Parameter Estimation in Probabilistic
Models (Contd.)
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Plan Today

" Two simple examples of parameter estimation in probabilistic models
" Beta (prior) — Bernoulli (likelihood) observation model
= Dirichlet (prior) — Multinomial (likelihood) observation model

= Conjugate priors
" "Reading” a posterior distribution
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An Important Point: PPD using Marginal Likelihood

= PPD for a model m, by definition, is obtained by the following marginalization
p(x.|X,m) = [ p(x.|6, M)p(0|X,m) db
" Can also compute PPD without computing the posterior! Some ways:

1. Using a ratio of marginal likelihoods as follows | oint marginal likelinood

for training and test data

Follows simply from Bayes rule p (x*’ X | m)

p(alb) = p;‘(l;')’) p(x.|X,m) =

Marginal likelihood for

p (X | m) training data
2. If p(x,|X,m) can be obtained easily from the joint distribution p(x,, X|m)

= Note that the PPD p(x.|X, m) is also a conditional distribution | Wil see this being used we we

study Gaussian Process (GP)

» For some distributions (e.g., Gaussian), conditionals can be easily derived from joint
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Estimating a
Beta-Bernoulli Model
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Estimating a Coin’s Bias: MLE

= Consider a sequence of N coin toss outcomes (observations) Probability
of a head

" Fach observation vy, is a binary random variable. Head: y,, = 1, Tail: y,, = 0

* Fach y, is assumed generated by a Bernoulli distribution with param 8 € (0,1)

Likelihood or _ 1—
observation model P(yn|9) = Bernomh()’nl@) = grn (1-26) In

" Here 6 the unknown param (probability of head). Want to estimate it using MLE

assuming i.i.d. data

" Log-likelihood: Yp=1 108 p(¥10) = IN_; [yulog8 + (1 —yy)log (1 — 6)]

* Maximizing log-lik, or minimizing neg. log-lik (NLL) w.rt. 8 gives

| g ) ) o and N Thus MLE Indeed, with a small number of
tOS,SG a comn 5 times — gave 1?? cad an —1 yn solution is simply | | training observations, MLE may
4 tails. Does it means 6 = OZ 2 The 6 — n= the fraction of overfit and may not be reliable. An
MLE approach Says so.lV\/hat s I'see O MLE N heads! © Makes | | alternative is MAP estimation
& head and 5 tails. Does it mean 8 = Q7 ntuitive sensel which can incorporate a prior
. distribution over 8
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Estimating a Coin’s Bias: MAP

" | et's again consider the coin-toss problem (estimating the bias of the coin)

= Fach likelihood term is Bernoulli
p(y,10) = Bernoulli(y,|0) = 67 (1 — )17 In

" Also need a prior since we want to do MAP estimation

" Since 8 € (0,1), a reasonable choice of prior for 8 would be Beta distribution

- Tla+p)
POIEE) = Har)

The gamma function «a and B (both non-negative reals)
are the two hyperparameters of this

Beta prior

6&—1(1 _ H)ﬁ—l

Usinga = 1 and f = 1 will make
the Beta prior a uniform prior

Can set these based on intuition,
cross-validation, or even learn them




Estimating a Coin’s Bias: MAP

" The log posterior for the coin-toss model is log-lik + log-prior

N
LP(0) =z log p(y,10) +logp(Bla,p)

n=1
" Plugging in the expressions for Bernoulli and Beta and ignoring any terms that
don't depend on 8, the log posterior simplifies to
N
LP(0) = z |y, log0 4+ (1 —y,)log(1—6)]+ (a—1)logh + (f — 1)log(1 —0)

n=1

= Maximizing the above log post. (or min. of its negative) w.rt. 8 gives

Prior's hyperparameters have an

Usinga = 1and f = 1 gives us N +a—1 interesting interpretation. Can think of
the same solution as MLE H _ n=1 Yn a — 1 and B — 1 as the number of

MAP — N + a + ﬁ — 9 heads and tails, respectively, before
Recall that @ = 1 and 8 = 1 for Beta starting the coin-toss experiment
distribution is in fact equivalent toa Such interpretations of prior's hyperparameters as (akin to “pSGUdO_ObservaﬂonS”)
uniform pr]or (hence making MAP being “pseudo-observations” exist for various other

val MLE prior distributions as well (in particular, distributions
equivalent to ) belonging to “exponential family” of distributions CS772A: PML



Estimating a Coin’s Bias: Fully Bayesian Inference

" |n fully Bayesian inference, we compute the posterior distribution
= Bernoulli likelihood: p(y,,|6) = Bernoulli(y,|0) = 6Yr (1 — 0)* ™ ¥»

= Beta prior: p(6) = Beta(@|a, ) = Fiii;f[;) 9“‘1(% — Hf)hﬁd_iv) Number of tails (Np)

" [he posterior can be computed as IN=1Yn (1 — G)N-IN=1Yn

p(0y) = LOPOIO) _ p(@) Mo pOnl6) _ o 000 Moo oo
p(y) p(y) f%@a—l(l_g)ﬁ—l Hg:l Yyn (1-0)1-Ynde

" Here, even without computing the denominator (marg lik), we can identify the posterior
= |t s Beta distribution since p(0|y) 0.4 9“+N1_1(1 — 9)'B+N0_1 Exercise: Show that the A

. Hint: Use the fact that the normalization constant equals | G | /
= Thus p(@ |y) — Beta(e | a + Nl' :B + NO) posterior must integrate to 1 r(“+zf=1r’;")r(5+n’:‘;_2f=l Xn) e»
[ p(6ly)ds = 1 e

" Here, finding the posterior boiled down to simply "multiply, add stuff, and identify”

" Here, posterior has the same form as prior (both Beta): property of conjugate prigrs.. st



Conjugacy and Conjugate Priors

* Many pairs of distributions are conjugate to each other
= Bernoulli (likelihood) + Beta (prior) = Beta posterior
= Binomial (likelihood) + Beta (prior) = Beta posterior
= Multinomial (likelihood) + Dirichlet (prior) = Dirichlet posterior | Not true in general, but in some
: : : . , cases (e.g., the variance of the
= Poisson (likelihood) + Gamma (prior) = Gamma posterior Gaussian likelihood is fixed)
" Gaussian (likelihood) + Gaussian (prior) = Gaussian posterior

" and many other such pairs ..

= Tip: If two distr are conjugate to each other, their functional forms are similar

» Example: Bernoulli and Beta have the forms This is why, when we multiply them while
computing the posterior, the exponents get added
. _ ny _ o\1-y and we get the same form for the posterior as the
Bernoulh(yl@) =0 (1 0) prior but with just updated hyperparameter. Also,
F(Ol + ﬁ) we can identify the posterior and its
Beta(@|a,f) = ———= 0% 1(1 - H)ﬁ_l hyperparameters simply by inspection
F(a)r'(B)

= More on conjugate priors when we ook at exponential family distributionscs772A_ .



Making Predictions

" Suppose we want to compute the prob that the next outcome xpy 44 Will be head (=1)
= The plug-in predictive distribution using a point estimate 8 (e.g., using MLE/MAP)

p(xns1 = 1|X) = p(xns1 = 1|6) = 6 or equivalently p(xn+1]X) =~ Bernoulli(xys1 | 6)

" The posterior predictive distribution (averaging over all 8's weighted by their respective

osterior probabilities
’ ’ ) p(xnt1 = 1|X) = /1 P(xn+1 = 1[0)p(6|X)d6
Jo

1
= / 6 x Beta(f|a + N1, B+ No)d6
Jo

Expectation of 8 wurt. the Beta
— E[Q | X] posterior distribution

a + Ny
a+ B+ N

» Therefore the PPD is p(xn41|X) = Bernoulli(xy41 | E[0]X])
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Estimating a
Dirichlet-Multinoulli Model

CS772A: PML



Bayesian Inference for Multinoulli/Multinomial

= Assume N discrete obs X = {x4, x5, ..., x5} with each x,, € {1,2, ...,K} eg,
" X, represents the outcome of a dice roll with K faces

= x,, represents the class label of the nt" example in a classification problem (total K classes)

= x,, represents the identity of the n*™ word in a sequence of words These sum to 1
= Assume likelihood to be multinoulli with unknown params T = [y, 5, ..., Tk |

K
— : : — I[xn=K] Generalization of Bernoulli to
pCenlm) multinoulli(xy ) nk 1 "k K > 2 discrete outcomes

' it “ th " Large values of a will
" TTiS gvector of prgbab|l|t|es ( probability vector”), e.g., — G Do, psks

" Biases of the K sides of the dice concentration jﬂj{;ﬂﬁu';;;*t‘:j:hfgfﬁ

= Prior class probabilities in multi-class classification (p(y,, = k) = m,) B?r:im:Ee(raiS';nee .

= Probabilities of observing each word of the K words in a vocabulary known for now) Fach ay =0

" Assume a conjugate prior (Dirichlet) on 1T vvith hyperparams & = a4, @5, ..., Ak]|
F(Zf 1 lek) H ap—1 _ 1 ﬁ’ﬂfkl Generalization of Beta to
k

— K-dimensional probability
Hk 1 r( vectors

p(7m|a) = Dirichlet(w|aa, ..., ak) =
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Brief Detour: Dirichlet Distribution .

= An important distribution. Models non-neg. vectors 1 that also sum to one

Basically, probability vectors

* A random draw from K-dim Dirich. will be a point under (K-1)-dim probability simplex

Like a uniform ) ) . o
distribution if Draws from a 3-dimensional Dirichlet with different o

Visualizations of PDFs of some 3-dim | alagsaret jo=(1.1.1)
Dirichlet distributions (each generated
usmg a different conc. Param vector a)

44

o= (10, 10, 10)

All a,'s large results in
peak around the
center of the simplex

a controls the shape
of the Dirichlet (just

like Beta distribution’s IR R R
T

hyperparameter: 1 1
yperparameters) " o ok
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i Zk:] ay Zk 1 g
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" Interesting fact: Can generate a K-dim Dirichlet random variable by independently
generating K gamma random variables and normalizing them to sum to 1 CS772A: PML



Bayesian Inference for Multinoulli

Likelihood Prior

= Posterior p(1r|X) is easy to compute due to conjugacy b/w multinoulli and Dir.
Don't need to compute for this

p (Tl', Xl a) p (Tl'l a)p (X | I, a) . p (Tl’l a)p (X | Tl') case because of conjugacy

w X, a) = = =
p( | ) p(X|a) p(X|a) p(X|a) Marg-ik = [ p(m|a)p(X|m)dm
= Assuming x,,'s are i.i.d. given i, p(X|m) = N_1 p(x,|7). and therefore
=k N_ = —
p(1T|X, a) x HK . n.IC:k 1 1—[ _ Hk T k | — 11§=1 n_IC:k+Zn—1 [[xn=k] -1

= Even without computing marg-lik, p(X]|a), we can see that the posterior is Dirichlet

= Denoting N, = XN_. I[x,, = k], number of observations with with value k

p(m|X, ) = Dirichlet(m|ay + Ny, @y + Ny, ..., g + Ni) | of heade and e

for the coin bias

» Note: Nq,, N, ..., Ng are the sufficient statistics for this estimation problem | estimation problem

* We only need the suff-stats to estimate the parameters and values of individual observations aren’t
needed (another property from exponential family of distributions — more on this later)
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Bayesian Inference for Multinoulli

" Finally, let's also look at the posterior predictive distribution for this model
» PPD is the prob distr of a new x, € {1,2, ..., K}, given training data X = {x1, x5, ..., Xy}

Will be a multinoulli. Just need

to estimate the probabilities of p (x* |X’ a) — f p (x* |T[)p(n|X, a) dTl’

each of the K outcomes

" p(x,|m) = multinoulli(x,|m), p(m|X, a) = Dirichlet(m|a; + Ny, a, + N, ..., ax + Ng)
= Can compute the posterior predictive probability for each of the K possible outcomes

p(x. = kIX, &) = [ p(x, = klm)p(®|X, a)dr
= [ m,, x Dirichlet(m|a; + Ny, ay + Ny, ..., ax + Ni)dm

_ %t Nie (Expectation of 1, wir.t the Dirichlet posterior)
Ilg—l ap + N A similar effect was
Note how these probabilities achieved in the Beta-
, , C . ar+N hav n “smoothened” Bernoulli model,
= Thus PPD is multinoulli with probability vector { PR } tjtﬁebj:e iy tﬁ;’tprieorej tﬁie emoulli model, too
Zk:l At k=1 averagi i
= ging over the posterior

= Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of 1
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“Reading” the Posterior Distribution

= Posterior provides us a holistic view about 8 given observed data
= A simple unimodal posterior for a scalar parameter 8 might look something like

p(0]X) |

(il
g
= \arious types of estimates regarding 8 can be obtained from the posterior, €.g.,
» Mode of the posterior (same as the MAP estimate)
= Mean and median of the posterior
= Variance/spread of the posterior (uncertainty in our estimate of the parameters)
= Any quantile (say 0 < a < 1 quantile) of the posterior, e.g., 8, st. p(8 < 6,) = «
" \Various types of intervals/regions
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“Reading” the Posterior Distribution

Also defined for multi-modal posteriors

Central Interval Highest Probability Density Region _
> Central Interval HPD Region

" 100(1 — a)% Credible Interval: Region in which 1 — a fraction of posterior's mass resides

Computing central interval

CG(X) p— (E? U) - p(g E 9 S u|X) — 1 — or HPD usually requires

inverting CDFs

= Credible Interval is not unique (there can be many 100(1 — a)% intervals)
= Central Interval is a symmetrized version of Credible Interval (a/2 mass on each tail)
» Another useful interval: The (1 — a) Highest Probability Density (HPD) region

Ca(X)={0:p(0|X) > p*} st. 1-a= /gzp(“)}p* p(0|X)de



