Assorted Topics in Probabilistic ML (2)

CS772A: Probabilistic Machine Learning Piyush Rai

Plan for today

Assorted Topics

- Conformal Prediction (simple and fast way to get prediction uncertainty/set)
- Nonparametric Bayesian methods (learning the right model size/complexity)

Conformal Prediction

- A simple technique to easily obtain confidence intervals
 - In classification, such an interval may refer to the <u>set</u> of highly likely classes for a test input

- For more difficult test inputs, the set would typically be larger
- In a way, conformal prediction gives predictive uncertainty
 - However, unlike Bayesian ML, we don't get model uncertainty
 - Only one model is learned in the standard way and we construct the set of likely classes
 - It's like a black-box method; no change to training procedure for the model

Nonparametric Bayesian Methods

- Need for nonparametric Bayesian modeling
- Some motivating problems
- NPBayes modeling mixture models (clustering)
- Some standard ways of constructing NPBayes models
 - Stick-breaking process, Dirichlet process
 - Some metaphors: Chinese Restaurant Process

Motivating Problem: Mixture Models

Suppose each observation is generated from a K component mixture model

• How to learn K, i.e., the number of components (clusters) for such a mixture model?

- Can use marginal-likelihood based model selection but is expensive
 - Need to train the model several times for each possible value of K
- Also difficult if the data is streaming (hard to know beforehand how many clusters)

• How about a prior over $\mathbf{Z} = [z_1, z_2, ..., z_N]$ (or $\boldsymbol{\pi}$) that allows learning the "right" K?

Motivating Problem: Latent Feature Models

• Suppose each observation is a subset sum of K "basis vectors" (or "latent features"*)

Motivating Problem: SVD-style Matrix Factorization⁸

• Consider the following SVD-style decomposition for an $N \times M$ matrix **X**

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k \mathbf{u}_k \mathbf{v}_k^{\mathsf{T}} + \mathbf{E} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}} + \mathbf{E}^{\mathsf{Zero mean}} \mathbf{Gaussian noise}^{\mathsf{Zero mean}}$$

• Each $\boldsymbol{u}_k \in \mathbb{R}^N$, $\boldsymbol{v}_k \in \mathbb{R}^M$, $\lambda_k \in \mathbb{R}$, and Λ is a $K \times K$ diag matrix with λ_k 's on diags

- This is basically a <u>weighted</u> sum of K rank-1 matrices
 - λ_k 's are the weights
 - λ_k 's are akin to the singular values in SVD
- How to learn K, i.e., the "rank" of the above factorization?
- How about a prior on Λ , or **U** or **V**, that allows us to learn the "right" K ?

Nonparametric Bayesian Modeling A vast area of research in ML and statistics. We will only be looking at a basic flavor of some

- Enables constructing models that do not have an a priori fixed size
- Nonparametric does not mean no parameters
 - \blacksquare Instead, have a possibly infinite (unbounded) number of parameters <
 - Note: We've already seen Gaussian Processes which is a nonparametric Bayesian model
- Usually constructed via one of the following ways
 - Take a finite model (e.g., a finite mixture model) and consider its "infinite limit"
 - Have a model that allows very large number of params but has a "shrinkage" effect, e.g.,

$$\mathbf{X} = \sum_{k=1}^{\kappa} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^{ op} + \mathbf{E} \qquad \lambda_k \to 0 \quad \text{as} \quad k \to \infty$$

We will look at some examples of both these approaches

A tutorial on Bayesian nonparametric models (Gershman and Blei, 2012)

approaches

Being Nonparametric by Taking Infinite Limit of Finite Models

A Finite Mixture Model

- Data $\mathbf{X} = [x_1, x_2, \dots, x_N]$, cluster assignments $\mathbf{Z} = [z_1, z_2, \dots, z_N]$, K clusters
- Denote the mixing proportion by a vector $\pmb{\pi} = [\pi_1, \dots, \pi_K]$, $\sum_{k=1}^K \pi_k = 1$

$$p(\pi|\alpha) = \text{Dirichlet}\left(\frac{\alpha}{K}, \frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$$

$$p(\boldsymbol{z}_n|\pi) = \prod_{k=1}^{K} \pi_k^{\boldsymbol{z}_{nk}}$$
a.k.a. "collapsing" a
variable; one less
variable to infer now
$$p(\mathbf{X}|\pi) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k p(\boldsymbol{x}_n | \boldsymbol{z}_n = k)$$

Integrating out π , the marginal prior probability of cluster assignments

$$p(\mathbf{Z}|\alpha) = \int p(\mathbf{Z}|\pi)p(\pi|\alpha)d\pi = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \frac{\prod_{k=1}^{K} \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K} \quad \text{(verify}$$

A Finite Mixture Model

• The prior distribution of \mathbf{z}_n given cluster assignment \mathbf{Z}_{-n} of other points?

A discrete distribution
(multinoulli) since
$$\mathbf{z}_n$$
 can
take one of K possibilities
$$p(\mathbf{z}_n | \mathbf{Z}_{-n}, \alpha) = \frac{p(\mathbf{z}_n, \mathbf{Z}_{-n} | \alpha)}{p(\mathbf{Z}_{-n} | \alpha)} = \frac{p(\mathbf{Z} | \alpha)}{p(\mathbf{Z}_{-n} | \alpha)}$$
This "conditional" prior is needed
since we have integrated out π and
thus \mathbf{z}_n 's become coupled
Number of points in
cluster j , not counting \mathbf{x}_n

$$p(\mathbf{z}_n = j | \mathbf{Z}_{-n}, \alpha) = \frac{p(\mathbf{z}_n = j, \mathbf{Z}_{-n} | \alpha)}{p(\mathbf{Z}_{-n} | \alpha)} = \frac{\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \frac{\Gamma(m_j + \frac{\alpha}{K}) \prod_{k \neq j} \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\alpha)}{\frac{\Gamma(\alpha)}{\Gamma(N-1+\alpha)} \frac{\Gamma(m_j - 1 + \frac{\alpha}{K}) \prod_{k \neq j} \Gamma(m_k + \frac{\alpha}{K})}{\Gamma(\frac{\alpha}{K})^K}} = \frac{\frac{m_{-n,j} + \frac{\alpha}{K}}{N - 1 + \alpha}}{\frac{m_{-n,j} + \frac{\alpha}{K}}{N - 1 + \alpha}}$$

- Note: Can also get this result using $p(\mathbf{z}_n = j | \mathbf{Z}_{-n}, \alpha) = \int p(\mathbf{z}_n = j | \boldsymbol{\pi}) p(\boldsymbol{\pi} | \mathbf{Z}_{-n}, \alpha) d\boldsymbol{\pi}$
- Thus prior prob. of $\mathbf{z}_n = \mathbf{j}$ is proportional to how many other points are in cluster \mathbf{j}
- Note that it also implies that mixture models have a rich-gets-richer property
 - Meaning: *a priori*, a cluster with more points is likely to attract more points

Taking the Infinite Limit..

• Since
$$p(\mathbf{z}_n = j | \mathbf{Z}_{-n}, \alpha) = \frac{m_{-n,j} + \frac{\alpha}{K}}{N - 1 + \alpha}$$
, as $K \to \infty$, $p(\mathbf{z}_n = j | \mathbf{Z}_{-n}, \alpha) = \frac{m_{-n,j}}{N - 1 + \alpha}$

- Suppose only K_+ clusters are currently occupied (i.e., have at least one data point)
- Total prob. of x_n going to any of these K_+ clusters $= \sum_{j=1}^{K_+} \frac{m_{-n,j}}{N-1+\alpha} = \frac{N-1}{N-1+\alpha}$

13

CS772A: PML

- Probability of x_n going to a new (i.e., so far unoccupied) cluster = $\frac{\alpha}{N-1+\alpha}$
- Therefore in the limit of an <u>unbounded</u> number of clusters, we have

 $p(\boldsymbol{z}_n = j | \boldsymbol{Z}_{-n}, \alpha) = \begin{cases} \frac{m_{-n,j}}{N-1+\alpha} & \text{(prob. of going to } j = 1, \dots, K_+ \text{)} \\ \frac{\alpha}{N-1+\alpha} & \text{(prob. of creating a new cluster } K_+ + 1 \text{)} \end{cases}$

- The above gives us a prior distribution for mixture models with unbounded K
 - Can combine it now with the suitable likelihood to infer the posterior* of ${f Z}$
- Note: Prob. of starting a new cluster is prop. to Dirichlet hyperparam lpha (can learn it)

*Markov chain sampling methods for Dirichlet process mixture models, (Neal, 2000), Variational inference for Dirichlet process mixtures (Blei and Jordan, 2006)

A Metaphor: Chinese Restaurant Process (CRP)

- Assume a restaurant with <u>infinite</u> number of tables (each table denotes a cluster)
- Customer 1 sits at a randomly chosen table (all tables are equivalent to begin with)
- Each subsequent customer n > 1 sits using the following scheme
 - Sits at an already occupied table k with probability $\frac{m_k}{n-1+\alpha}$
 - Sits at a new table with probability $\frac{\alpha}{n-1+\alpha}$

14

Being Nonparametric using Models that have a Shrinkage Effect

15

Mixture Models: Another Construction

• Consider a finite mixture model with K components with params $(\mu_k, \Sigma_k)_{k=1}^K$

16

- In the finite case, we can assume $\pi = [\pi_1, ..., \pi_K]$ and $\pi \sim \text{Dirichlet}\left(\frac{\alpha}{K}, ..., \frac{\alpha}{K}\right)$
- We can make it a nonparametric model by making π an infinite-dimensional vector

Stick-Breaking Process (Sethuraman'94)

- Recursively break a length 1 stick into two pieces
- Assume breaking point in each round is drawn from a Beta distribution
 - $\beta_k \sim \text{Beta}(1, \alpha)$ $k = 1, \dots, \infty$ $\pi_1 = \beta_1$ $\pi_k = \beta_k \prod_{\ell=1}^{k-1} (1 - \beta_\ell)$ $k = 2, \dots, \infty$
- ${\ }^{\bullet}$ Can show that $\sum_{k=1}^{\infty}\pi_k-1 \rightarrow 0$ which is what we want
- We can now have a "nonparametric/infinite" mixture distribution $G = \sum_{k=1}^{\infty} \pi_k \, \delta_{\phi_k}$
- "Location/atoms" ϕ_k can be drawn from a "base" distr G_0 , say NIW if $\phi_k = (\mu_k, \Sigma_k)$
- We basically replaced the Dirichlet prior on π by a Stick-Breaking Process (SBP) prior

SBP gives us a way to construct

infinite dimensional Dirichlet

distribution known as the

"Dirichlet Process"

Infinite Dimensional Dirichlet

Drawing from an infinite-dim Dirichlet would give an infinite-dim prob. vector

 $\boldsymbol{\pi} = [\pi_1, \pi_2, \pi_3, \dots]$

- We can construct this vector to have very few entries as nonzero
- Consider recursively drawing from a Dirichlet as defined below

Dirichlet Process - Formally

CS772A: PML

- A Dirichlet Process $DP(\alpha, G_0)$ defines a distribution over distributions
 - So $G \sim \mathsf{DP}(\alpha, G_0)$ will give us a distribution
 - α : concentration param, G_0 : base distribution (=mean of DP)
 - Large α means $G \rightarrow G_0$
- Fact 1: If $G \sim DP(\alpha, G_0)$ then any finite dim. marginal of G is Dirichlet distributed $[G(A_1), \dots, G(A_K)] \sim Dirichlet(\alpha G_0(A_1), \dots, \alpha G_0(A_K))$

for any finite partition A_1, \ldots, A_K of the space Ω (Ferguson, 1973)

$$\Omega$$
 A_2 A_3 A_4 A_5 A_5 A_5 A_5 A_6 A_6

- Fact 2: Any G drawn from DP(α , G₀) will be of the form $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ (Sethuraman, 1994)
- Fact 3: G is a discrete dist, i.e., only a few π_k 's will be significant

Summary

- We saw an example of a nonparametric Bayesian model
 - CRP/Dirichlet Process: For clustering problems
- NPBayes models exist for many other problems, e.g., matrix factorization
- Many applications of these models to solve a wide range of problems
- Also saw GP which is another example of a nonparametric Bayesian model
 - GPs are used for function approximation problems (both supervised and unsup. learning)
- Rich theory based on stochastic processes (beyond the scope of this course)
- Inspired other non-probabilistic algos, e.g., Using Dirichlet Process Mixture Model to get a K-means like clustering algorithm (DP-means) which doesn't require K

