Assorted Topics in Probabilistic ML (2)

CS772A: Probabilistic Machine Learning
Piyush Rai



Plan for today

" Assorted lopics
= Conformal Prediction (simple and fast way to get prediction uncertainty/set)
* Nonparametric Bayesian methods (learning the right model size/complexity)
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Conformal Prediction

» A simple technique to easily obtain confidence intervals
" [n classification, such an interval may refer to the set of highly likely classes for a test input
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» For more difficult test inputs, the set would typically be larger

" In a way, conformal prediction gives predictive uncertainty
* However, unlike Bayesian ML, we don't get model uncertainty
= Only one model is learned in the standard way and we construct the set of likely classes
" [t's like a black-box method; no change to training procedure for the model CS772A: PML



CO n fO r m a | P re d I Ct I O n Assume it's a classification model Conformal prediction can

which produces softmax scores be used for regression
problems too*

= Assume we already have a trained model f using some labelled data
" |[dea: Use a calibration set of n examples to generate a prediction set C(X¢egt) St

Qs 3 user Another fresh

lts true label -
chosen error rate test input 1

l —a=s p(Ytest = C(Xtest)) <1l-a+ T 1
» The approach* to construct the prediction set C(X;est) IS as follows:
= Assuming classification task, for each example in the calibration set, compute

high means low- Conformal score: one (1) compute scores (2) get quantile (3) construct

A
confidence prediction by minus the softmax score Sl — 1 — f ( xl)yl on holdout data prediction set
the model of the correct class

With high prob., the true
label is in set C(X¢est)

Sy s

softmax output

softmax output

» Compute the 1 — a quantile of s4, S5, ..., S,. Call it g

class scores, {5} class

* Now the calibration set for a new test input X;eqp Can be defined as

Set of all classes whose predicted _ T oA
softmax values are “high enough” C(Xtest) - {y f(Xtest)y =1 q}

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022) CS772A: PML



Nonparametric Bayesian Methods

" Need for nonparametric Bayesian modeling
= Some motivating problems
* NPBayes modeling mixture models (clustering)

* Some standard ways of constructing NPBayes models
= Stick-breaking process, Dirichlet process
= Some metaphors: Chinese Restaurant Process

CS772A: PML



Motivating Problem: Mixture Models

" Suppose each observation is generated from a K component mixture model

Cluster id of the K-dim probability vector of mEiae -
nth observation component mixing proportions "'4;'{-.’.':‘ '
z, ~ multinoulli(7) g
n'" observation I o o L
Xn (/‘LG? Z-Zn) R =52 M

" How to learn K, i.e., the number of components (clusters) for such a mixture model?

= Can use marginal-likelihood based model selection but is expensive
* Need to train the model several times for each possible value of K

» Also difficult if the data is streaming (hard to know beforehand how many clusters)

* How about a prior over Z = |24, 25, ..., Zy] (or 1) that allows learning the “right” K7
CS772A: PML



Motivating Problem: Latent Feature Models

" Suppose each observation is a subset sum of K "basis vectors” (or “latent features™™)

th .
Is k'™ latent feature An example: Each text document in a

present in the nth . collection being a subset sum of K “latent’
observation? Znk Bernoulll(wk) k = 17 c e ey K themes or topics present in the collection

The nt" observation (D x 1) K .

expressed as a subset sum of Noise (eg. £ere
the K latent features (each Xn = Z Znk@k + €n = AZ,, T €n— mean Gaussian)
D x 1), plus some noise k=1| The kt" latent

A binary
sparse matrix

= This can also be seen as special type of matrix factorization X = ZAT + E
D e K D

n"row is z,, a
binary vector

y AT
X ~ K

~ N

feature (D X 1)

th .
n-wrow is xXp k™ row is aj,

N
Just like mixture models,
selecting it based on
marg-lik will be expensive

* How about a prior over Z (or A or Tt = [m4, ..., Tg]) that allows learning the “right” K7

* Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011) CS772A: PML



Motivating Problem: SVD-style Matrix Factorization

= Consider the following SVD-style decomposition for an N X M matrix X

Rank 1
--------------- matrix Zero mean

K
Gaussian noi
X=2Y Mgv, +E=UAV' +E =
k=1

-,

~
~ -
~~~~~~~~~~

= Fachu, € RN, v, € RM, 1, € R, and Ais a K X K diag matrix with A;'s on diags

" This is basically a weighted sum of K rank-1 matrices
= A;'s are the weights
" A;'s are akin to the singular values in SVD

= How to learn K, i.e., the “rank” of the above factorization?

* How about a prior on A, or U or V, that allows us to learn the “right” K 7

*Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011) CS772A: PML



A vast area of research in ML

Nonparametric Bayesian Modeling| ad sasics we wi oy be

looking at a basic flavor of some A
approaches Y /
" Fnables constructing models that do not have an a priori fixed size e»

And can potentially grow as

* Nonparametric does not mean no parameters we see more and more

data (actual number will
" [nstead, have a possibly infinite (unbounded) number of parameters < depend on the
amount/properties of data)

= Note: We've already seen Gaussian Processes which is a nonparametric Bayesian model

= Usually constructed via one of the following ways

" Take a finite model (e.g., a finite mixture model) and consider its “infinite limit”

" Have a model that allows very large number of params but has a “shrinkage” effect, e.g.,

K
X=> Muvy +E A —0 as k— oo
k=1
= \We will look at some examples of both these approaches

A tutorial on Bayesian nonparametric models (Gershman and Blei, 2012) CS772A: PML
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Being Nonparametric by Taking
Infinite Limit of Finite Models

CS772A: PML



A Finite Mixture Model

" Data X = [xl, Xo, . ,xN], cluster assignments Z = |z4, Z,, ..., Zy], K clusters

= Denote the mixing proportion by a vector T = [Ty, ..., Tg], Dae1 T = 1

o o (87
p(ﬂ'l&) — DII’IChlet(R, R}, R)
K
p(zaplm) = H T
k=1
. " N K

a.k.a. “collapsing” a
variable; one less p(X|7T) = H Z 7Tkp(Xn|Zn = k)
variable to infer now n—1 k—1

" Integrating out 7, the marginal prior probability of cluster assignments

Number of points with z,, = k

p(Zla) = [ plZm)ptmla)dn = H“err(%’;f ) (verify

CS772A: PML



A Finite Mixture Model

" The prior distribution of z,, given cluster assignment Z_,, of other points?

A dis;rete glistlribution (Z ya | ) (Z| ) This “conditional” prior is needed
(multinoulli) since Zy CaN P(Zn|Z_n- Ot) — P\Zn, &£—n| _ pl&i since we have integrated out 1T and
take one of K possibilities ’ p(Z_n|az) P(Z—n |Oﬁ) thus z,,'s become coupled
. MNa) TIE, M(m+2) Number of points in
. USIﬂg p(Z|Of) — r(n_(i+L) : lr(%)K = owe ha\/e cluster j, not counting x,
. Ma) r(mj_{"i) l_[k F(me+%) ) a
( 1Z ) p(z,=J,Z_,|a) F(Nta) - (2R . M_pnj+ %
P\Zn =J|&—n, ) = - a) T(mi—-1+% Tmtg)  N—1+a
p(Z_,|a) r(Nr£1ZLa) (mj I_)(l;l;? (mi+ %) +

= Note: Can also get this result using p(z,, = jlZ_,, @) = [ p(z, = jlm)p(w|Z_,, a)dn

" Thus prior prob. of z,, = jis proportional to how many other points are in cluster j

* Note that it also implies that mixture models have a rich-gets-richer property

» Meaning: a priori, a cluster with more points is likely to attract more points
CS772A: PML



Taking the Infinite Limit..

m_np |

u SII’]CG P(Zn :j|z—naa) — N — 1—|—Of ' as K — OO p(zn _-l|z_” Qf) — N—l—l.—():

= Suppose only K, clusters are currently occupied (i.e., have at least one data point)

K m_,; —
= Jotal prob. of x,, going to any of these K, clusters = Zj:Jrl N—1+ja — Nfljﬂ

= Probability of x;,, going to a new (i.e., so far unoccupied) cluster = N—?+a

= Therefore in the limit of an unbounded number of clusters, we have

m_ rob. of going to j =1,...,K
p(zn = j1Z_m a) = | H-ita (p going o J +)
T (prob. of creating a new cluster K, + 1)

" The above gives us a prior distribution for mixture models with unbounded K
= Can combine it now with the suitable likelihood to infer the posterior* of Z

* Note: Prob. of starting a new cluster is prop. to Dirichlet hyperparam a (can learn it)

*Markov chain sampling methods for Dirichlet process mixture models, (Neal, 2000), Variational inference for Dirichlet process mixtures (Blei and Jordan, 2006) CS772A: PML



A Metaphor: Chinese Restaurant Process (CRP)

" Assume a restaurant with infinite number of tables (each table denotes a cluster)
= Customer 1 sits at a randomly chosen table (all tables are equivalent to begin with)

" Fach subsequent customer n > 1 sits using the following scheme

= Sits at an already occupied table k with probability n_ni’;a

" Sits at a new table with probability

n—1+o

When customer 1 comes
When customer 2 comes after
customer 1 chose table
When customer 3 comes after
customer 1 and 2 chose table

When customer 4 comes after
customer 1,2 and 3 chose table CS772A: PML
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Being Nonparametric using Models
that have a Shrinkage Effect

CS772A: PML



Mixture Models: Another Construction

= Consider a finite mixture model with K components with params (i, 2 ) r—1

Defined by K locations or "atoms” with

G G is a representation parameters {¢ }i=1 With respective
(Hk Zk) = oy of this mixture selection probabilities {mry =1
’ 7'('2 7'(‘4 distribution K
/1 \ T3 L .
: : k
d)l C/)2 ¢3 ¢4
k=1

. . . a a
" |n the finite case, we can assume 1 = |mq, ..., T | and T ~ Dirichlet (E’ E)

= We can make it a nonparametric model by making 1t an infinite-dimensional vector

In practice, only a finite of these Indeed. Called a A

00
will have nonzero values, and _ "Dirichlet Process’ .
1, T2, T35+« E Tk = 1 soa [/
k=1

others will shrink to very small (or
zero), as we will see Related: "Stick-breaking Process’ l»

= How to construct such a vector? Is there an infinite dimensional Dirichlet distribution?
CS772A: PML




Mixture Models: Two Equivalent VIews | i o,

Prior (a.k.a. “base infinite components?
distribution” for the Similar representation even 5
e G parameters of each mixture when G = Y, Ty 6, Go %
| component | ]
l Example: Gy can be NIW if | I N 7*(/&\: m ™ |7T3 ,
each component is a Gaussian | N R
© o i A
K No explicit cluster ids; (,/0;\-\
/ instead, 6; denotes N
the param of the
@ Typ|ca| way of Shov\/ing distribution which will :
N the plate notation of a generate X; @
- N
mixture model -

Since G is discrete, o a
a) there will at most be 1T ~ Dirichlet (E' —)

a
1t ~ Dirichlet (—, ., — - K "K
K K K distinct 9'1 s,' b ~ G, k=12 . K
~G k=12 K thereby achieving
¢k 0 - )iy snny C|USteriﬂg G K 6
= is
z; ~ multinoulli(7) i=12,..,N l - k Ok
l L . _
x; ~ p(x|¢z,) i=12,.. N : 0; ~G i=12,..,N
| x; ~ p(x]6;) i=12,..,N
|

CS772A: PML



SBP gives us a way to construct

Stick-Breaking Process (sethuraman’ga) | e dmensionl Dicrier | - g

“Dirichlet Process” “L/
" Recursively break a length 1 stick into two pieces e-,
* Assume breaking point in each round is drawn from a Beta distribution
Bx ~ Beta(l,a) k=1,...,00 —y e/ :
m™m = [ " ey P I
]. k]._l TEZ: Bﬁ : I_Bj :
TG B

szﬁkH(l—ﬁe) K — 250500 :E[Z:IB"I
(=1 "%‘:‘

» Can show that }.p-; T — 1 = 0 which is what we want
= We can now have a “nonparametric/infinite” mixture distribution G = Xp_1 Ty 8¢,

= " ocation/atoms” ¢ can be drawn from a "base” distr G, say NIW if ¢, = (ug, Zx)
* We basically replaced the Dirichlet prior on 1 by a Stick-Breaking Process (SBP) prior

CS772A: PML



Infinite Dimensional Dirichlet -

" Drawing from an infinite-dim Dirichlet would give an infinite-dim prob. vector
T = [77:1, 5, T3, ]

* We can construct this vector to have very few entries as nonzero
= Consider recursively drawing from a Dirichlet as defined below

As the concentration parameter A S LR B L

gets smaller and smaller, the split step 1 step 2 step 5
of values in LHS get more and : T o G S
more _skewed

1 ~ Dirichlet(a)
(m1,m) ~  Dirichlet(a/2, a/2)

(w1711, W1 12, W2 721, T2T22) ~  Dirichlet(a/4, /4, /4, a/4)

Therefore, after doing the above a few _‘
times, the m vector will Oﬂ|y have a very This is basica”y what happens i
few entries as nonzero and in the infinite- in the case of Dirichlet Process |
sized 1, there will only be a finite many / Stick-Breaking Process step 8 step 11 step 16
nonzero entries, and rest will be zero

CS772A: PML



Dirichlet Process - Formally EPgemenld | gy

“Dirichlet Process” LS /

o A Dirichlet Process DP(«, Gp) defines a distribution over distributions @9’
o So G ~ DP(a, Gp) will give us a distribution
o « : concentration param, Gg: base distribution (=mean of DP)
o Large a means G — Go
o Fact 1: If G ~ DP(a, Gy) then any finite dim. marginal of G is Dirichlet distributed
[G(A1),..., G(Ak)] ~ Dirichlet(aGy(A1), - .., aGo(Ak))
for any finite partition As, ..., Ak of the space Q2 (Ferguson, 1973)

Q A /’/\A;
A A, \\

e

e
A

o Fact 2: Any G drawn from DP(a, Gy) will be of the form G = 7| mxdy4, (Sethuraman, 1994)

o Fact 3: G is a discrete dist, i.e., only a few m,'s will be significant

CS772A: PML



summary

" We saw an example of a nonparametric Bayesian model
= CRP/Dirichlet Process: For clustering problems

* NPBayes models exist for many other problems, e.g., matrix factorization
" Many applications of these models to solve a wide range of problems

" Also saw GP which is another example of a nonparametric Bayesian model
» GPs are used for function approximation problems (both supervised and unsup. learning)

®* Rich theory based on stochastic processes (beyond the scope of this course)

* |nspired other non-probabilistic algos, e.g., Using Dirichlet Process Mixture Model to get
a K-means like clustering algorithm (DP-means) which doesn't require K

CS772A: PML



