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CS772A: PML

Plan for today

▪ Assorted Topics

▪ Conformal Prediction (simple and fast way to get prediction uncertainty/set)

▪Nonparametric Bayesian methods (learning the right model size/complexity)
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Conformal Prediction

▪ A simple technique to easily obtain confidence intervals

▪ In classification, such an interval may refer to the set of highly likely classes for a test input

▪ For more difficult test inputs, the set would typically be larger

▪ In a way, conformal prediction gives predictive uncertainty
▪ However, unlike Bayesian ML, we don’t get model uncertainty

▪ Only one model is learned in the standard way and we construct the set of likely classes

▪ It’s like a black-box method; no change to training procedure for the model
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Conformal Prediction

▪ Assume we already have a trained model መ𝑓 using some labelled data

▪ Idea: Use a calibration set of 𝑛 examples to generate a prediction set 𝒞(𝑋𝑡𝑒𝑠𝑡) s.t.

▪ The approach* to construct the prediction set 𝒞(𝑋𝑡𝑒𝑠𝑡) is as follows:

▪ Assuming classification task, for each example in the calibration set, compute

▪ Compute the 1 − 𝛼 quantile of 𝑠1, 𝑠2, … , 𝑠𝑛. Call it ො𝑞

▪Now the calibration set for a new test input 𝑋𝑡𝑒𝑠𝑡 can be defined as 
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1 − 𝛼 ≤ 𝑝 𝑌𝑡𝑒𝑠𝑡 ∈ 𝒞 𝑋𝑡𝑒𝑠𝑡 ≤ 1 − 𝛼 +
1

𝑛 + 1

𝛼 is a user 

chosen error rate

Another fresh 

test inputIts true label

𝑠𝑖 = 1 − መ𝑓 𝑥𝑖 𝑦𝑖

Conformal score: one 

minus the softmax score 

of the correct class

high means low-

confidence prediction by 

the model

𝒞 𝑋𝑡𝑒𝑠𝑡 = {𝑦: መ𝑓 𝑋𝑡𝑒𝑠𝑡 𝑦 ≥ 1 − ො𝑞}Set of all classes whose predicted 

softmax values are “high enough” 

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022)

Assume it’s a classification model 

which produces softmax scores

Conformal prediction can 

be used for regression 

problems too*

With high prob., the true 

label is in set 𝒞(𝑋𝑡𝑒𝑠𝑡)
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Nonparametric Bayesian Methods

▪ Need for nonparametric Bayesian modeling

▪ Some motivating problems

▪ NPBayes modeling mixture models (clustering)

▪ Some standard ways of constructing NPBayes models
▪ Stick-breaking process, Dirichlet process

▪ Some metaphors: Chinese Restaurant Process
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Motivating Problem: Mixture Models

▪ Suppose each observation is generated from a 𝐾 component mixture model

▪ How to learn 𝐾, i.e., the number of components (clusters) for such a mixture model?

▪ Can use marginal-likelihood based model selection but is expensive
▪ Need to train the model several times for each possible value of 𝐾

▪ Also difficult if  the data is streaming (hard to know beforehand how many clusters)

▪ How about a prior over 𝐙 = [𝒛1, 𝒛2, … , 𝒛𝑁] (or 𝝅) that allows learning the “right” 𝐾?
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𝐾-dim probability vector of 

component mixing proportions
Cluster id of the 

𝑛𝑡ℎ observation

𝑛𝑡ℎ observation
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Motivating Problem: Latent Feature Models

▪ Suppose each observation is a subset sum of 𝐾 “basis vectors” (or “latent features”*)

▪ This can also be seen as special type of matrix factorization 𝐗 = 𝐙𝐀⊤ + 𝐄

▪ How about a prior over 𝐙 (or 𝐀 or 𝝅 = [𝜋1, … , 𝜋𝐾]) that allows learning the “right” 𝐾?
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Is 𝑘𝑡ℎ latent feature 

present in the 𝑛𝑡ℎ

observation?

The 𝑛𝑡ℎ observation (𝐷 × 1) 

expressed as a subset sum of 

the 𝐾 latent features (each 

𝐷 × 1), plus some noise The 𝑘𝑡ℎ latent 

feature (𝐷 × 1)

Noise (e.g., zero 

mean Gaussian)

≈𝐗 𝐀⊤𝐙𝑁

𝐷 𝐾

𝐾

𝐷

𝑁

𝑘𝑡ℎ row is 𝑎𝑘
⊤𝑛𝑡ℎ row is 𝒛𝑛, a 

binary vector
𝑛𝑡ℎ row is 𝒙𝑛

A binary 

sparse matrix

An example: Each text document in a 

collection being a subset sum of 𝐾 “latent” 

themes or topics present in the collection

* Indian Buffet Process: An Introduction and Review (Griffiths and Ghahramani, 2011)

Just like mixture models, 

selecting it based on 

marg-lik will be expensive
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Motivating Problem: SVD-style Matrix Factorization

▪ Consider the following SVD-style decomposition for an 𝑁 ×𝑀 matrix 𝐗

▪ Each 𝒖𝑘 ∈ ℝ
𝑁, 𝒗𝑘 ∈ ℝ𝑀, 𝜆𝑘 ∈ ℝ, and Λ is a 𝐾 × 𝐾 diag matrix with 𝜆𝑘 ’s on diags

▪ This is basically a weighted sum of 𝐾 rank-1 matrices 
▪ 𝜆𝑘’s are the weights

▪ 𝜆𝑘’s are akin to the singular values in SVD

▪ How to learn 𝐾, i.e., the “rank” of the above factorization?

▪ How about a prior on Λ, or 𝐔 or 𝐕, that allows us to learn the “right” 𝐾 ?
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*Sparse Bayesian infinite factor models (Bhattacharya and Dunson, 2011)

Rank 1 

matrix Zero mean 

Gaussian noise



CS772A: PML

Nonparametric Bayesian Modeling

▪ Enables constructing models that do not have an a priori  fixed size

▪ Nonparametric does not mean no parameters

▪ Instead, have a possibly infinite (unbounded) number of parameters

▪ Note: We’ve already seen Gaussian Processes which is a nonparametric Bayesian model

▪ Usually constructed via one of the following ways

▪ Take a finite model (e.g., a finite mixture model) and consider its “infinite limit”

▪ Have a model that allows very large number of params but has a “shrinkage” effect, e.g.,

▪We will look at some examples of both these approaches

9A vast area of research in ML 

and statistics. We will only be 

looking at a basic flavor of some 

approaches

A tutorial on Bayesian nonparametric models (Gershman and Blei, 2012)

And can potentially grow as 

we see more and more 

data (actual number will 

depend on the 

amount/properties of data)
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Being Nonparametric by Taking     
Infinite Limit of Finite Models
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A Finite Mixture Model

▪Data 𝐗 = 𝒙1, 𝒙2, … , 𝒙𝑁 , cluster assignments 𝐙 = 𝒛1, 𝒛2, … , 𝒛𝑁 , 𝐾 clusters

▪ Denote the mixing proportion by a vector 𝝅 = [𝜋1, … , 𝜋𝐾], σ𝑘=1
𝐾 𝜋𝑘 = 1

▪ Integrating out 𝝅, the marginal prior probability of cluster assignments

11

Number of points with 𝒛𝑛 = 𝑘

a.k.a. “collapsing” a 

variable; one less 

variable to infer now



CS772A: PML

A Finite Mixture Model

▪ The prior distribution of 𝒛𝑛 given cluster assignment 𝐙−𝑛 of other points?

▪ Using                                           we have

▪ Note: Can also get this result using 𝑝 𝒛𝑛 = 𝑗 𝐙−𝑛, 𝛼 = ∫ 𝑝 𝒛𝑛 = 𝑗 𝝅 𝑝 𝝅 𝐙−𝑛, 𝛼 𝑑𝝅

▪ Thus prior prob. of 𝒛𝑛 = 𝑗 is proportional to how many other points are in cluster 𝑗

▪ Note that it also implies that mixture models have a rich-gets-richer property

▪ Meaning: a priori, a cluster with more points is likely to attract more points
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A discrete distribution 

(multinoulli) since 𝒛𝑛 can 

take one of 𝐾 possibilities

Number of points in 

cluster 𝑗, not counting 𝒙𝑛

This “conditional” prior is needed 

since we have integrated out 𝝅 and 

thus 𝑧𝑛’s become coupled
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Taking the Infinite Limit..

▪ Since                                           , as 𝐾 → ∞, 

▪ Suppose only 𝐾+ clusters are currently occupied (i.e., have at least one data point)

▪ Total prob. of 𝒙𝑛 going to any of these 𝐾+ clusters

▪ Probability of 𝒙𝑛 going to a new (i.e., so far unoccupied) cluster

▪ Therefore in the limit of an unbounded number of clusters, we have

▪ The above gives us a prior distribution for mixture models with unbounded 𝐾
▪ Can combine it now with the suitable likelihood to infer the posterior* of 𝒁

▪ Note: Prob. of starting a new cluster is prop. to Dirichlet hyperparam 𝛼 (can learn it)
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*Markov chain sampling methods for Dirichlet process mixture models, (Neal, 2000), Variational inference for Dirichlet process mixtures (Blei and Jordan, 2006)
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A Metaphor: Chinese Restaurant Process (CRP)

▪ Assume a restaurant with infinite number of tables (each table denotes a cluster)

▪ Customer 1 sits at a randomly chosen table (all tables are equivalent to begin with)

▪ Each subsequent customer 𝑛 > 1 sits using the following scheme

▪ Sits at an already occupied table 𝑘 with probability

▪ Sits at a new table with probability 
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When customer 1 comes

When customer 2 comes after 

customer 1 chose table

When customer 3 comes after 

customer 1 and 2 chose  table

When customer 4 comes after 

customer 1,2 and 3 chose  table
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Being Nonparametric using Models
that have a Shrinkage Effect
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Mixture Models: Another Construction

▪ Consider a finite mixture model with 𝐾 components with params 𝜇𝑘 , Σ𝑘 𝑘=1
𝐾

▪ In the finite case, we can assume 𝝅 = [𝜋1, … , 𝜋𝐾] and 𝝅 ∼ Dirichlet
𝛼

𝐾
, … ,

𝛼

𝐾

▪ We can make it a nonparametric model by making 𝝅 an infinite-dimensional vector

▪ How to construct such a vector? Is there an infinite dimensional Dirichlet distribution?
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𝐺 is a representation 

of this mixture 

distribution

In practice, only a finite of these 

will have nonzero values, and 

others will shrink to very small (or 

zero), as we will see

Indeed. Called a 

“Dirichlet Process”

Related: “Stick-breaking Process”

Defined by 𝐾 locations or “atoms” with 

parameters 𝜙𝑘 𝑘=1
𝐾 with respective 

selection probabilities 𝜋𝑘 𝑘=1
𝐾
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Mixture Models: Two Equivalent Views
17

Prior (a.k.a. “base 

distribution” for the 

parameters of each mixture 

component

Example: 𝐺0 can be NIW if  

each component is a Gaussian 

and 𝜙𝑘 = (𝜇𝑘 , Σ𝑘)

𝝅 ∼ Dirichlet
𝛼

𝐾
,… ,

𝛼

𝐾

𝜙𝑘 ∼ 𝐺0 𝑘 = 1,2, … , 𝐾

𝑧𝑖 ∼ multinoulli 𝝅 𝑖 = 1,2, … , 𝑁

𝑥𝑖 ∼ 𝑝 𝑥 𝜙𝑧𝑖 𝑖 = 1,2, … , 𝑁

𝝅 ∼ Dirichlet
𝛼

𝐾
, … ,

𝛼

𝐾
𝜙𝑘 ∼ 𝐺0 𝑘 = 1,2, … , 𝐾

𝑥𝑖 ∼ 𝑝 𝑥 𝜃𝑖 𝑖 = 1,2, … , 𝑁

𝐺 =෍
𝑘=1

𝐾

𝜋𝑘 𝛿𝜙𝑘

𝜃𝑖 ∼ 𝐺 𝑖 = 1,2, … , 𝑁

No explicit cluster ids; 

instead, 𝜃𝑖 denotes 

the param of the 

distribution which will 

generate 𝑥𝑖

Since 𝐺 is discrete, 

there will at most be 

𝐾 distinct 𝜃𝑖 ’s, 
thereby achieving 

clustering

Similar representation even 

when 𝐺 = σ𝑘=1
∞ 𝜋𝑘 𝛿𝜙𝑘

But how to construct such a 

𝐺 distribution with potentially 

infinite components?

Typical way of showing 

the plate notation of a 

mixture model
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Stick-Breaking Process (Sethuraman’94)

▪ Recursively break a length 1 stick into two pieces

▪ Assume breaking point in each round is drawn from a Beta distribution

▪ Can show that σ𝑘=1
∞ 𝜋𝑘 − 1 → 0 which is what we want

▪ We can now have a “nonparametric/infinite” mixture distribution 𝐺 = σ𝑘=1
∞ 𝜋𝑘 𝛿𝜙𝑘

▪ “Location/atoms” 𝜙𝑘 can be drawn from a “base” distr 𝐺0, say NIW if  𝜙𝑘 = (𝜇𝑘 , Σ𝑘)

▪ We basically replaced the Dirichlet prior on 𝝅 by a Stick-Breaking Process (SBP) prior

18SBP gives us a way to construct 

infinite dimensional Dirichlet 

distribution known as the 

“Dirichlet Process”
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Infinite Dimensional Dirichlet

▪Drawing from an infinite-dim Dirichlet would give an infinite-dim prob. vector

▪We can construct this vector to have very few entries as nonzero

▪ Consider recursively drawing from a Dirichlet as defined below
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𝝅 = [𝜋1, 𝜋2, 𝜋3, … ]

As the concentration parameter 

gets smaller and smaller, the split 

of values in LHS get more and 

more skewed

Therefore, after doing the above a few 

times, the 𝜋 vector will only have a very 

few entries as nonzero and in the infinite-

sized 𝜋, there will only be a finite many 

nonzero entries, and rest will be zero

This is basically what happens 

in the case of Dirichlet Process 

/ Stick-Breaking Process
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Dirichlet Process - Formally
20

SBP gives an explicit 

way to construct 

“Dirichlet Process”
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Summary

▪We saw an example of a nonparametric Bayesian model
▪ CRP/Dirichlet Process: For clustering problems

▪NPBayes models exist for many other problems, e.g., matrix factorization

▪Many applications of these models to solve a wide range of problems

▪ Also saw GP which is another example of a nonparametric Bayesian model
▪ GPs are used for function approximation problems (both supervised and unsup. learning)

▪ Rich theory based on stochastic processes (beyond the scope of this course)

▪ Inspired other non-probabilistic algos, e.g., Using Dirichlet Process Mixture Model to get 
a 𝐾-means like clustering algorithm (DP-means) which doesn’t require 𝐾
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