Assorted Topics in Probabilistic ML (3)

CS772A: Probabilistic Machine Learning
Piyush Rai

Plan for today

- Assorted Topics
- Nonparametric Bayesian methods (contd)
- Probabilistic Models for Sequential Data
- A brief idea
- Probabilistic Numerics

Being Nonparametric using Models that have a Shrinkage Effect

Mixture Models: Another Construction

- Consider a finite mixture model with K components with params $\left(\mu_{k}, \Sigma_{k}\right)_{k=1}^{K}$

- In the finite case, we can assume $\boldsymbol{\pi}=\left[\pi_{1}, \ldots, \pi_{K}\right]$ and $\boldsymbol{\pi} \sim \operatorname{Dirichlet}\left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K}\right)$
- We can make it a nonparametric model by making $\boldsymbol{\pi}$ an infinite-dimensional vector

In practice, only a finite of these
will have nonzero values, and
others will shrink to very small (or
zero), as we will see

- How to construct such a vector? Is there an infinite dimensional Dirichlet distribution?

Mixture Models: Two Equivalent Views

But how to construct such a G distribution with potentially

Example: G_{0} can be NIW if each component is a Gaussian and $\phi_{k}=\left(\mu_{k}, \Sigma_{k}\right)$

Typical way of showing the plate notation of a mixture model

$$
\begin{array}{rlrl}
\pi & \sim \operatorname{Dirichlet}\left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K}\right) & \\
\phi_{k} & \sim G_{0} & k=1,2, \ldots, K \\
z_{i} & \sim \operatorname{multinoulli}(\pi) & i=1,2, \ldots, N \\
x_{i} & \sim p\left(x \mid \phi_{z_{i}}\right) & i=1,2, \ldots, N
\end{array}
$$

Stick-Breaking Process (Sethuraman'94)

SBP gives us a way to construct infinite dimensional Dirichlet distribution known as the "Dirichlet Process"

- Recursively break a length 1 stick into two pieces
- Assume breaking point in each round is drawn from a Beta distribution

$$
\begin{aligned}
\beta_{k} & \sim \operatorname{Beta}(1, \alpha) \quad k=1, \ldots, \infty \\
\pi_{1} & =\beta_{1} \\
\pi_{k} & =\beta_{k} \prod_{\ell=1}^{k-1}\left(1-\beta_{\ell}\right) \quad k=2, \ldots, \infty
\end{aligned}
$$

- Can show that $\sum_{k=1}^{\infty} \pi_{k}-1 \rightarrow 0$ which is what we want
- We can now have a "nonparametric/infinite" mixture distribution $G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$
- "Location/atoms" ϕ_{k} can be drawn from a "base" distr G_{0}, say NIW if $\phi_{k}=\left(\mu_{k}, \Sigma_{k}\right)$
- We basically replaced the Dirichlet prior on $\boldsymbol{\pi}$ by a Stick-Breaking Process (SBP) prior

Infinite Dimensional Dirichlet

- Drawing from an infinite-dim Dirichlet would give an infinite-dim prob. vector

$$
\pi=\left[\pi_{1}, \pi_{2}, \pi_{3}, \ldots\right]
$$

- We can construct this vector to have very few entries as nonzero
- Consider recursively drawing from a Dirichlet as defined below

1	$\sim \operatorname{Dirichlet}(\alpha)$
$\left(\pi_{1}, \pi_{2}\right)$	$\sim \operatorname{Dirichlet}(\alpha / 2, \alpha / 2)$
$\left(\pi_{1} \pi_{11}, \pi_{1} \pi_{12}, \pi_{2} \pi_{21}, \pi_{2} \pi_{22}\right)$	$\sim \operatorname{Dirichlet}(\alpha / 4, \alpha / 4, \alpha / 4, \alpha / 4)$

As the concentration parameter
gets smaller and smaller, the split
of values in LHS get more and
more skewed

This is basically what happens in the case of Dirichlet Process few entries as nonzero and in the infinitesized π, there will only be a finite many / Stick-Breaking Process
\qquad
\qquad

step 8

step 11

step 16

Dirichlet Process - Formally

- A Dirichlet Process $\operatorname{DP}\left(\alpha, G_{0}\right)$ defines a distribution over distributions
- So $G \sim \operatorname{DP}\left(\alpha, G_{0}\right)$ will give us a distribution
- α : concentration param, G_{0} : base distribution (=mean of DP)
- Large α means $G \rightarrow G_{0}$
- Fact 1: If $G \sim \operatorname{DP}\left(\alpha, G_{0}\right)$ then any finite dim. marginal of G is Dirichlet distributed

$$
\left[G\left(A_{1}\right), \ldots, G\left(A_{K}\right)\right] \sim \operatorname{Dirichlet}\left(\alpha G_{0}\left(A_{1}\right), \ldots, \alpha G_{0}\left(A_{K}\right)\right)
$$

for any finite partition A_{1}, \ldots, A_{K} of the space Ω (Ferguson, 1973)

$$
\begin{aligned}
& \phi_{k} \text { 's are i.i.d. draws from } \\
& \text { the base distribution } G_{0}
\end{aligned}
$$

- Fact 2: Any G drawn from $\operatorname{DP}\left(\alpha, G_{0}\right)$ will be of the form $G=\sum_{k=1}^{\infty} \pi_{k} \delta_{\phi_{k}}$ (Sethuraman, 1994)
- Fact 3: G is a discrete dist, i.e., only a few π_{k} 's will be significant

Another NPBayes Prior: Multiplicative Gamma Process

- Consider the SVD-style probabilistic model with an a priori unbounded K

$$
\mathbf{X}=\sum_{k=1}^{\infty} \lambda_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{\top}
$$

- Consider the following prior on each "singular values" λ_{k}

- In practice we can set K to be a sufficiently very large
- Due to the shrinkage property, only a finite many λ_{k} will be nonzero
- The nonzero λ_{k} 's will dictate the effective K

Summary of NPBayes

- We saw some nonparametric Bayesian models (mainly used in unsup learning)
- CRP/Dirichlet Process: For clustering problems
- Multiplicative Gamma Process: For SVD-like matrix factorization
- Many applications of these models to solve a wide range of problems
- Also saw GP which is another example of a nonparametric Bayesian model
- GPs are used for function approximation problems (both supervised and unsup. learning)
- These are only some of the examples of nonparametric Bayesian models
- Many other such nonparametric Bayesian models for other problems in machine learning
- "A tutorial on Bayesian nonparametric models" Gershman and Blei, 2011) is a nice survey
- Rich theory based on stochastic processes (beyond the scope of this course)
- Inspired other non-probabilistic algos, e.g., Using Dirichlet Process Mixture Model to get. a K-means like clustering algorithm (DP-means) which doesn't require K

Probabilistic Models for Sequential Data

Latent Variable Models for Sequential Data

- Task: Given a sequence of observations, infer the latent state of each observation

- If z_{n} 's are discrete, we have a hidden Markov model (HMM) $p\left(z_{n} \mid z_{n-1}=\ell\right)=$ multinoulli $\left(\pi_{\ell}\right)$
- If z_{n} 's are real-valued, we have a state-space model (SSM) $p\left(\boldsymbol{z}_{n} \mid \boldsymbol{z}_{n-1}\right)=\mathcal{N}\left(\mathbf{A} \boldsymbol{z}_{n-1}, \mathbf{I}_{K}\right)$

State-Space Models

- In the most general form, the state-transition and observation models of an SSM

- Assuming Gaussian noise in the state-transition and observation models

$$
\begin{aligned}
& \text { This is a Gaussian SSM } \\
& \begin{aligned}
\boldsymbol{s}_{t} \mid \boldsymbol{s}_{t-1} & \sim \mathcal{N}\left(\boldsymbol{s}_{t} \mid g_{t}\left(\boldsymbol{s}_{t-1}\right), \mathbf{Q}_{t}\right) \\
\boldsymbol{x}_{t} \mid \boldsymbol{s}_{t} & \sim \mathcal{N}\left(\boldsymbol{x}_{t} \mid h_{t}\left(\boldsymbol{s}_{t}\right), \mathbf{R}_{t}\right)
\end{aligned} \\
& \text { If } g_{t}, h_{t}, Q_{t}, R_{t} \text { are } \\
& \text { independent of } t \text { then it is } \\
& \text { called a stationary model }
\end{aligned}
$$

Typical Inference Task for Gaussian SSM

- One of the key tasks: Given sequence $x_{1}, x_{2}, \ldots, x_{T}$, infer latent $s_{1}, s_{2}, \ldots, s_{T}$

- Usually two ways of inferring the latent states
- Infer $p\left(s_{t} \mid x_{1}, x_{2}, \ldots, x_{t}\right)$: Called the "filtering" problem A Gaussian Kalman Filtering is a popular Turns out to be
another Gaussian $p\left(\boldsymbol{s}_{t} \mid \mathbf{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{t}\right) \propto \underbrace{p\left(\boldsymbol{x}_{t} \mid s_{t}\right)}_{\mathcal{N}\left(\boldsymbol{x}_{t} \mid \boldsymbol{s}_{t}, \mathbf{R}\right)} \int \underbrace{p\left(\boldsymbol{s}_{t} \mid \boldsymbol{s}_{t-1}\right)}_{\mathcal{N}\left(\boldsymbol{s}_{t} \mid \boldsymbol{s}_{t-1}, \mathbf{Q}\right)} p\left(\boldsymbol{s}_{t-1} \mid \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{t-1}\right) d \boldsymbol{s}_{t-1}$
- Infer $p\left(s_{t} \mid x_{1}, x_{2}, \ldots, x_{t}, \ldots, x_{T}\right)$: Called the "smoothing" problem
- Some other tasks one can solve for using an SSM
- Predicting future states $p\left(s_{t+h} \mid x_{1}, x_{2}, \ldots, x_{t}\right)$ for $h \geq 1$, given observations thus far
- Predicting future observations $p\left(x_{t+h} \mid x_{1}, x_{2}, \ldots, x_{t}\right)$ for $h \geq 1$, given observations thus far

A Special Case

- What if we have i.i.d. latent states, i.e... $p\left(z_{n} \mid z_{n-1}\right)=p\left(z_{n}\right)$?

- Discrete case (HMM) becomes a simple mixture model $p\left(\boldsymbol{z}_{n} \mid \boldsymbol{z}_{n-1}=\ell\right)=p\left(\mathbf{z}_{n}\right)=$ multinoulli (π)
- Real-valued case (SSM) becomes a PPCA model $p\left(\boldsymbol{z}_{n} \mid \boldsymbol{z}_{n-1}\right)=p\left(\boldsymbol{z}_{n}\right)=\mathcal{N}\left(\mathbf{0}, \mathbf{I}_{\mathrm{K}}\right)$ or $\mathcal{N}(\boldsymbol{\mu}, \Psi)$
- Inference algos for HMM/SSM are thus very similar to that of mixture models/PPCA
- Only main difference is how the latent variables z_{n} 's are inferred since they aren't i.i.d.
- E.g., if using EM, only E step needs to change (Bishop Chap 13 has EM for HMM and SSM)

Some other topics (not covered in the course)

- Reinforcement Learning
- Probabilistic Numerics: Treating numerical problem as one of statistical inference
- An Example: Numerical integration

- Many others: optimization, solution of ODE/PDE, solution of linear systems, eigenvalue problems

Conclusion

- Probabilistic modeling provides a natural way to think about models of data
- Many benefits as compared to non-probabilistic approaches
- Easier to model and leverage uncertainty in data/parameters
- Principle of marginalization while making prediction
- Easier to encode prior knowledge about the problem (via prior/likelihood distributions)
- Easier to handle missing data (by marginalizing it out if possible, or by treating as latent variable)
- Easier to build complex models can be neatly combining/extending simpler probabilistic models
- Easier to learn the "right model" (hyperparameter estimation, nonparametric Bayesian models)
- .. and various other benefits as we saw during this course
- Fast-moving field, lots of recent advances on new models and inference methods
- The course is an attempt to guide you into exploring the area further

Thank You!

(YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT...

