
Assorted Topics in Probabilistic ML (1)

CS772A: Probabilistic Machine Learning

Piyush Rai



CS772A: PML

Plan for today

▪ Wrapping up BO (acquisition functions)

▪ Assorted Topics (1) 

▪ Frequentist vs Bayesian

▪Model Calibration to reduce overconfidence

▪ Conformal Prediction (simple and fast way to get prediction uncertainty/set)
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Bayesian Optimization

▪ BO requires two ingredients 

▪ A regression model to learn a surrogate of 𝑓(𝑥) given previous queries { 𝑥𝑛, 𝑓 𝑥𝑛 }𝑛=1
𝑁

▪ An acquisition function 𝐴(𝑥) to tell us where to query next

▪ Note: The regression model must also have estimate of function’s uncertainty
▪ Bayesian nonlinear regression, such as GP, Bayesian Neural network, etc would be ideal

3

Note: Function values 

can be noisy too, e.g., 

𝑓 𝑥𝑛 + 𝜖𝑛

A typical example of what 𝐴(𝑥)
might look like, assuming that the 

goal is to find the maxima of 𝑓 𝑥

Dotted curve: True function

Green curve: Current surrogate of the function

Shaded region: Uncertainty in the function’s estimate

Assumption: 𝐴(𝑥) should be 

easier to optimize than 𝑓 𝑥
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Bayesian Optimization: An Illustration

▪ Suppose our goal is to find the maxima of 𝑓(𝑥) using BO
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Pic source: http://krasserm.github.io/2018/03/21/bayesian-optimization/
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Some Basic Acquisition Functions for BO
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(assuming we are finding the minima)
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Acquisition Functions: Probability of Improvement

▪ Assume past queries 𝒟𝑁 = 𝑿, 𝒇 = 𝑥𝑛, 𝑓 𝑥𝑛 𝑛=1

𝑁
and suppose 𝑓𝑚𝑖𝑛 = min 𝒇

▪ Suppose 𝑓𝑛𝑒𝑤 denotes the function’s value at the next query point 𝑥𝑛𝑒𝑤

▪ We have an improvement if  𝑓𝑛𝑒𝑤 < 𝑓𝑚𝑖𝑛 (recall we are doing minimization)

▪ Assuming the function is real-valued, suppose the posterior predictive for 𝑥𝑛𝑒𝑤 is

▪ We can define a probability of improvement based acquisition function

▪ The optimal query point will be one that maximizes 𝐴𝑃𝐼 𝑥𝑛𝑒𝑤
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𝑝(𝑓𝑛𝑒𝑤|𝑥𝑛𝑒𝑤 , 𝒟𝑁) = 𝒩(𝑓𝑛𝑒𝑤|𝜇 𝑥𝑛𝑒𝑤 , 𝜎2 𝑥𝑛𝑒𝑤 )

𝐴𝑃𝐼 𝑥𝑛𝑒𝑤 = 𝑝 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑚𝑖𝑛 = න
−∞

𝑓𝑚𝑖𝑛

𝒩 𝑓𝑛𝑒𝑤 𝜇 𝑥𝑛𝑒𝑤 , 𝜎2 𝑥𝑛𝑒𝑤 𝑑𝑓𝑛𝑒𝑤 = Φ
𝑓𝑚𝑖𝑛 − 𝜇(𝑥𝑛𝑒𝑤)

𝜎(𝑥𝑛𝑒𝑤)

Exercise: Verify

𝑥∗ = argmax𝑥𝑛𝑒𝑤𝐴𝑃𝐼(𝑥𝑛𝑒𝑤)

Φ() denotes CDF 

of 𝒩(0,1)
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Acquisition Functions: Expected Improvement

▪ PI doesn’t take into account the amount of improvement

▪ Expected Improvement (EI) takes this into account and is defined as

▪ The optimal query point will be one that maximizes 𝐴𝐸𝐼(𝑥𝑛𝑒𝑤)

▪Note that the above acquisition function trades off exploitation vs exploration
▪ Will prefer points with small predictive mean 𝜇 𝑥𝑛𝑒𝑤 : Exploitation

▪ Will prefer points with large predictive variance 𝜎 𝑥𝑛𝑒𝑤 : Exploration
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𝐴𝐸𝐼 𝑥𝑛𝑒𝑤 = 𝔼[𝑓𝑚𝑖𝑛 − 𝑓𝑛𝑒𝑤] = න
−∞

𝑓𝑚𝑖𝑛

(𝑓𝑚𝑖𝑛 − 𝑓𝑛𝑒𝑤)𝒩 𝑓𝑛𝑒𝑤 𝜇 𝑥𝑛𝑒𝑤 , 𝜎2 𝑥𝑛𝑒𝑤 𝑑𝑓𝑛𝑒𝑤

= 𝑓𝑚𝑖𝑛 − 𝜇 𝑥𝑛𝑒𝑤 Φ
𝑓𝑚𝑖𝑛 − 𝜇 𝑥𝑛𝑒𝑤

𝜎 𝑥𝑛𝑒𝑤
+ 𝜎 𝑥𝑛𝑒𝑤 𝒩

𝑓𝑚𝑖𝑛 − 𝜇 𝑥𝑛𝑒𝑤
𝜎 𝑥𝑛𝑒𝑤

; 0,1

𝑥∗ = argmax𝑥𝑛𝑒𝑤𝐴𝐸𝐼(𝑥𝑛𝑒𝑤)
Focus on points where 

the function has small 

values (since we are 

looking for its minima)

Focus on points where 

the function has high 

uncertainty (so that 

including them 

improves our estimate 

of the function)

Exercise: Prove 

this result
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Acquisition Functions: Lower Confidence Bound

▪ Lower Confidence Bound (LCB) also takes into account exploitation vs exploration

▪ Used when the regression model is a Gaussian Process (GP)

▪ Assume the posterior predictive for a new point to be

▪ The LCB based acquisition function is defined as

▪ Point with the smallest LCB is selected as the next query point

▪ 𝜅 is a parameter to trade-off exploitation (low mean) and exploration (high variance)

▪ Under certain conditions, the iterative application of this acquisition function will 
converge to the true global optima of 𝑓 (Srinivas et al. 2010)
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𝑝(𝑓𝑛𝑒𝑤|𝑥𝑛𝑒𝑤 , 𝒟𝑁) = 𝒩(𝑓𝑛𝑒𝑤|𝜇 𝑥𝑛𝑒𝑤 , 𝜎2 𝑥𝑛𝑒𝑤 )

𝐴𝐿𝐶𝐵 𝑥𝑛𝑒𝑤 = 𝜇 𝑥𝑛𝑒𝑤 − 𝜅 𝜎 𝑥𝑛𝑒𝑤

𝑥∗ = argmin𝑥𝑛𝑒𝑤𝐴𝐿𝐶𝐵(𝑥𝑛𝑒𝑤)

When using BO for maximization, we use 

Upper Confidence Bound (UCB) defined as 

𝐴𝑈𝐶𝐵 𝑥𝑛𝑒𝑤 = 𝜇 𝑥𝑛𝑒𝑤 + 𝜅 𝜎 𝑥𝑛𝑒𝑤 and 

𝑥∗ = argmax𝑥𝑛𝑒𝑤𝐴𝑈𝐶𝐵(𝑥𝑛𝑒𝑤)

Thus prefer points at which 

the function has low mean 

but high variance
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Bayesian Optimization: The Overall Algo

▪ Initialize 𝒟 = {}

▪ For 𝑛 = 1,2,… , 𝑁 (or until the budget doesn’t exhaust)

▪ Select the next query point 𝑥𝑛 by optimizing the acquisition function

▪ Get function’s value from the black-box oracle: 𝑓𝑛 = 𝑓 𝑥𝑛

▪ 𝒟 = {𝒟 ∪ (𝑥𝑛, 𝑓𝑛)}

▪ Update the regression model for 𝑓 using data 𝒟
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𝑥𝑛 = argopt𝑥 𝐴(𝑥)

Can get the function’s 

minima from this set of 

function’s values
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BO: Some Challenges/Open Problems

▪ Learning the regression model for the function
▪ GPs are flexible but can be expensive as 𝑁 grows

▪ Bayesian neural networks can be an more efficient alternative to GPs (Snoek et al, 2015)

▪ Hyperparams of the regression model itself  (e.g., GP cov. function, Bayesian NN hyperparam)

▪ High-dimensional Bayesian Optimization (optimizing functions of many variables)
▪ Most existing methods work well only for a moderate-dimensional 𝑥

▪ Number of function evaluations required would be quite large in high dimensions

▪ Lot of recent work on this (e.g., based on dimensionality reduction)

▪ Multitask Bayesian Optimization (joint BO for several related functions)
▪ Basic idea: If  two functions are similar their optima would also be nearby
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BO: Some Further Resources

▪ Some survey papers:
▪ A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User 

Modeling and Hierarchical Reinforcement Learning (Brochu et al., 2010)

▪ Taking the Human Out of the Loop: A Review of Bayesian Optimization (Shahriari et al., 2015)

▪ Some open source software libraries
▪ BoTorch: Bayesian Optimization in PyTorch

▪ GPflowOpt: Bayesian Optimization in Tensorflow (and using GP for modeling the function)

▪ Also available in scikit-optimize
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Frequentist Statistics
(vs Bayesian Statistics)
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Frequentist Statistics

▪ The Bayesian approach treats parameters/model unknowns as random variables

▪ In the Bayesian approach, the posterior over these r.v.’s help capture the uncertainty

▪ The Frequentist approach is a different way to capture uncertainty

▪ Don’t treat parameters as r.v. but as fixed unknowns

▪ Treat parameters as a function of the dataset, e.g., ෠𝜃 𝒟 = 𝜋(𝒟)

▪ Variations in param estimates over different datasets represents their uncertainty
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This can be some point 

estimate, e.g., MLE, MAP, 

method of moments, etc.

(𝑠 = 1, 2, … , 𝑆)

True unknown value 

of the parameter
A random dataset 

drawn from the true 

data distribution

The estimated distribution of the 

parameters given any randomly drawn 

dataset from the true data distribution

As 𝑆 → ∞, this is known as the 

“sampling distribution” of the estimator Note that sampling distribution is different from a 

posterior distribution we infer in Bayesian learning 

(there, we condition on a fixed training set)

But if  the estimator is MLE and Bayesian method’s prior is 

uniform, then both distributions are very similar (sampling 

distribution is often called “poor man’s posterior”

Param estimate using the 

𝑠-th sampled dataset
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Approximating the sampling distribution

▪ Since the true 𝜃∗ is not known, we can’t compute the sampling distribution exactly

▪ Bootstrap is a popular method to approximate the sampling distribution

▪ Two types of bootstrap methods: parametric and nonparametric bootstrap
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(𝑠 = 1, 2, … , 𝑆)

▪ Get a point est. of 𝜃 using training data

▪ Generate multiple datasets using ෠𝜃 as

▪ Now compute the approximation as

መ𝜃 = 𝜋(𝒟)

(𝑠 = 1, 2, … , 𝑆)

▪ Use sampling with replacement on original 

training set to generate 𝑆 datasets with 𝑁
datapoints in each

▪ Now compute the approximation as

Each dataset will contain 

roughly 63% unique datapoints 

from original training set

Parametric Bootstrap Nonparametric Bootstrap
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Model Calibration
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Evaluation of Predictive Models

▪ Assume a predictive distribution 𝑝𝜃 𝑦 𝑥

▪ Define score of 𝑝𝜃 on an example 𝑥, 𝑦 ∼ 𝑝∗ 𝑥, 𝑦 = 𝑝∗ 𝑥 𝑝∗(𝑦|𝑥) as 𝑠(𝑝𝜃 , (𝑥, 𝑦))

▪ The expected score of 𝑝𝜃 will be

▪ A scoring rule is said to be a “proper scoring rule” if  𝑠 𝑝𝜃 , 𝑝
∗ ≤ 𝑠 𝑝∗, 𝑝∗

▪ The log-likelihood 𝑠 𝑝𝜃, 𝑥, 𝑦 = log 𝑝𝜃 𝑦 𝑥 is a proper scoring rule because

▪ Another proper scoring rule is the Brier score (lower is better)
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𝑠 𝑝𝜃 , 𝑝
∗ = ∫ 𝑝∗ 𝑥 𝑝∗ 𝑦 𝑥 𝑠 𝑝𝜃 , 𝑥, 𝑦 𝑑𝑦𝑑𝑥

Holds because of 

Gibbs inequality

Squared error of predictive 

distribution as compared to 

one-hot vector
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Calibration

▪ A model called calibrated if  predicted class probabilities match empirical frequencies

▪ Example: For binary classification, if  for all test examples for which the model predicts 
𝑝 𝑦 = 1 𝑥 = 0.8, about 80% have true label = 1, then this model is well-calibrated

▪ Expected Calib. Error (ECE) often used a measure of model calib. (so is Brier Score)

▪ Suppose 𝑓 𝑥 𝑐 = 𝑝(𝑦 = 𝑐|𝑥), ො𝑦𝑛 = argmax𝑐={1,2,…,𝐶}𝑓 𝑥𝑛 𝑐 , Ƹ𝑝𝑛 = max𝑐={1,2,…,𝐶}𝑓 𝑥𝑛 𝑐

▪ Suppose predicted probabilities are divided into 𝐵 bins

▪ Assume ℬ𝑏 as set of samples whose predicted probabilities fall in 𝐼𝑏 = (
𝑏−1

𝐵
,
𝑏

𝐵
]
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Difference between 

confidence and accuracy
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Calibration

▪ A reliability diagram is often used as a visual indicator of calibration

▪ Several approaches to improve a model’s calibration

▪ In general, we want to reduce the model’s overconfidence
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Confidence Confidence

ECE is the average “gap” 

area in the reliability diagram

“Temperature scaling” of softmax

outputs as 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎/𝑇) is a 

popular and simple approach to 

reduce overconfidence (for figure 

on right, 𝑎 = [3,0,1])

Bayesian methods are usually better 

calibrated but can still have poor 

calibration if  test data is from a different 

distribution

Many other approaches: Platt Scaling, 

Histogram Binning, Label Smoothing, etc 

are also popular, and can be applied as 

post-processing step to the outputs of 

Bayesian/non-Bayesian methoods to 

improve calibration

Reliability diagram of an 

uncalibrated model

Reliability diagram of the same 

model after applying calibration 

post-processing via temperature 

scaling method 
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Conformal Prediction
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Conformal Prediction

▪ A simple technique to easily obtain confidence intervals

▪ In classification, such an interval may refer to the set of highly likely classes for a test input

▪ For more difficult test inputs, the set would typically be larger

▪ In a way, conformal prediction gives predictive uncertainty
▪ However, unlike Bayesian ML, we don’t get model uncertainty

▪ Only one model is learned in the standard way and we construct the set of likely classes

▪ It’s like a black-box method; no change to training procedure for the model
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Conformal Prediction

▪ Assume we already have a trained model መ𝑓 using some labelled data

▪ Idea: Use a calibration set of 𝑛 examples to generate a prediction set 𝒞(𝑋𝑡𝑒𝑠𝑡) s.t.

▪ The approach* to construct the prediction set 𝒞(𝑋𝑡𝑒𝑠𝑡) is as follows:

▪ Assuming classification task, for each example in the calibration set, compute

▪ Compute the 1 − 𝛼 quantile of 𝑠1, 𝑠2, … , 𝑠𝑛. Call it ො𝑞

▪Now the calibration set for a new test input 𝑋𝑡𝑒𝑠𝑡 can be defined as 
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1 − 𝛼 ≤ 𝑝 𝑌𝑡𝑒𝑠𝑡 ∈ 𝒞 𝑋𝑡𝑒𝑠𝑡 ≤ 1 − 𝛼 +
1

𝑛 + 1

𝛼 is a user 

chosen error rate

Another fresh 

test inputIts true label

𝑠𝑖 = 1 − መ𝑓 𝑥𝑖 𝑦𝑖

Conformal score: one 

minus the softmax score 

of the correct class

high means bad 

prediction by the 

model

𝒞 𝑋𝑡𝑒𝑠𝑡 = {𝑦: መ𝑓 𝑋𝑡𝑒𝑠𝑡 𝑦 ≥ 1 − ො𝑞}Set of all classes whose predicted 

softmax values are “high enough” 

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022)

Assume it’s a classification model 

which produces softmax scores

Conformal prediction can 

be used for regression 

problems too*


