Assorted Topics in Probabilistic ML (3)
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Plan for today

" Assorted lopics
* Nonparametric Bayesian methods (contd)

» Probabilistic Models for Sequential Data
= A brief idea

m Propbabilistic Numerics
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Being Nonparametric using Models
that have a Shrinkage Effect
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Mixture Models: Another Construction

= Consider a finite mixture model with K components with params (i, 2 ) r—1

Defined by K locations or "atoms” with

G G is a representation parameters {¢ }i=1 With respective
(Hk Zk) = oy of this mixture selection probabilities {mry =1
’ 7'('2 7'(‘4 distribution K
/1 \ T3 L .
: : k
d)l C/)2 ¢3 ¢4
k=1

. . . a a
" |n the finite case, we can assume 1 = |mq, ..., T | and T ~ Dirichlet (E’ E)

= We can make it a nonparametric model by making 1t an infinite-dimensional vector

In practice, only a finite of these Indeed. Called a A

00
will have nonzero values, and _ "Dirichlet Process’ .
1, T2, T35+« E Tk = 1 soa [/
k=1

others will shrink to very small (or
zero), as we will see Related: "Stick-breaking Process’ l»

= How to construct such a vector? Is there an infinite dimensional Dirichlet distribution?
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Mixture Models: Two Equivalent VIews | i o,

Prior (a.k.a. “base infinite components?
distribution” for the Similar representation even 5
e G parameters of each mixture when G = Y, Ty 6, Go %
| component | ]
l Example: Gy can be NIW if | I N 7*(/&\: m ™ |7T3 ,
each component is a Gaussian | N R
© o i A
K No explicit cluster ids; (,/0;\-\
/ instead, 6; denotes N
the param of the
@ Typ|ca| way of Shov\/ing distribution which will :
N the plate notation of a generate X; @
- N
mixture model -

Since G is discrete, a a
a) there will at most be 1 ~ Dirichlet (E' —)

a
1t ~ Dirichlet(—, ...,— - K "K
(]{ K K distinct 9'1 s,' b ~ Gy k=12 . K
~G k=12 K thereby achieving
¢k 0 - )iy snny C|USteriﬂg G K 6
= is

z; ~ multinoulli(7) i=12,..,N l - k Ok
l L . _

x; ~ p(x|¢z,) i=12,.. N : 0; ~G i=12,..,N
| x; ~ p(x]6;) i=12,..,N
|
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SBP gives us a way to construct

Stick-Breaking Process (sethuraman’ga) |irinie smersiona biictir | - g

“Dirichlet Process” » ‘L/
" Recursively break a length 1 stick into two pieces e-,
* Assume breaking point in each round is drawn from a Beta distribution
Bx ~ Beta(l,a) k=1,...,00 —b 1B,
T By 1B
1 = [ =
k—1 —_ —0
TE%
WkZﬁkH(l—ﬁg) K= 2;:5:;00 T By lBey
T,
= g
» Can show that )= T — 1 = 0 which is what we want e

= We can now have a “nonparametric/infinite” mixture distribution G = Xp_1 Ty 8¢,

= " ocation/atoms” ¢ can be drawn from a "base” distr G, say NIW if ¢, = (ug, Zx)
= We basically replaced the Dirichlet prior on 1 by a Stick-Breaking Process (SBP) prior
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Infinite Dimensional Dirichlet

" Drawing from an infinite-dim Dirichlet would give an infinite-dim prob. vector
T = [77:1, 5, T3, ]

* We can construct this vector to have very few entries as nonzero
= Consider recursively drawing from a Dirichlet as defined below

As the concentration parameter A S LR B L

gets smaller and smaller, the split step 1 step 2 step 5
of values in LHS get more and : T o G S
more _skewed

1 ~ Dirichlet(a)
(m1,m) ~  Dirichlet(a/2, a/2)

(w1711, W1 12, W2 721, T2T22) ~  Dirichlet(a/4, /4, /4, a/4)

Therefore, after doing the above a few _‘
times, the m vector will Oﬂ|y have a very This is basica”y what happens i
few entries as nonzero and in the infinite- in the case of Dirichlet Process |
sized 1, there will only be a finite many / Stick-Breaking Process step 8 step 11 step 16
nonzero entries, and rest will be zero
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Dirichlet Process - Formally Egemenldt | gy

“Dirichlet Process” LS /

o A Dirichlet Process DP(«, Gp) defines a distribution over distributions G?
o So G ~ DP(a, Gp) will give us a distribution
o « : concentration param, Gg: base distribution (=mean of DP)
o Large a means G — Go
o Fact 1: If G ~ DP(a, Gy) then any finite dim. marginal of G is Dirichlet distributed
[G(A1), ..., G(Ak)] ~ Dirichlet(aGo(A1), . ..,aGo(Ak))
for any finite partition As, ..., Ak of the space Q2 (Ferguson, 1973)

Q A

o B . ¢y 's are i.i.d. draws from
- the base distribution G,

o Fact 2: Any G drawn from DP(a, Gy) will be of the form G = 7| mxdy4, (Sethuraman, 1994)

o Fact 3: G is a discrete dist, i.e., only a few m,'s will be significant
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Another NPBayes Prior: Multiplicative Gamma Process

= Consider the SVD-style probabilistic model with an a priori unbounded K

0o
X = 2 Akukv;
k=1

= Consider the following prior on each “singular values™ Ay

—1
Precision keeps on getting
larger and larger as k

k
Ty = H ) , grows (thus variance keeps
getting small and smaller)
F== Thus E[6,] = a (greater
5g g Gamma(a, ].) where a > 1 than 1 in expectation)
" |n practice we can set K to be a sufficiently very large

" Due to the shrinkage property, only a finite many A, will be nonzero
" The nonzero A 's will dictate the effective K -



Summary of NPBayes

" We saw some nonparametric Bayesian models (mainly used in unsup learning)
= CRP/Dirichlet Process: For clustering problems
= Multiplicative Gamma Process: For SVD-like matrix factorization

* Many applications of these models to solve a wide range of problems

" Also saw GP which is another example of a nonparametric Bayesian model
» GPs are used for function approximation problems (both supervised and unsup. learning)

" [hese are only some of the examples of nonparametric Bayesian models
* Many other such nonparametric Bayesian models for other problems in machine learning
= "A tutorial on Bayesian nonparametric models” Gershman and Blei, 2011) is a nice survey

" Rich theory based on stochastic processes (beyond the scope of this course)

" |nspired other non-probabilistic algos, e.g., Using Dirichlet Process Mixture Model to get
a K-means like clustering algorithm (DP-means) which doesn't require K
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Probabilistic Models
for Sequential Data
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Latent Variable Models for Sequential Data

" Task: Given a sequence of observations, infer the latent state of each observation

Zl ZZ
i(l iz
Observation
model Xnlzn ~  p(xnlzn) (i.i.d. draws of x, given z,)
otate transiton Zp|lzno1 ~ p(za|zn—1)  (first-order dependence b/w z,'s)

" |t z,,'s are discrete, we have a hidden Markov model (HMM)  p(zn|zn—1 = €) = multinoulli(7,)
" |f z,'s are real-valued, we have a state-space model (SSM) p(zalz,-1) = N(Az,_1, k)
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State-Space Models

" |n the most general form, the state-transition and observation models of an SSM

% & Using ‘s’ instead of ‘2’
to refer to states
X1 X2 Using ‘t’ to denote the
‘time-step’ HMM is similar to SSM except
n 5 the state-transition model is a
iigrfleart Ocran © - discrete distribution
o S¢|St—1 = gi(Si—1) + € (must be a cont. dist. over s;)
functions .
X:|s¢ = he(st) + 0y (can be any dist. over x;)

» Assuming Gaussian noise in the state-transition and observation models

Stlst_]_ 2 4 N(St‘gt(St_l), Qt) :;c‘ige’:p;gri;jg;,tliﬁcirfhen it is

This is a Gaussian SSM called a stationary model

X¢|s¢ ~ N(xt|hi(st), Re)

9, he, Q¢, Ry may be known
or can be learned 72A: PML



Typical Inference Task for Gaussian SSM

" One of the key tasks: Given sequence X4, X5, ..., X7, infer latent sq, S5, ..., ST

S1 S2

X1 X2

= Usually two ways of inferring the latent states
Kalman Filtering is a popular

- , e ' 1
Infer p(s¢|xq, X5, ..., X¢): Called the “filtering” problem A Cotrein gorithm for a finear

Turns out to be p(st|x1,x2,...,x¢) o< p(xt|st) / p(st|se—1) p(Se—1|x1, X2, ..., Xe—1)dSe_1 Gaussian SSM

another Gaussian
N(thBSt,R) N(StlAst—l,Q)

" Infer p(s¢]|xq, X3, -y X¢, -, X7): Called the "smoothing™ problem

= Some other tasks one can solve for using an SSM
= Predicting future states p(S¢4+n|X1, X2, ..., X¢) for h = 1, given observations thus far

= Predicting future observations p(xX¢4+5|%1, X2, ..., x¢) for h = 1 | given observations thus far
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A Special Case

= What if we have i.i.d. latent states, i.e... p(z,|z,—1) = p(2,)?

Z Z 7 Z Z
1 z o 8 ® n-1 n L
( X1 { X2 ( Xn-1 I Xn ; Xn+1
" Discrete case (HMM) becomes a simple mixture model p(za|z,-1 =€) = p(z,) = multinoulli(z)

= Real-valued case (SSM) becomes a PPCA model p(zalzn-1) = p(za) = N(0,1k) or N (g, V)

* Inference algos for HMM/SSM are thus very similar to that of mixture models/PPCA
= Only main difference is how the latent variables z,'s are inferred since they aren't i.i.d.
= £.g., if using EM, only E step needs to change (Bishop Chap 13 has EM for HMM and SSM)
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Some other topics (not covered in the course)

= Reinforcement Learning

* Probabilistic Numerics: Treating numerical problem as one of statistical inference
= An Example: Numerical integration

1 , r\92 . =
x—0.35)° sin(10x
How to perform / “XI’<—( = ),)) ) -+ ('., ) da
expensive/intractable 0 2(0.1)= 3
integrals
Where to do the T What's our
function evaluations ‘ \ e uncertainty in the
when using numerical “ ?Stlmate of the
approximations il . integral

/’]f|‘.r>(1.rxu,:ilnl
= Many others: optimization, solution of ODE/PDE, solution of linear systems, eigenvalue problems

https://www.probabilistic-numerics.org/ CS772A: PML



Conclusion

* Probabilistic modeling provides a natural way to think about models of data

= Many benefits as compared to non-probabilistic approaches

» Fasier to model and leverage uncertainty in data/parameters

= Principle of marginalization while making prediction

= Fasier to encode prior knowledge about the problem (via prior/likelihood distributions)

= Fasier to handle missing data (by marginalizing it out if possible, or by treating as latent variable)
= Easier to build complex models can be neatly combining/extending simpler probabilistic models
= Fasier to learn the "right model” (hyperparameter estimation, nonparametric Bayesian models)

= . and various other benefits as we saw during this course

* Fast-moving field, lots of recent advances on new models and inference methods

= The course is an attempt to guide you into exploring the area further
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Thank You!

(YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT...

HOHO HONO HOMO HONMO HOMO
APRIORIUS PRAGHATICUS FREQUENTISTUS SAPIENS BAYESIANIS
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