman, 1930s)

▪Defines a class of distributions. An Exponential Family distribution is of the form

▪ 𝒙 ∈ 𝒳𝑚 is the r.v. being modeled (𝒳 denotes some space, e.g., ℝ or {0,1}) 

▪ 𝜃 ∈ ℝ𝑑 : Natural parameters or canonical parameters defining the distribution

▪ 𝜙(𝒙) ∈ ℝ𝑑 : Sufficient statistics (another random variable)
▪ Why “sufficient”: 𝑝(𝑥|𝜃) as a function of 𝜃 depends on 𝒙 only via 𝜙(𝒙)

▪𝑍 𝜃 = ∫ ℎ 𝒙 exp 𝜃⊤𝜙 𝒙 𝑑𝒙: Partition Function

▪𝐴 𝜃 = log 𝑍(𝜃): Log-partition function (also called cumulant function)

▪ℎ(𝒙): A constant (doesn’t depend on 𝜃)
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Expressing a Distribution in Exp. Family Form

▪ Recall the form of exp-fam distribution 𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃

▪ To write any exp-fam dist 𝑝() in the above form, write it as exp(log 𝑝())

▪Now compare the resulting expression with the exponential family form

.. to identify the natural parameters, sufficient statistics, log-partition function, etc.
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𝑝 𝑥 𝜃 = ℎ 𝑥 exp 𝜃⊤𝜙 𝑥 − 𝐴 𝜃
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(Univariate) Gaussian as Exponential Family

▪ Let’s try to write a univariate Gaussian in the exponential family form

▪ Recall the PDF of a univar Gaussian (already has exp, so less work needed :))
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Other Examples

▪Many other distribution belong to the exponential family
▪ Bernoulli

▪ Beta

▪ Gamma

▪ Multinoulli/Multinomial

▪ Dirichlet

▪ Multivariate Gaussian

▪ .. and many more ( https://en.wikipedia.org/wiki/Exponential_family )

▪Note: Not all distributions belong to the exponential family, e.g.,
▪ Uniform distribution (x ∼ Unif(a, b))

▪ Student-t distribution

▪ Mixture distributions (e.g., mixture of Gaussians)
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https://en.wikipedia.org/wiki/Exponential_family
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Next class

▪ Continue and wrap up the discussion on exp. family distributions

15


