(1) Parameter Estimation for Gaussians
(2) Probabilistic Linear Regression
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Plan Today

= Estimating parameters of a Gaussian distribution
= Will only focus on fully Bayesian inference, not MLE/MAP (left as an exercise)

= Probabilistic Linear Regression
" Using Gaussian likelihood and Gaussian prior
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Bayesian Inference for Mean of a Univariate Gaussian

Assumed fixed

» Consider N i.i.d. scalar obs X = {xq, x5, ..., x5} drawn from p(x|u, 0%) = N (x|u, %)

1) 2
o a®) = M) g |-G bE] ot
o
N
} X 70'2 — Xn ?0-2 |
. p(X|p, ") 1:[19( 1, 0%) L

= Fach x,, is a noisy measurement of u € R, i.e., x,, = u + €, where €,, ~ N'(0,0%)

= Would like to estimate u given X using fully Bayesian inference (not point estimation)
Assume Ug

= Need a prior over u. Let's choose a Gaussian p (g, 085) = N(,u‘uo, 0&) Jandog obe

fixed/known

" The prior basically says that a priori u is close to ug

= The prior’s variance o¢ tells us how certain we are about the above assumption

= Since 62 in the likelihood model IV (x|u, a2) is known, the Gaussian prior NV (x|ug, &) on

U is also conjugate to the likelihood (thus posterior of u will also be Gaussian)
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Bayesian Inference for Mean of a Univariate Gaussian

* The posterior distribution for the unknown mean parameter u

On conditioning side, N 2 B 2
skipping all fixed params p()ul)() — p(X|,u)p(,u.) X l exp | — (Xn ’u) X exp | — ('UJ ,LI{))
and hyperparams from p(X) n:*i 2072 20‘5

the notation

= Simplifying the above (using completing the squares trick — see note) gives

( )2 Gaussian posterior (not a
\HTHEN) surprise since the chosen prior
p(p|X) o EXP[ — ] prise sen p
N was conjugate to the likelihood) Also the MLE
Gaussian posterior's precision is the sum of 1 1 — solution for p
the prior's precision and sum of the noise — = 3 —|— — Contribution Contribution
precisions of all the observations oy 0‘0 o) from the prior from the data y
Gaussian posterior's mean is a o2 Ng% - — Zn:l Xn
convex combination of prior's [ 5 5 o -+ 5 > X (where X = N )
mean and the MLE solution NUU + 0o No oy + 0

» What happens to the posterior as N (number of observations) grows very large?

Meaning, we become very-very

» Data (likelihood part) overwhelms the prior certain about the estimate of i
= Posterior's variance o will approximately be 62 /N (and goes to 0 as N — )
" The posterior's mean puy approaches x (which is also the MLE solution) CST72A: PML



Bayesian Inference for Mean of a Univariate Gaussian

» Using the inferred posterior p(u|X), we can find the posterior predictive distribution

Assumed fixed, only p is —
the unknown here Conditional of x, given pis [Bis O6],
2.115, and also

2) ( | ) Gaussian, and u has a Gaussian - :

— ! mentioned in prob-
p (x* |X) f p (x* |I’l" o p l’l X dll posterior, so marginal of x, stats refresherpslides
On conditioning side, (after we marginalize ) will also

skipping all fixed params — f N(x* |‘Ll’ O-Z)N(l/l, “U,N, 0'1\2,) d“ be a Gaussian A

and hyperparams from A useful fact: When we

the notation 2 2 Result follows from properties of have coni = .;,.‘ /
— jugacy, the
N (x* |uN} O- + O-N) Gaussian and noting that a PPD posterior predictive »
This "extra” variance is due to the is also a marginal distribution distribution also has a - e’
. o , closed form (will see this
averaging over the posterior's uncertainty result more formally when

" For an alternative way to get the above result, note that aing about exporentia
x,=u+e p~Nuyog) e~N(0,0%)

Since both p and € are Gaussian r.v., and are independent,

= D (X* |X) =N (X* |[JN, 0'2 + 0'1\2,) x, also has a Gaussian predictive, and the respective

means and variances of u and € get added up

* |n contrast, the plug-in predictive given a point estimate f will be Note that PPD had a

: 2 2
larger variance (6 + oy )

p(x.|X) = [ pCr.lp, a)p(WX)dp = p(x.l,0%) = NV (x.|4,0)
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Bayesian Inference for Variance of a Univariate Gaussian

= Consider N i.i.d. scalar obs X = {x1, X5, ... XN} dravvn from ]\f(x|u, d?)
p(xalpt, 0%) = N(x|p,0%) and  p(X|p,o” Hp Xn| 1, 0
= Assume the variance o4 € R, to be unknown and mean U to be fixed/known
= Would like to estimate o given X using fully Bayesian inference (not point estimation)

= Need a prior over o2. What prior p(0#) to choose in this case?
" |[f we want a conjugate prior, it should have the same form as the likelihood

(xo — M)T

202

" An inverse-gamma dist IG («, §) has this form (a, § are shape and scale hyperparams)

~1/2

p(xalit, 0%) o (7)™ exp [—

o2

p(o‘ ) o (J )~ (1) exp [—ﬁ] (note: mean of IG(a, 3) = %)

= Due to conjugacy, posterior will also be IG: p(a?|X) = IG(a+ 5§, 5 + Z"=1‘;‘"‘”) ) ccrran: oL




Working with Gaussians: Variance vs Precision

= Often, it is easier to work with the precision (=1/variance) rather than variance

p(xnlp, A71) = N(xlu,A71) = \/:exp [__(xn 7y ]

= [f mean is known, for precision, Gammal(a, ) is a conjugate prior to Gaussian lik.

a and B are the shape
a

PDF of gamma p(l) e (A) (a—l) exp [—18/1] (Note: mean of Gamma(oc, ,3) — _) and rate params, resp., of

distribution B the Gamma distribution

= (Verify) The posterior p(4 |X) will be Gamma(a + %, B+ ZL(;”—,LL)Q)

= Note: Unlike the case of unknown mean and fixed variance, the PPD for this case (and
also the unknown variance case) will not be a Gaussian

» Note: Gamma distribution can be defined in terms of shape and scale or shape and rate
parametrization (scale = 1/rate). Likewise, inverse Gamma can also be defined both

shape and scale (which we saw) as well as shape and rate parametrizations.
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Bayesian Inference for Both Parameters of a Gaussian

" Gaussian with unknown scalar mean and unknown scalar precision (two parameters)

= Consider N i.i.d. scalar obs X = {x4, x5, ..., x5} drawn from N (x|u, A~1)
= Assume both mean p and precision A to be unknown. The likelihood can be written as

p(X|p,\) = ﬁ \/;exp [—%(Xn — #)2}
- {Alzz exp (_)\Tﬂz)]m’exp l)\pixn - %Zxﬁ]

n=1 n=1

= Would like a joint conjugate prior distribution p(u, 4)
" |t must have the same form as the likelihood as written above. Basically, something that looks like

Thankfully, this is a known )\,UP K0
distribution: normal-gamma (NG) P(,LL;. )\) X )\1/2 exp | — — exp [)\P:C . )\d]
distribution © 2

Called so since it can be written
as a product of a normal and a
gamma (next slide)

The NG also has a multivariate version called normal-Wishart
distribution to jointly model a real-valued vector and a PSD matrix CS772A: PML



Detour: Normal-gamma (Gaussian-gamma) Distribution

» \We saw that the conjugate prior needed to have the form

2\ 750
p(u, A) o {)\Uzexp(—%)} exp [Auc — Ad]

2

A
= exp [—%(,u — C/Hlo)zj| A"0/2 exp [— (d - 2C_m) )\] (re-arranging terms)

- -
¥ Vo

prop. to a Gaussian prop. to a gamma

Assuming shape-rate
parametrization of the gamma

" The above is product of a normal and a gamma distribution
p(i, A) = N (ulpo, (koX)~")Gamma(Alao, fo) = NG(puo, %o, o, o)

where o = ¢/ko, ap =1+ Ko/2, Bo = d — 62/2ﬁ30 are prior's hyperparameters

* The NG p(p, A) = NG(po, Ko, oo, Bo) is conjugate to a Gaussian distribution if both its
mean and precision parameters are unknown and are to be estimated

" Thus a useful prior in many problems involving Gaussians with unknown mean and precision
CS772A: PML



Bayesian Inference for Both Parameters of a Gaussian

* Due to conjugacy, the joint posterior p(u, A|X) will also be normal-gamma

Skipping all hyperparameters p()u:| /\|X) X p(X“_L? A.)p(‘,uj )\)

on the conditioning side

* Plugging in the expressions for p(X|w, A4) and p(u, A1), we get

p(, AIX) = NG(uw, kn, an, Bn) = N(plun, (kyA) " )Gamma(X|aw, Sy)
" The above's posterior's parameters will be
_ Kopo + NX
HN = ko + N
KN = Ko+ N
any = Qo+ N/2
_ I~ oy, KoN(X — po)?
BN — BO"‘E;(XH_X) + 2(HO—I-N)

CS772A: PML
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Other Quantities of Interest

= \We saw that the joint posterior for mean and precision is NG

p(u; AIX) = NG(un, kn, an, Bn) = N(ulpn, (kvA) ") Gamma(A|an, Sn)
* From the above, we can also obtain the marginal posteriors for p and A
pAX) = [ bl AX)dp = Gamma(Alan, fv)
pulX) = [ Pl AX)IA = [ p(ulX X)PAIX)IX = tacy (plan B/ (cnrin))

W

t distribution

Marginal lik has closed form

—N/2 expression (for conjugate lik
(2m) and prior, the marginal lik has
closed form — more when we

: see exp-family distributions)
= PPD of a new observation x,

K 1
P(X*‘x) = /':D(X*“_L?)\) p(p;}AlX)J dpdX = thxN (X*“LNg ﬁN( N+ ))

PN QNHN

N o

= Marginal likelihood of the model

B

p(X) = Haw) By (Hﬂ)

(o) 53” KN

Gaussian Normal-Gamma
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An Aside: Student-t distribution

" An infinite sum of Gaussian distributions, with same means but different precisions

Same as saying that we are

/ N (x|, A7) Gamma(Ala, b)dA | oS Gl
— t23(x|/u:' b/a) — tv(X“L:' 0-2)

the mean held as fixed
=y > 0 is called the degree of freedom, u is the mean, and o is the scale

p(x|u, a, b)

S As v tends to infinity, student-t
1 x— i 2 becomes a Gaussian
2 2
t,(x|\pn, o = cl|1+ — 0.5 :
ala®) = e+ o (E) |
0.4
L(v/241/2) 1 Has fatter tail than Gaussian and
C .
F(I//Q) O 03} is sharper around the mean
02+t Zero-mean Student-t (and other such
mean = p, V> 1 “infinite sum of Gaussians” are useful
mode = p 0.1F priors for modeling sparse weights
1/0'2 0
var — , V> 2 -5
(v —2)
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Inferring Params of Gaussian: Some Other Cases

" We only considered parameter estimation for univariate Gaussian distribution
" The approach also extends to inferring parameters of a multivariate Gaussian
" For the unknown mean and precision matrix, normal-Wishart can be used as prior

" Posterior updates have forms similar to that in the univariate case

= When working with mean-variance, can use normal-inverse gamma as conjugate prior
* For multivariate Gaussian, can use normal-inverse Wishart for mean-covariance pair

= Other priors can also be used as well when inferring parameters of Gaussians, e.g.,
= normal-Inverse y? commonly used in Statistics community for scalar mean-variance estimation

* May also refer to "Conjugate Bayesian analysis of the Gaussian distribution” - Murphy
(2007) for various examples and more detailed derivations
CS772A: PML



Independently added

Linear Gaussian Model and dravn from

NV (el0,L71)
= Consider linear transf. of a rv. z with p(z) = N (z|u, A1), plus Gaussian noise €
x=Az+ b+ €
" Fasy to see that, conditioned on z, x too has a Gaussian distribution
p(x|z) = N(x|Az + b, L™ 1)
" A Linear Gaussian Model. Very commonly encountered in probabilistic modeling

—1
= The following two distributions are of interest. Assuming X = (A + ATLA)
If p(2) is a prior and p(x|2) is

p(Z‘X) — P(X‘Z)P(Z) _ N(Z|Z {AT L(X . b) 4+ AP"} Z) likelihood then this is the posterior
p(z) If p(2) is a prior and p(x|z)
_ _ —1aT —1 is likelihood then this is the
p(X) o /p(x\z)p(z)dz o N(X‘AH * b? AR “A-+L ) marginal likelihood

" Exercise: Prove the above results (PRML Chap. 2 contains a proof)
CS772A: PML



Applications of Gaussian-based Models

" Gaussians and Linear Gaussian Models widely used in probabilistic models, e.g.,
= Probability density estimation: Given x4, X5, ..., Xy, estimate p(x) assuming Gaussian lik./noise

= Given N sensor obs. {x,,}N_; with x,, = 1 + €,, (zero-mean Gaussian noise €,) estimate the
underlying true value p (possibly along with the variance of the estimate of u)

» Estimating missing data: p(x,‘;niss|x,9lbs) or ]E[x,%niss|x,9lbs]

: : , . 0 ini The prior p(w
= |Linear Regression with Gaussian Likelihood fTerz't”';it s Gazssiaﬁ( ) i.d. Gaussian
’ noise
Training —
responses y XW + E

Linear latent variable models (probabilistic PCA, factor analysis, Kalman filters) and their mixtures
* Gaussian Processes (GP) extensively use Gaussian conditioning and marginalization rules

y = f + noise (GP assumes f = [f(x1),..., f(xn)] is jointly Gaussian)

= More complex models where parts of the model use Gaussian likelihoods/priors
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A Note: Only y,, being modeled, not

Probabilistic Linear Regression & x, (dscriminatie model). A

conditional model where y,, is
being modeled, conditioned on x,,

= Assume training data {x,,, Y, 4, with features x,, € RP and responses y,, € R

» Assume each y,, generated by a noisy linear model with wts w = [wy, ..., wp]

Each weight
T Outputtyg ?ssumed assumed real-valued
. generated from a
}/n — W xﬂ + ‘En Gaussian with Mean Variance
mean w'x, l |
—1 ~ T —1
where ¢, ~ N(0,371) Yo ~ N(w @, 577)

" Precision (f3) variance of the Gaussian Y
noise tells is how noisy the outputs are

Gaussian

\/gexp [_g(yn - 'wTwn)2

(i.e., how far from the mean they are)
» Other noise models also possible (e.g.,

Laplace distribution for noise)
CS772A: PML



Probabilistic Linear Regression @ | [ Pete g yperrars 1)

e e i are fixed and not shown for brevity

» The linear model with Gaussian noise corresponds to a Gaussian likelihood

NLL corresponds to squared

W -
P(YnlXn, W, B) = N (Yalw " Xpn, B7) — ioss prop 10 (3, - wTzy)?
= Assuming responses to be i.i.d. given features and weights . 5o

p(y|x Waﬁ) — H.{;J:IN(yn‘wan:B_l) — N(y|qu )B_IIN)

N X 1 response vector PWa)= N (wqg|0, A1)

" The above is equivalent to the following

y = Xw + € where € ~ N0, 57 Iy)

Neg. log-prior corresponds to £,

- Assume the fO”O\ng Gau55|an prlor on w, regularizer with A being the reg. constant

3 2 4 0 1w 2 3

D D D
A N2 A
p(w) = Hp(wd) = HN(wd]O,)\_l) =N(w|0. X\ p)=(—) exp|—Zw'w The precision A of
27 2 the Gaussian prior
d=1 d=1 p
Can even use different A's for different controls how
wy's. Useful in sparse modeling (later) aggressively the prior
* Then y = Xw + € is simply a linear Gaussian model pushes the elements
towards mean (O)

= Can use all the rules of linear Gaussian models to perform inference/predictions © CST72A: PML



