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Plan Today

▪ Two simple examples of parameter estimation in probabilistic models

▪ Beta (prior) – Bernoulli (likelihood) observation model

▪Dirichlet (prior) – Multinomial (likelihood) observation model

▪ Conjugate priors

▪ “Reading” a posterior distribution
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An Important Point: PPD using Marginal Likelihood

▪ PPD for a model 𝑚, by definition, is obtained by the following marginalization

▪ Can also compute PPD without computing the posterior! Some ways:

1. Using a ratio of marginal likelihoods as follows

2. If  𝑝 𝒙∗ 𝐗,𝑚 can be obtained easily from the joint distribution 𝑝(𝒙∗, 𝐗|𝑚)

▪ Note that the PPD 𝑝 𝒙∗ 𝐗,𝑚 is also a conditional distribution 

▪ For some distributions (e.g., Gaussian), conditionals can be easily derived from joint
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𝑝 𝒙∗ 𝐗,𝑚 =
𝑝(𝒙∗, 𝐗|𝑚)

𝑝(𝐗|𝑚)

𝑝 𝒙∗ 𝐗,𝑚 = ∫ 𝑝 𝒙∗ 𝜃,𝑚 𝑝(𝜃|𝐗,𝑚) 𝑑𝜃

Joint marginal likelihood 

for training and test data

Marginal likelihood for 

training data

Will see this being used we we

study Gaussian Process (GP)

Follows simply from Bayes rule

𝑝 𝑎 𝑏 =
𝑝(𝑎, 𝑏)

𝑝(𝑏)
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Estimating a 
Beta-Bernoulli Model
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Estimating a Coin’s Bias: MLE
5

▪ Consider a sequence of 𝑁 coin toss outcomes (observations)

▪ Each observation 𝑦𝑛 is a binary random variable. Head: 𝑦𝑛 = 1, Tail: 𝑦𝑛 = 0

▪ Each 𝑦𝑛 is assumed generated by a Bernoulli distribution with param 𝜃 ∈ (0,1)

▪ Here 𝜃 the unknown param (probability of head). Want to estimate it using MLE

▪ Log-likelihood: σ𝑛=1
𝑁 log 𝑝 𝑦𝑛 𝜃 = σ𝑛=1

𝑁 [𝑦𝑛log θ + (1 − 𝑦𝑛)log (1 − 𝜃)]

▪ Maximizing log-lik, or minimizing neg. log-lik (NLL) w.r.t. 𝜃 gives 

𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 = 𝜃𝑦𝑛 (1 − 𝜃)1−𝑦𝑛

Probability 

of a head

𝜃𝑀𝐿𝐸 =
σ𝑛=1
𝑁 𝑦𝑛
𝑁

Thus MLE 

solution is simply 

the fraction of 

heads! ☺ Makes 

intuitive sense!

I tossed a coin 5 times – gave 1 head and 

4 tails. Does it means 𝜃 = 0.2?? The 

MLE approach says so. What is I see 0 

head and 5 tails. Does it mean 𝜃 = 0? 

Indeed, with a small number of 

training observations, MLE may 

overfit and may not be reliable. An 

alternative is MAP estimation 

which can incorporate a prior 

distribution over 𝜃

assuming i.i.d. data

Likelihood or 

observation model
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Estimating a Coin’s Bias: MAP
6

▪ Let’s again consider the coin-toss problem (estimating the bias of the coin)

▪ Each likelihood term is Bernoulli 

▪ Also need a prior since we want to do MAP estimation

▪ Since 𝜃 ∈ (0,1), a reasonable choice of prior for 𝜃 would be Beta distribution

𝑝 𝜃 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1 − 𝜃 𝛽−1

The gamma function 𝛼 and 𝛽 (both non-negative reals) 

are the two hyperparameters of this 

Beta prior
Using 𝛼 = 1 and 𝛽 = 1 will make 

the Beta prior a uniform prior

Can set these based on intuition, 

cross-validation, or even learn them

𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 = 𝜃𝑦𝑛 (1 − 𝜃)1−𝑦𝑛
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Estimating a Coin’s Bias: MAP
7

▪ The log posterior for the coin-toss model is log-lik + log-prior

▪ Plugging in the expressions for Bernoulli and Beta and ignoring any terms that 
don’t depend on 𝜃, the log posterior simplifies to

▪ Maximizing the above log post. (or min. of its negative) w.r.t. 𝜃 gives

𝐿𝑃 𝜃 =෍
𝑛=1

𝑁

log 𝑝 𝑦𝑛 𝜃 + log 𝑝 𝜃 𝛼, 𝛽

𝐿𝑃 𝜃 =෍
𝑛=1

𝑁

𝑦𝑛log θ + (1 − 𝑦𝑛 log 1 − 𝜃 ] + 𝛼 − 1 log 𝜃 + 𝛽 − 1 log(1 − 𝜃)

𝜃𝑀𝐴𝑃 =
σ𝑛=1
𝑁 𝑦𝑛 + 𝛼 − 1

𝑁 + 𝛼 + 𝛽 − 2

Using 𝛼 = 1 and 𝛽 = 1 gives us 

the same solution as MLE

Recall that 𝛼 = 1 and 𝛽 = 1 for Beta 

distribution is in fact equivalent to a 

uniform prior (hence making MAP 

equivalent to MLE)

Prior’s hyperparameters have an 

interesting interpretation. Can think of 

𝛼 − 1 and 𝛽 − 1 as the number of 

heads and tails, respectively, before 

starting the coin-toss experiment 

(akin to “pseudo-observations”)
Such interpretations of prior’s hyperparameters as 

being “pseudo-observations” exist for various other 

prior distributions as well (in particular, distributions 

belonging to “exponential family” of distributions
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Estimating a Coin’s Bias: Fully Bayesian Inference

▪ In fully Bayesian inference, we compute the posterior distribution

▪ Bernoulli likelihood: 𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 = 𝜃𝑦𝑛 (1 − 𝜃)1−𝑦𝑛

▪ Beta prior: 𝑝 𝜃 = Beta 𝜃 𝛼, 𝛽 =
Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1 − 𝜃 𝛽−1

▪ The posterior can be computed as 

▪ Here, even without computing the denominator (marg lik), we can identify the posterior
▪ It is Beta distribution since 

▪ Thus 𝑝 𝜃 𝒚 = Beta 𝜃 𝛼 + 𝑁1, 𝛽 + 𝑁0

▪ Here, finding the posterior boiled down to simply “multiply, add stuff, and identify”

▪ Here, posterior has the same form as prior (both Beta): property of conjugate priors.
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𝑝 𝜃 𝒚 =
𝑝 𝜃 𝑝(𝒚|𝜃)

𝑝(𝒚)
=

𝑝 𝜃 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝜃)

𝑝(𝒚)
=

Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1−𝜃 𝛽−1 ς𝑛=1

𝑁 𝜃𝑦𝑛 (1−𝜃)1−𝑦𝑛

∫
Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1−𝜃 𝛽−1 ς𝑛=1

𝑁 𝜃𝑦𝑛 (1−𝜃)1−𝑦𝑛𝑑𝜃

𝜃σ𝑛=1
𝑁 𝑦𝑛 (1 − 𝜃)𝑁−σ𝑛=1

𝑁 𝑦𝑛

Number of heads (𝑁1)

Number of tails (𝑁0)

𝑝 𝜃 𝒚 ∝ 𝜃𝛼+𝑁1−1 1 − 𝜃 𝛽+𝑁0−1 Exercise: Show that the 

normalization constant equals
Hint: Use the fact that the 

posterior must integrate to 1

∫ 𝑝 𝜃 𝒚 𝑑𝜃 = 1
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Conjugacy and Conjugate Priors
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▪Many pairs of distributions are conjugate to each other
▪ Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior 

▪ Binomial (likelihood) + Beta (prior) ⇒ Beta posterior 

▪ Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior 

▪ Poisson (likelihood) + Gamma (prior) ⇒ Gamma posterior 

▪ Gaussian (likelihood) + Gaussian (prior) ⇒ Gaussian posterior 

▪ and many other such pairs ..

▪ Tip: If  two distr are conjugate to each other, their functional forms are similar
▪ Example: Bernoulli and Beta have the forms

▪More on conjugate priors when we look at exponential family distributions

Not true in general, but in some 

cases (e.g., the variance of the 

Gaussian likelihood is fixed)

Bernoulli 𝑦 𝜃 = 𝜃𝑦 (1 − 𝜃)1−𝑦

Beta 𝜃 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1 − 𝜃 𝛽−1

This is why, when we multiply them while 

computing the posterior, the exponents get added 

and we get the same form for the posterior as the 

prior but with just updated hyperparameter. Also, 

we can identify the posterior and its 

hyperparameters simply by inspection
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Making Predictions

▪ Suppose we want to compute the prob that the next outcome 𝑥𝑁+1 will be head (=1)

▪ The plug-in predictive distribution using a point estimate መ𝜃 (e.g., using MLE/MAP)

▪ The posterior predictive distribution (averaging over all 𝜃’s weighted by their respective 
posterior probabilities)

▪ Therefore the PPD is 

10

Expectation of 𝜃 w.r.t. the Beta 

posterior distribution
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Estimating a 
Dirichlet-Multinoulli Model
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Bayesian Inference for Multinoulli/Multinomial

▪ Assume 𝑁 discrete obs 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑁} with each 𝑥𝑛 ∈ {1,2, … , 𝐾}, e.g.,

▪ 𝑥𝑛 represents the outcome of a dice roll with 𝐾 faces

▪ 𝑥𝑛 represents the class label of the 𝑛𝑡ℎ example in a classification problem (total 𝐾 classes)

▪ 𝑥𝑛 represents the identity of the 𝑛𝑡ℎ word in a sequence of words

▪ Assume likelihood to be multinoulli with unknown params 𝝅 = [𝜋1, 𝜋2, … , 𝜋𝐾]

▪ 𝝅 is a vector of probabilities (“probability vector”), e.g.,
▪ Biases of the 𝐾 sides of the dice

▪ Prior class probabilities in multi-class classification (𝑝 𝑦𝑛 = 𝑘 = 𝜋𝑘)

▪ Probabilities of observing each word of the 𝐾 words in a vocabulary

▪ Assume a conjugate prior (Dirichlet) on 𝝅 with hyperparams 𝜶 = [𝛼1, 𝛼2, … , 𝛼𝐾]
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𝑝 𝑥𝑛 𝜋 = multinoulli 𝑥𝑛 𝜋 =ෑ
𝑘=1

𝐾

𝜋𝑘
𝕀[𝑥𝑛=𝑘]

These sum to 1

Each 𝛼𝑘 ≥ 0

Generalization of Bernoulli to 

𝐾 > 2 discrete outcomes

Generalization of Beta to 

𝐾-dimensional probability 

vectors

Called the 

concentration 

parameter of the 

Dirichlet (assumed 

known for now)

Large values of 𝛼 will 

give a Dirichlet peaked 

around its mean (next 

slide illustrates this)
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Brief Detour: Dirichlet Distribution

▪ An important distribution. Models non-neg. vectors 𝜋 that also sum to one

▪ A random draw from 𝐾-dim Dirich. will be a point under (𝐾-1)-dim probability simplex

▪ Interesting fact: Can generate a 𝐾-dim Dirichlet random variable by independently 
generating 𝐾 gamma random variables and normalizing them to sum to 1 
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Basically, probability vectors

Visualizations of PDFs of some 3-dim 

Dirichlet distributions (each generated 

using a different conc. Param vector 𝜶)

𝜋1

𝜋2
𝜋3

𝜋1

𝜋2
𝜋3

𝜋1

𝜋2
𝜋3 𝜋3

𝜋1

𝜋2

𝜶 controls the shape 

of the Dirichlet (just 

like Beta distribution’s 

hyperparameters)

Like a uniform 

distribution if  

all 𝛼𝑘’s are 1
All 𝛼𝑘’s large results in 

peak around the 

center of the simplex 
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Bayesian Inference for Multinoulli

▪ Posterior 𝑝(𝝅|𝐗) is easy to compute due to conjugacy b/w multinoulli and Dir.

▪ Assuming 𝑥𝑛’s are i.i.d. given 𝝅, 𝑝 𝐗 𝝅 = ς𝑛=1
𝑁 𝑝(𝑥𝑛|𝝅), and therefore

▪ Even without computing marg-lik, 𝑝(𝐗|𝜶), we can see that the posterior is Dirichlet 

▪ Denoting 𝑁𝑘 = σ𝑛=1
𝑁 𝕀[𝑥𝑛 = 𝑘], number of observations with with value 𝑘

▪ Note: 𝑁1, , 𝑁2 . . . , 𝑁𝐾 are the sufficient statistics for this estimation problem
▪ We only need the suff-stats to estimate the parameters and values of individual observations aren’t 

needed (another property from exponential family of distributions – more on this later)
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𝑝 𝝅 𝐗, 𝜶 =
𝑝(𝝅, 𝐗|𝜶)

𝑝(𝐗|𝜶)
=

𝑝(𝝅|𝜶)𝑝 𝐗 𝝅, 𝜶

𝑝(𝐗|𝜶)
=
𝑝(𝝅|𝜶)𝑝 𝐗 𝝅

𝑝(𝐗|𝜶)

Likelihood Prior

Marg-lik = ∫ 𝑝(𝝅|𝜶)𝑝 𝐗 𝝅 d𝝅

Don’t need to compute for this 

case because of conjugacy

𝑝 𝝅 𝐗, 𝜶 ∝ ς𝑘=1
𝐾 𝜋𝑘

𝛼𝑘−1 ×ς𝑛=1
𝑁 ς𝑘=1

𝐾 𝜋𝑘
𝕀[𝑥𝑛=𝑘]

𝑝 𝝅 𝐗, 𝜶 = Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)
Similar to number 

of heads and tails 

for the coin bias 

estimation problem

= ς𝑘=1
𝐾 𝜋𝑘

𝛼𝑘+σ𝑛=1
𝑁 𝕀[𝑥𝑛=𝑘] −1
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Bayesian Inference for Multinoulli
▪ Finally, let’s also look at the posterior predictive distribution for this model

▪ PPD is the prob distr of a new 𝑥∗ ∈ 1,2,… , 𝐾 , given training data 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑁}

▪ 𝑝 𝒙∗ 𝝅 = multinoulli 𝒙∗ 𝝅 ,  𝑝 𝝅 𝐗, 𝜶 = Dirichlet 𝝅 𝛼1 +𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 +𝑁𝐾)

▪ Can compute the posterior predictive probability for each of the 𝐾 possible outcomes

▪ Thus PPD is multinoulli with probability vector 
𝛼𝑘+𝑁𝑘

σ𝑘=1
𝐾 𝛼𝑘+𝑁 𝑘=1

𝐾

▪ Plug-in predictive will also be multinoulli but with prob vector given by the point estimate of 𝝅
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𝑝 𝒙∗ 𝐗, 𝜶 = ∫ 𝑝 𝒙∗ 𝝅 𝒑 𝝅 𝐗, 𝜶 𝒅𝝅

𝑝 𝒙∗ = 𝑘 𝐗, 𝜶 = ∫ 𝑝 𝒙∗ = 𝑘 𝝅 𝒑 𝝅 𝐗, 𝜶 𝒅𝝅

= ∫ 𝜋𝑘 × Dirichlet 𝝅 𝛼1 + 𝑁1, 𝛼2 + 𝑁2, … , 𝛼𝐾 + 𝑁𝐾)𝑑𝜋

=
𝛼𝑘 + 𝑁𝑘

σ𝑘=1
𝐾 𝛼𝑘 + 𝑁

(Expectation of 𝜋𝑘 w.r.t the Dirichlet posterior)

Note how these probabilities 

have been “smoothened” due 

to the use of the prior + the 

averaging over the posterior

A similar effect was 

achieved in the Beta-

Bernoulli model, too

Will be a multinoulli. Just need 

to estimate the probabilities of 

each of the 𝐾 outcomes
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“Reading” the Posterior Distribution

▪ Posterior provides us a holistic view about 𝜃 given observed data

▪ A simple unimodal posterior for a scalar parameter 𝜃 might look something like

▪ Various types of estimates regarding 𝜃 can be obtained from the posterior, e.g.,
▪ Mode of the posterior (same as the MAP estimate)

▪ Mean and median of the posterior

▪ Variance/spread of the posterior (uncertainty in our estimate of the parameters)

▪ Any quantile (say 0 < 𝛼 < 1 quantile) of the posterior, e.g., 𝜃∗ s.t. 𝑝(𝜃 ≤ 𝜃∗) = 𝛼

▪ Various types of intervals/regions
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“Reading” the Posterior Distribution

▪ 100(1 − 𝛼)% Credible Interval: Region in which 1 − 𝛼 fraction of posterior’s mass resides

▪ Credible Interval is not unique (there can be many 100(1 − 𝛼)% intervals)

▪ Central Interval is a symmetrized version of Credible Interval (𝛼/2 mass on each tail)

▪ Another useful interval: The (1 − 𝛼) Highest Probability Density (HPD) region
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Computing central interval 

or HPD usually requires 

inverting CDFs

Central Interval HPD Region

Also defined for multi-modal posteriors


