Assorted Topics in Probabilistic ML (3)

CS772A: Probabilistic Machine Learning Piyush Rai

Plan for today

Assorted Topics

- Nonparametric Bayesian methods (contd)
- Probabilistic Models for Sequential Data
 - A brief idea
- Probabilistic Numerics

Being Nonparametric using Models that have a Shrinkage Effect

Mixture Models: Another Construction

• Consider a finite mixture model with K components with params $(\mu_k, \Sigma_k)_{k=1}^K$

- In the finite case, we can assume $\pi = [\pi_1, ..., \pi_K]$ and $\pi \sim \text{Dirichlet}\left(\frac{\alpha}{K}, ..., \frac{\alpha}{K}\right)$
- We can make it a nonparametric model by making π an infinite-dimensional vector

Stick-Breaking Process (Sethuraman'94)

- Recursively break a length 1 stick into two pieces
- Assume breaking point in each round is drawn from a Beta distribution

$$eta_k \sim ext{Beta}(1, lpha) \quad k = 1, \dots, \infty$$

 $\pi_1 = eta_1$
 $\pi_k = eta_k \prod_{\ell=1}^{k-1} (1 - eta_\ell) \quad k = 2, \dots, \infty$

- Can show that $\sum_{k=1}^{\infty} \pi_k 1 \rightarrow 0$ which is what we want
- We can now have a "nonparametric/infinite" mixture distribution $G = \sum_{k=1}^{\infty} \pi_k \, \delta_{\phi_k}$
- "Location/atoms" ϕ_k can be drawn from a "base" distr G_0 , say NIW if $\phi_k = (\mu_k, \Sigma_k)$
- We basically replaced the Dirichlet prior on π by a Stick-Breaking Process (SBP) prior

SBP gives us a way to construct

infinite dimensional Dirichlet

distribution known as the

"Dirichlet Process"

Infinite Dimensional Dirichlet

Drawing from an infinite-dim Dirichlet would give an infinite-dim prob. vector

 $\boldsymbol{\pi} = [\pi_1, \pi_2, \pi_3, \dots]$

- We can construct this vector to have very few entries as nonzero
- Consider recursively drawing from a Dirichlet as defined below

Dirichlet Process - Formally

CS772A: PML

- A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions
 - So $G \sim \mathsf{DP}(\alpha, G_0)$ will give us a distribution
 - α : concentration param, G_0 : base distribution (=mean of DP)
 - Large α means $G \rightarrow G_0$
- Fact 1: If $G \sim DP(\alpha, G_0)$ then any finite dim. marginal of G is Dirichlet distributed $[G(A_1), \ldots, G(A_K)] \sim Dirichlet(\alpha G_0(A_1), \ldots, \alpha G_0(A_K))$

for any finite partition A_1, \ldots, A_K of the space Ω (Ferguson, 1973)

 ϕ_k 's are i.i.d. draws from the base distribution G_0

- Fact 2: Any G drawn from DP(α , G₀) will be of the form $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ (Sethuraman, 1994)
- Fact 3: G is a discrete dist, i.e., only a few π_k 's will be significant

Another NPBayes Prior: Multiplicative Gamma Process

• Consider the SVD-style probabilistic model with an *a priori* unbounded *K*

$$\mathbf{X} = \sum_{k=1}^{\infty} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^{\mathsf{T}}$$

- Consider the following prior on each "singular values" λ_k

$$\begin{array}{lll} \lambda_{k} & \sim & \mathcal{N}(0,\tau_{k}^{-1}) \\ \tau_{k} & = & \prod_{\ell=1}^{k} \delta_{\ell} \end{array} \overset{\text{Precision keeps on getting}}{\underset{\text{grows (thus variance keeps})}{\underset{\text{getting small and smaller}}} \\ \delta_{\ell} & \sim & \text{Gamma}(\alpha,1) \quad \text{where } \alpha > 1 \end{array} \overset{\text{Thus } \mathbb{E}[\delta_{\ell}] = \alpha \text{ (greater than 1 in expectation)}} \end{array}$$

- In practice we can set K to be a sufficiently very large
 - Due to the shrinkage property, only a finite many \u03c8_k will be nonzero
 - The nonzero λ_k 's will dictate the effective K

Summary of NPBayes

- We saw some nonparametric Bayesian models (mainly used in unsup learning)
 - CRP/Dirichlet Process: For clustering problems
 - Multiplicative Gamma Process: For SVD-like matrix factorization
- Many applications of these models to solve a wide range of problems
- Also saw GP which is another example of a nonparametric Bayesian model
 - GPs are used for function approximation problems (both supervised and unsup. learning)
- These are only some of the examples of nonparametric Bayesian models
 - Many other such nonparametric Bayesian models for other problems in machine learning
 - "A tutorial on Bayesian nonparametric models" Gershman and Blei, 2011) is a nice survey
- Rich theory based on stochastic processes (beyond the scope of this course)
- Inspired other non-probabilistic algos, e.g., Using Dirichlet Process Mixture Model to get a K-means like clustering algorithm (DP-means) which doesn't require K

Probabilistic Models for Sequential Data

Latent Variable Models for Sequential Data

Task: Given a sequence of observations, infer the latent state of each observation

12

- If z_n 's are discrete, we have a hidden Markov model (HMM) $p(z_n|z_{n-1} = \ell) = \text{multinoulli}(\pi_\ell)$
- If z_n 's are real-valued, we have a state-space model(SSM) $p(z_n|z_{n-1}) = \mathcal{N}(Az_{n-1}, I_{\kappa})$

State-Space Models

In the most general form, the state-transition and observation models of an SSM

Assuming Gaussian noise in the state-transition and observation models

This is a Gaussian SSM

$$\begin{aligned} \mathbf{s}_{t} | \mathbf{s}_{t-1} & \sim \quad \mathcal{N}(\mathbf{s}_{t} | g_{t}(\mathbf{s}_{t-1}), \mathbf{Q}_{t}) & \text{If } g_{t}, h_{t}, Q_{t}, R_{t} \text{ are independent of } t \text{ then it is called a stationary model} \\ \mathbf{x}_{t} | \mathbf{s}_{t} & \sim \quad \mathcal{N}(\mathbf{x}_{t} | h_{t}(\mathbf{s}_{t}), \mathbf{R}_{t}) & g_{t}, h_{t}, Q_{t}, R_{t} \text{ may be known or can be learned} \end{aligned}$$

Typical Inference Task for Gaussian SSM

• One of the key tasks: Given sequence x_1, x_2, \dots, x_T , infer latent s_1, s_2, \dots, s_T

14

- Predicting future states $p(s_{t+h}|x_1, x_2, ..., x_t)$ for $h \ge 1$, given observations thus far
- Predicting future observations $p(x_{t+h}|x_1, x_2, ..., x_t)$ for $h \ge 1$, given observations thus far

A Special Case

• What if we have i.i.d. latent states, i.e., $p(z_n|z_{n-1}) = p(z_n)$?

- Discrete case (HMM) becomes a simple mixture model $p(z_n|z_{n-1} = \ell) = p(z_n) = \text{multinoulli}(\pi)$
- Real-valued case (SSM) becomes a PPCA model $p(z_n|z_{n-1}) = p(z_n) = \mathcal{N}(\mathbf{0}, \mathbf{I}_{\mathbf{K}})$ or $\mathcal{N}(\mu, \Psi)$
- Inference algos for HMM/SSM are thus very similar to that of mixture models/PPCA
 - Only main difference is how the latent variables z_n 's are inferred since they aren't i.i.d.
 - E.g., if using EM, only E step needs to change (Bishop Chap 13 has EM for HMM and SSM)

Some other topics (not covered in the course)

- Reinforcement Learning
- Probabilistic Numerics: Treating numerical problem as one of statistical inference
 - An Example: Numerical integration

Many others: optimization, solution of ODE/PDE, solution of linear systems, eigenvalue problems

https://www.probabilistic-numerics.org/

Conclusion

- Probabilistic modeling provides a natural way to think about models of data
- Many benefits as compared to non-probabilistic approaches
 - Easier to model and leverage uncertainty in data/parameters
 - Principle of marginalization while making prediction
 - Easier to encode prior knowledge about the problem (via prior/likelihood distributions)
 - Easier to handle missing data (by marginalizing it out if possible, or by treating as latent variable)
 - Easier to build complex models can be neatly combining/extending simpler probabilistic models
 - Easier to learn the "right model" (hyperparameter estimation, nonparametric Bayesian models)
 - .. and various other benefits as we saw during this course
- Fast-moving field, lots of recent advances on new models and inference methods
 - The course is an attempt to guide you into exploring the area further

Thank You!

