Parameter Estimation in Probabilistic Models (Contd.)

CS772A: Probabilistic Machine Learning
Piyush Rai

Plan Today

- Two simple examples of parameter estimation in probabilistic models
- Beta (prior) - Bernoulli (likelihood) observation model
- Dirichlet (prior) - Multinomial (likelihood) observation model
- Conjugate priors
- "Reading" a posterior distribution

An Important Point: PPD using Marginal Likelihood ${ }^{3}$

- PPD for a model m, by definition, is obtained by the following marginalization

$$
p\left(\boldsymbol{x}_{*} \mid \mathbf{X}, m\right)=\int p\left(\boldsymbol{x}_{*} \mid \theta, m\right) p(\theta \mid \mathbf{X}, m) d \theta
$$

- Can also compute PPD without computing the posterior! Some ways:

1. Using a ratio of marginal likelihoods as follows

Joint marginal likelihood
for training and test data
Follows simply from Bayes rule

$$
\begin{aligned}
& \text { vs simply from Bayes rule } \\
& p(a \mid b)=\frac{p(a, b)}{p(b)}
\end{aligned} p p\left(\boldsymbol{x}_{*} \mid \mathbf{X}, m\right)=\frac{p\left(\boldsymbol{x}_{*}, \mathbf{X} \mid m\right)}{p(\mathbf{X} \mid m)}
$$

2. If $p\left(\boldsymbol{x}_{*} \mid \mathbf{X}, m\right)$ can be obtained easily from the joint distribution $p\left(\boldsymbol{x}_{*}, \mathbf{X} \mid m\right)$

- Note that the PPD $p\left(\boldsymbol{x}_{*} \mid \mathbf{X}, m\right)$ is also a conditional distribution Will see this being used we we
- For some distributions (e.g., Gaussian), conditionals can be easily derived from joint

Estimating a
 Beta-Bernoulli Model

Estimating a Coin's Bias: MLE

- Consider a sequence of N coin toss outcomes (observations)
- Each observation y_{n} is a binary random variable. Head: $y_{n}=1$, Tail: $y_{n}=0$
- Each y_{n} is assumed generated by a Bernoulli distribution with param $\theta \in(0,1)$

Likelihood or
observation model
\square

- Here θ the unknown param (probability of head). Want to estimate it using MLE assuming i.i.d. data
- Log-likelihood: $\sum_{n=1}^{N} \log p\left(y_{n} \mid \theta\right)=\sum_{n=1}^{N}\left[y_{n} \log \theta+\left(1-y_{n}\right) \log (1-\theta)\right]$
- Maximizing log-lik, or minimizing neg. log-lik (NLL) w.r.t. θ gives

Indeed, with a small number of training observations, MLE may overfit and may not be reliable. An alternative is MAP estimation which can incorporate a prior distribution over θ

Estimating a Coin's Bias: MAP

- Let's again consider the coin-toss problem (estimating the bias of the coin)
- Each likelihood term is Bernoulli

$$
p\left(y_{n} \mid \theta\right)=\operatorname{Bernoulli}\left(y_{\mathrm{n}} \mid \theta\right)=\theta^{y_{n}}(1-\theta)^{1-y_{n}}
$$

- Also need a prior since we want to do MAP estimation
- Since $\theta \in(0,1)$, a reasonable choice of prior for θ would be Beta distribution

$\qquad p(\theta \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}$
The gamma function
:---
are the two hyperparameters of this
Beta prior

Estimating a Coin's Bias: MAP

- The log posterior for the coin-toss model is log-lik + log-prior

$$
L P(\theta)=\sum_{n=1}^{N} \log p\left(y_{n} \mid \theta\right)+\log p(\theta \mid \alpha, \beta)
$$

- Plugging in the expressions for Bernoulli and Beta and ignoring any terms that don't depend on θ, the log posterior simplifies to

$$
L P(\theta)=\sum_{n=1}^{N}\left[y_{n} \log \theta+\left(1-y_{n}\right) \log (1-\theta)\right]+(\alpha-1) \log \theta+(\beta-1) \log (1-\theta)
$$

- Maximizing the above log post. (or min. of its negative) w.r.t. θ gives

Estimating a Coin's Bias: Fully Bayesian Inference

- In fully Bayesian inference, we compute the posterior distribution
- Bernoulli likelihood: $p\left(y_{n} \mid \theta\right)=\operatorname{Bernoulli}\left(y_{\mathrm{n}} \mid \theta\right)=\theta^{y_{n}}(1-\theta)^{1-y_{n}}$
- Beta prior: $p(\theta)=\operatorname{Beta}(\theta \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}\left(\frac{1-\theta)^{\beta-1}}{\text { Number of heads }\left(N_{1}\right)}\right.$

$$
\text { Number of tails }\left(N_{0}\right)
$$

$$
\theta^{\sum_{n=1}^{N} y_{n}}(1-\theta)^{N-\sum_{n=1}^{N} y_{n}}
$$

$$
\boldsymbol{p}(\theta \mid \boldsymbol{y})=\frac{p(\theta) p(y \mid \theta)}{p(\boldsymbol{y})}=\frac{p(\theta) \prod_{n=1}^{N} p\left(y_{n} \mid \theta\right)}{p(\boldsymbol{y})}=\frac{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} \prod_{n=1}^{N} \theta^{y_{n}}(1-\theta)^{1-y_{n}}}{\int \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} \prod_{n=1}^{N} \theta^{y_{n}(1-\theta)^{1-y_{n} d \theta}}}
$$

- Here, even without computing the denominator (marg lik), we can identify the posterior
- It is Beta distribution since $p(\theta \mid \boldsymbol{y}) \propto \theta^{\alpha+N_{1}-1}(1-\theta)^{\beta+N_{0}-1}$

> Exercise: Show that the

- Thus $p(\theta \mid \boldsymbol{y})=\operatorname{Beta}\left(\theta \mid \alpha+N_{1}, \beta+N_{0}\right)$

- Here, finding the posterior boiled down to simply "multiply, add stuff, and identify"
- Here, posterior has the same form as prior (both Beta): property of conjugate pritiprsa: PML

Conjugacy and Conjugate Priors

- Many pairs of distributions are conjugate to each other
- Bernoulli (likelihood) + Beta (prior) \Rightarrow Beta posterior
- Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
- Multinomial (likelihood) + Dirichlet (prior) \Rightarrow Dirichlet posterior
- Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior

Not true in general, but in some cases (e.g., the variance of the Gaussian likelihood is fixed)

- Gaussian (likelihood) + Gaussian (prior) \Rightarrow Gaussian posterior
- and many other such pairs ..
- Tip: If two distr are conjugate to each other, their functional forms are similar
- Example: Bernoulli and Beta have the forms

$$
\begin{aligned}
\text { Bernoulli }(y \mid \theta) & =\theta^{y}(1-\theta)^{1-y} \\
\operatorname{Beta}(\theta \mid \alpha, \beta) & =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}
\end{aligned}
$$

This is why, when we multiply them while computing the posterior, the exponents get added and we get the same form for the posterior as the prior but with just updated hyperparameter. Also, we can identify the posterior and its
hyperparameters simply by inspection

- More on conjugate priors when we look at exponential family distributions

Making Predictions

- Suppose we want to compute the prob that the next outcome x_{N+1} will be head (=1)
- The plug-in predictive distribution using a point estimate $\hat{\boldsymbol{\theta}}$ (e.g., using MLE/MAP)

$$
p\left(x_{N+1}=1 \mid \mathbf{X}\right) \approx p\left(x_{N+1}=1 \mid \hat{\theta}\right)=\hat{\theta} \quad \text { or equivalently } \quad p\left(x_{N+1} \mid \mathbf{X}\right) \approx \operatorname{Bernoulli}\left(x_{N+1} \mid \hat{\theta}\right)
$$

- The posterior predictive distribution (averaging over all θ 's weighted by their respective posterior probabilities)

$$
\begin{aligned}
p\left(x_{N+1}=1 \mid \mathbf{X}\right) & =\int_{0}^{1} P\left(x_{N+1}=1 \mid \theta\right) p(\theta \mid \mathbf{X}) d \theta \\
& =\int_{0}^{1} \theta \times \operatorname{Beta}\left(\theta \mid \alpha+N_{1}, \beta+N_{0}\right) d \theta \\
& =\mathbb{E}[\theta \mid \mathbf{X}]=\text { Expectation of } \theta \text { w.r.t. the Beta } \\
& =\frac{\alpha+N_{1}}{\alpha+\beta+N}
\end{aligned}
$$

- Therefore the PPD is $p\left(\boldsymbol{x}_{N+1} \mid \mathbf{X}\right)=\operatorname{Bernoulli}\left(\boldsymbol{x}_{N+1} \mid \mathbb{E}[\theta \mid \mathbf{X}]\right)$

Estimating a Dirichlet-Multinoulli Model

Bayesian Inference for Multinoulli/Multinomial

- Assume N discrete obs $\mathbf{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ with each $x_{n} \in\{1,2, \ldots, K\}$, e.g.,
- x_{n} represents the outcome of a dice roll with K faces
- x_{n} represents the class label of the $n^{\text {th }}$ example in a classification problem (total K classes)
- x_{n} represents the identity of the $n^{\text {th }}$ word in a sequence of words
- Assume likelihood to be multinoulli with unknown params $\boldsymbol{\pi}=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{K}\right]$

$$
p\left(x_{n} \mid \pi\right)=\operatorname{multinoulli}\left(x_{n} \mid \pi\right)=\prod_{k=1}^{K} \pi_{k}^{\Pi\left[x_{n}=k\right]} \quad \begin{aligned}
& \text { Generalization of Bernoulli to } \\
& K>2 \text { discrete outcomes }
\end{aligned}
$$

- $\boldsymbol{\pi}$ is a vector of probabilities ("probability vector"), e.g.,
- Biases of the K sides of the dice
- Prior class probabilities in multi-class classification $\left(p\left(y_{n}=k\right)=\pi_{k}\right)$
- Probabilities of observing each word of the K words in a vocabulary

parameter of the
Dirichlet (assumed
known for now)

Large values of α will give a Dirichlet peaked around its mean (next slide illustrates this)

Each $\alpha_{k} \geq 0$

- Assume a conjugate prior (Dirichlet) on $\boldsymbol{\pi}$ with hyperparams $\boldsymbol{\alpha}=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right]$

$$
p(\boldsymbol{\pi} \mid \boldsymbol{\alpha})=\operatorname{Dirichlet}\left(\boldsymbol{\pi} \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1}=\frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1} \sum_{\begin{array}{l}
\text { Generalization of Beta to } \\
K \text {-dimensional probability } \\
\text { vectors }
\end{array}}^{\substack{ \\
\hline}}
$$

Brief Detour: Dirichlet Distribution

- An important distribution. Models non-neg. vectors π that also sum to one
- A random draw from K-dim Dirich. will be a point under (K-1)-dim probability simplex

- Interesting fact: Can generate a K-dim Dirichlet random variable by independently generating K gamma random variables and normalizing them to sum to 1

Bayesian Inference for Multinoulli

- Posterior $p(\boldsymbol{\pi} \mid \mathbf{X})$ is easy to compute due to conjugacy b / w multinoulli and Dir.
- Assuming x_{n} 's are i.i.d. given $\boldsymbol{\pi}, p(\mathbf{X} \mid \boldsymbol{\pi})=\prod_{n=1}^{N} p\left(x_{n} \mid \boldsymbol{\pi}\right)$, and therefore

$$
p(\boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\alpha}) \propto \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1} \times \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{\left.\llbracket x_{n}=k\right]}=\prod_{k=1}^{K} \pi_{k}^{\alpha_{k}+\sum_{n=1}^{N} \llbracket\left[x_{n}=k\right]-1}
$$

- Even without computing marg-lik, $p(\mathbf{X} \mid \boldsymbol{\alpha})$, we can see that the posterior is Dirichlet
- Denoting $N_{k}=\sum_{n=1}^{N} \mathbb{I}\left[x_{n}=k\right]$, number of observations with with value k $p(\boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\alpha})=\operatorname{Dirichlet}\left(\boldsymbol{\pi} \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}, \ldots, \alpha_{K}+N_{K}\right)$
- Note: $N_{1}, N_{2} \ldots, N_{K}$ are the sufficient statistics for this estimation problem

Similar to number of heads and tails for the coin bias estimation problem

- We only need the suff-stats to estimate the parameters and values of individual observations aren't needed (another property from exponential family of distributions - more on this later)

Bayesian Inference for Multinoulli

- Finally, let's also look at the posterior predictive distribution for this model
- PPD is the prob distr of a new $x_{*} \in\{1,2, \ldots, K\}$, given training data $\mathbf{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$

Will be a multinoulli. Just need to estimate the probabilities of each of the K outcomes

$$
p\left(\boldsymbol{x}_{*} \mid \mathbf{X}, \boldsymbol{\alpha}\right)=\int p\left(\boldsymbol{x}_{*} \mid \boldsymbol{\pi}\right) \boldsymbol{p}(\boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\alpha}) \boldsymbol{d} \boldsymbol{\pi}
$$

- $p\left(\boldsymbol{x}_{*} \mid \boldsymbol{\pi}\right)=$ multinoulli $\left(\boldsymbol{x}_{*} \mid \boldsymbol{\pi}\right), \quad p(\boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\alpha})=\operatorname{Dirichlet}\left(\boldsymbol{\pi} \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}, \ldots, \alpha_{K}+N_{K}\right)$
- Can compute the posterior predictive probability for each of the K possible outcomes

$$
\begin{aligned}
p\left(\boldsymbol{x}_{*}=k \mid \mathbf{X}, \boldsymbol{\alpha}\right) & =\int p\left(\boldsymbol{x}_{*}=k \mid \boldsymbol{\pi}\right) \boldsymbol{p}(\boldsymbol{\pi} \mid \mathbf{X}, \boldsymbol{\alpha}) \boldsymbol{d} \boldsymbol{\pi} \\
& =\int \pi_{k} \times \operatorname{Dirichlet}\left(\boldsymbol{\pi} \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}, \ldots, \alpha_{K}+N_{K}\right) d \pi \\
& =\frac{\alpha_{k}+N_{k}}{\sum_{k=1}^{K} \alpha_{k}+N}\left(\text { Expectation of } \pi_{k}\right. \text { w.r.t the Dirichlet posterior) }
\end{aligned}
$$

- Thus PPD is multinoulli with probability vector $\left\{\frac{\alpha_{k}+N_{k}}{\sum_{k=1}^{K} \alpha_{k}+N}\right\}_{k=1}^{K} \begin{aligned} & \text { laveraging over the posterior }\end{aligned}$

A similar effect was achieved in the BetaBernoulli model, too

- Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of $\boldsymbol{\pi}$

"Reading" the Posterior Distribution

- Posterior provides us a holistic view about θ given observed data
- A simple unimodal posterior for a scalar parameter θ might look something like

- Various types of estimates regarding θ can be obtained from the posterior, e.g.,
- Mode of the posterior (same as the MAP estimate)
- Mean and median of the posterior
- Variance/spread of the posterior (uncertainty in our estimate of the parameters)
- Any quantile (say $0<\alpha<1$ quantile) of the posterior, e.g., θ_{*} s.t. $p\left(\theta \leq \theta_{*}\right)=\alpha$
- Various types of intervals/regions

"Reading" the Posterior Distribution

Central Interval

HPD Region

- 100 $(1-\alpha) \%$ Credible Interval: Region in which $1-\alpha$ fraction of posterior's mass resides

$$
\mathcal{C}_{\alpha}(\mathbf{X})=(\ell, u): p(\ell \leq \theta \leq u \mid \mathbf{X})=1-\alpha
$$

Computing central interval or HPD usually requires inverting CDFs

- Credible Interval is not unique (there can be many $100(1-\alpha) \%$ intervals)
- Central Interval is a symmetrized version of Credible Interval ($\alpha / 2$ mass on each tail)
- Another useful interval: The $(1-\alpha)$ Highest Probability Density (HPD) region

$$
\mathcal{C}_{\alpha}(\mathbf{X})=\left\{\theta: p(\theta \mid \mathbf{X}) \geq p^{*}\right\} \text { s.t. } 1-\alpha=\int_{\theta \cdot p(\theta \mid x)>p^{*}} p(\theta \mid \mathbf{X}) d \theta
$$

