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Plan Today

▪ Estimating parameters of a Gaussian distribution
▪ Will only focus on fully Bayesian inference, not MLE/MAP (left as an exercise)

▪ Probabilistic Linear Regression
▪ Using Gaussian likelihood and Gaussian prior
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Bayesian Inference for Mean of a Univariate Gaussian

▪ Consider 𝑁 i.i.d. scalar obs 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑁} drawn from 𝑝 𝑥 𝜇, 𝜎2 = 𝒩(𝑥|𝜇, 𝜎2)

▪ Each 𝑥𝑛 is a noisy measurement of 𝜇 ∈ ℝ, i.e., 𝑥𝑛 = 𝜇 + 𝜖𝑛 where 𝜖𝑛 ∼ 𝒩(0, 𝜎2)

▪ Would like to estimate 𝜇 given 𝐗 using fully Bayesian inference (not point estimation) 

▪ Need a prior over 𝜇. Let’s choose a Gaussian 𝑝 𝜇|𝜇0, 𝜎0
2 = 𝒩 𝜇 𝜇0, 𝜎0
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▪ The prior basically says that a priori 𝜇 is close to 𝜇0

▪ The prior’s variance 𝜎0
2 tells us how certain we are about the above assumption

▪ Since 𝜎2 in the likelihood model 𝒩 𝑥 𝜇, 𝜎2 is known, the Gaussian prior 𝒩 𝑥 𝜇0, 𝜎0
2 on 

𝜇 is also conjugate to the likelihood (thus posterior of 𝜇 will also be Gaussian) 
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Assume 𝜇0
and 𝜎0

2 to be 

fixed/known

𝜇

𝑝 𝑥 𝜇, 𝜎2

𝜇0

𝑝 𝜇|𝜇0, 𝜎0
2

Assumed fixed
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Bayesian Inference for Mean of a Univariate Gaussian

▪ The posterior distribution for the unknown mean parameter 𝜇

▪ Simplifying the above (using completing the squares trick – see note) gives

▪ What happens to the posterior as 𝑁 (number of observations) grows very large?
▪ Data (likelihood part) overwhelms the prior 

▪ Posterior’s variance 𝜎𝑁
2 will approximately be 𝜎2/𝑁 (and goes to 0 as 𝑁 → ∞)

▪ The posterior’s mean 𝜇𝑁 approaches ҧ𝑥(which is also the MLE solution)
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On conditioning side, 

skipping all fixed params 

and hyperparams from 

the notation

Also the MLE 

solution for 𝜇

Gaussian posterior’s mean is a 

convex combination of prior’s 

mean and the MLE solution

Gaussian posterior’s precision is the sum of 

the prior’s precision and sum of the noise 

precisions of all the observations

Gaussian posterior (not a 

surprise since the chosen prior 

was conjugate to the likelihood)

Contribution 

from the prior

Contribution 

from the data

Meaning, we become very-very 

certain about the estimate of 𝜇
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Bayesian Inference for Mean of a Univariate Gaussian

▪ Using the inferred posterior 𝑝(µ|𝐗), we can find the posterior predictive distribution

▪ For an alternative way to get the above result, note that

▪ In contrast, the plug-in predictive given a point estimate Ƹ𝜇 will be
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𝑝 𝑥∗ 𝐗 = ∫ 𝑝 𝑥∗ 𝜇, 𝜎
2)𝑝(µ 𝐗 𝑑𝜇

On conditioning side, 

skipping all fixed params 

and hyperparams from 

the notation

Assumed fixed, only 𝜇 is 

the unknown here

= ∫𝒩(𝑥∗|𝜇, 𝜎
2)𝒩 𝜇 𝜇𝑁, 𝜎𝑁

2 𝑑𝜇

= 𝒩(𝑥∗|𝜇𝑁 , 𝜎
2 + 𝜎𝑁

2) Result follows from properties of 

Gaussian and noting that a PPD 

is also a marginal distribution

A useful fact: When we 

have conjugacy, the 

posterior predictive 

distribution also has a 

closed form (will see this  

result more formally when 

talking about exponential 

family distributions)

Conditional of 𝑥∗ given 𝜇 is 

Gaussian, and 𝜇 has a Gaussian 

posterior, so marginal of 𝑥∗
(after we marginalize 𝜇) will also 

be a Gaussian

PRML [Bis 06], 

2.115, and also 

mentioned in prob-

stats refresher slides

𝑥∗ = 𝜇 + 𝜖 𝜇 ∼ 𝒩 𝜇𝑁, 𝜎𝑁
2 𝜖 ∼ 𝒩 0, 𝜎2

⇒ 𝑝(𝑥∗|𝐗) = 𝒩(𝑥∗|𝜇𝑁, 𝜎
2 + 𝜎𝑁

2)
Since both 𝜇 and 𝜖 are Gaussian r.v., and are independent, 

𝑥∗ also has a Gaussian predictive, and the respective 

means and variances of 𝜇 and 𝜖 get added up

𝑝 𝑥∗ 𝐗 = ∫ 𝑝 𝑥∗ 𝜇, 𝜎
2)𝑝(µ 𝐗 𝑑𝜇 ≈ 𝑝 𝑥∗ Ƹ𝜇, 𝜎2) = 𝒩(𝑥∗| Ƹ𝜇, 𝜎

2)

Note that PPD had a 

larger variance (𝜎2 + 𝜎𝑁
2)

This “extra” variance is due to the 

averaging over the posterior’s uncertainty
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Bayesian Inference for Variance of a Univariate Gaussian

▪ Consider 𝑁 i.i.d. scalar obs 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑁} drawn from 𝒩(𝑥|𝜇, 𝜎2)

▪ Assume the variance 𝜎2 ∈ ℝ+ to be unknown and mean 𝜇 to be fixed/known

▪ Would like to estimate 𝜎2 given 𝐗 using fully Bayesian inference (not point estimation) 

▪ Need a prior over 𝜎2. What prior 𝑝(𝜎2) to choose in this case?

▪ If  we want a conjugate prior, it should have the same form as the likelihood

▪ An inverse-gamma dist 𝐼𝐺(𝛼, 𝛽) has this form (𝛼, 𝛽 are shape and scale hyperparams)

▪ Due to conjugacy, posterior will also be IG:
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Working with Gaussians: Variance vs Precision

▪ Often, it is easier to work with the precision (=1/variance) rather than variance

▪ If  mean is known, for precision, Gamma(𝛼, 𝛽) is a conjugate prior to Gaussian lik.

▪ (Verify) The posterior 𝑝(𝜆 |𝑋) will be 

▪ Note: Unlike the case of unknown mean and fixed variance, the PPD for this case (and 
also the unknown variance case) will not be a Gaussian

▪ Note: Gamma distribution can be defined in terms of shape and scale or shape and rate 
parametrization (scale = 1/rate). Likewise, inverse Gamma can also be defined both 
shape and scale (which we saw) as well as shape and rate parametrizations.
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𝛼 and 𝛽 are the shape 

and rate params, resp., of 

the Gamma distribution

𝑝 𝑥𝑛 𝜇, 𝜆
−1 = 𝒩 𝑥 𝜇, 𝜆−1 =

𝜆

2𝜋
exp −

𝜆

2
𝑥𝑛 − 𝜇 2

𝑝 𝜆 ∝ 𝜆 𝛼−1 exp[−𝛽𝜆] (Note: mean of Gamma 𝛼, 𝛽 =
𝛼

𝛽
)PDF of gamma 

distribution
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Bayesian Inference for Both Parameters of a Gaussian

▪ Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

▪ Consider 𝑁 i.i.d. scalar obs 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑁} drawn from 𝒩(𝑥|𝜇, 𝜆−1)

▪ Assume both mean µ and precision 𝜆 to be unknown. The likelihood can be written as

▪ Would like a joint conjugate prior distribution 𝑝(µ, 𝜆)
▪ It must have the same form as the likelihood as written above. Basically, something that looks like
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Thankfully, this is a known 

distribution: normal-gamma (NG)

distribution ☺

Called so since it can be written 

as a product of a normal and a 

gamma (next slide)

The NG also has a multivariate version called normal-Wishart 

distribution to jointly model a real-valued vector and a PSD matrix
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Detour: Normal-gamma (Gaussian-gamma) Distribution

▪ We saw that the conjugate prior needed to have the form

▪ The above is product of a normal and a gamma distribution

▪ The NG                                           is conjugate to a Gaussian distribution if  both its 
mean and precision parameters are unknown and are to be estimated
▪ Thus a useful prior in many problems involving Gaussians with unknown mean and precision

9

Assuming shape-rate 

parametrization of the gamma 
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Bayesian Inference for Both Parameters of a Gaussian

▪ Due to conjugacy, the joint posterior 𝑝(µ, 𝜆|𝐗) will also be normal-gamma

▪ Plugging in the expressions for 𝑝(𝐗|µ, 𝜆) and 𝑝(µ, 𝜆), we get

▪ The above’s posterior’s parameters will be

10

(For full derivation of posterior, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007))

Skipping all hyperparameters 

on the conditioning side
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Other Quantities of Interest

▪ We saw that the joint posterior for mean and precision is NG

▪ From the above, we can also obtain the marginal posteriors for µ and 𝜆

▪ Marginal likelihood of the model

▪ PPD of a new observation 𝑥∗

11

(For full derivation of posterior, refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy (2007))

Marginal lik has closed form 

expression (for conjugate lik

and prior, the marginal lik has 

closed form – more when we 

see exp-family distributions)
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An Aside: Student-t distribution

▪ An infinite sum of Gaussian distributions, with same means but different precisions

▪ 𝜈 > 0 is called the degree of freedom, 𝜇 is the mean, and 𝜎2 is the scale

12

Same as saying that we are 

integrating out the precision 

parameter of a Gaussian with 

the mean held as fixed

Has fatter tail than Gaussian and 

is sharper around the mean

Zero-mean Student-t (and other such 

“infinite sum of Gaussians” are useful 

priors for modeling sparse weights

As 𝜈 tends to infinity, student-t 

becomes a Gaussian
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Inferring Params of Gaussian: Some Other Cases

▪We only considered parameter estimation for univariate Gaussian distribution
▪ The approach also extends to inferring parameters of a multivariate Gaussian

▪ For the unknown mean and precision matrix, normal-Wishart can be used as prior

▪ Posterior updates have forms similar to that in the univariate case

▪ When working with mean-variance, can use normal-inverse gamma as conjugate prior
▪ For multivariate Gaussian, can use normal-inverse Wishart for mean-covariance pair

▪ Other priors can also be used as well when inferring parameters of Gaussians, e.g.,
▪ normal-Inverse 𝜒2 commonly used in Statistics community for scalar mean-variance estimation

▪ May also refer to “Conjugate Bayesian analysis of the Gaussian distribution” - Murphy 
(2007) for various examples and more detailed derivations

13
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Linear Gaussian Model

▪ Consider linear transf. of a r.v. 𝒛 with 𝑝 𝒛 = 𝒩(𝒛|𝝁, 𝚲−1), plus Gaussian noise 𝝐

▪ Easy to see that, conditioned on 𝒛, 𝒙 too has a Gaussian distribution

▪ A Linear Gaussian Model. Very commonly encountered in probabilistic modeling

▪ The following two distributions are of interest. Assuming 𝚺 = 𝚲 + 𝑨⊤𝑳𝑨
−1

▪ Exercise: Prove the above results (PRML Chap. 2 contains a proof)

14Independently added 

and drawn from  

𝒩(𝝐|𝟎, 𝑳−1)

𝒙 = 𝑨𝒛 + 𝒃 + 𝝐

𝑝 𝒙|𝒛 = 𝒩 𝒙 𝑨𝒛 + 𝒃, 𝑳−1

If  𝑝(𝒛) is a prior and 𝑝(𝒙|𝒛) is 

likelihood then this is the posterior

If  𝑝(𝒛) is a prior and 𝑝(𝒙|𝒛)
is likelihood then this is the 

marginal likelihood
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Applications of Gaussian-based Models

▪ Gaussians and Linear Gaussian Models widely used in probabilistic models, e.g., 
▪ Probability density estimation: Given 𝑥1, 𝑥2, … , 𝑥𝑁, estimate 𝑝(𝑥) assuming Gaussian lik./noise

▪ Given 𝑁 sensor obs. 𝑥𝑛 𝑛=1
𝑁 with 𝑥𝑛 = 𝜇 + 𝜖𝑛 (zero-mean Gaussian noise 𝜖𝑛) estimate the 

underlying true value 𝜇 (possibly along with the variance of the estimate of 𝜇)

▪ Estimating missing data: 𝑝(𝑥𝑛
miss|𝑥𝑛

obs) or 𝔼[𝑥𝑛
miss|𝑥𝑛

obs]

▪ Linear Regression with Gaussian Likelihood

▪ Linear latent variable models (probabilistic PCA, factor analysis, Kalman filters) and their mixtures

▪ Gaussian Processes (GP) extensively use Gaussian conditioning and marginalization rules

▪ More complex models where parts of the model use Gaussian likelihoods/priors
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𝒚 = 𝑿𝒘 + 𝝐

The prior 𝑝(𝒘)
is Gaussian i.i.d. Gaussian 

noise 
Training 

responses

Training 

feat. mat
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Probabilistic Linear Regression

▪ Assume training data {𝒙𝑛, 𝑦𝑛}𝑛=1
𝑁 , with features 𝒙𝑛 ∈ ℝ𝐷 and responses 𝑦𝑛 ∈ ℝ

▪ Assume each 𝑦𝑛 generated by a noisy linear model with wts 𝐰 = [𝑤1, … , 𝑤𝐷]

▪ Precision (𝛽) variance of the Gaussian

noise tells is how noisy the outputs are

(i.e., how far from the mean they are)

▪Other noise models also possible (e.g., 

Laplace distribution for noise)
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Mean Variance

Gaussian

Output 𝑦𝑛 assumed  

generated from a 

Gaussian with 

mean 𝒘⊤𝒙𝑛

Each weight 

assumed real-valued

Note: Only 𝑦𝑛 being modeled, not 

𝒙𝑛 (discriminative model). A 

conditional model where 𝑦𝑛 is 

being modeled, conditioned on 𝒙𝑛



CS772A: PML

Probabilistic Linear Regression

▪ The linear model with Gaussian noise corresponds to a Gaussian likelihood

▪ Assuming responses to be i.i.d. given features and weights 

▪ The above is equivalent to the following

▪ Assume the following Gaussian prior on 𝐰, 

▪ Then 𝒚 = 𝑿𝒘 + 𝝐 is simply a linear Gaussian model

▪ Can use all the rules of linear Gaussian models to perform inference/predictions ☺
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𝒚 = 𝑿𝒘 + 𝝐 where 𝝐 ∼ 𝒩 0, 𝛽−1𝐈𝐍

𝑁 × 𝐷 feature matrix

𝑁 × 1 response vector

The precision 𝜆 of 

the Gaussian prior 

controls how 

aggressively the prior 

pushes the elements 

towards mean (0)

NLL corresponds to squared 

loss prop. to 𝑦𝑛 − 𝒘⊤𝒙𝑛
2

Neg. log-prior corresponds to ℓ2
regularizer with 𝜆 being the reg. constant

Can even use different 𝜆’s for different 

𝑤𝑑 ’s. Useful in sparse modeling (later)

Plate diagram. Hyperparams (𝜆, 𝛽)
are fixed and not shown for brevity


