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Plan for today

* Wrapping up BO (acquisition functions)
" Assorted Topics (1)
" Frequentist vs Bayesian

» Model Calibration to reduce overconfidence
= Conformal Prediction (simple and fast way to get prediction uncertainty/set)
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Bayesian Optimization

Note: Function values
can be noisy too, e.g.,

* BO requires two ingredients f@n) + €

= A regression model to learn a surrogate of f(x) given previous queries {(xn,f(x,,l))}ﬁ=1
= An acquisition function A(x) to tell us where to query next
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* Note: The regression model must also have estimate of function’s uncertainty
= Bayesian nonlinear regression, such as GP, Bayesian Neural network, etc would be ideal
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Bayesian Optimization: An lllustration

= Suppose our goal is to find the maxima of f(x) using BO

Pic source:
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http://krasserm.github.io/2018/03/21/bayesian-optimization/
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Some Basic Acquisition Functions for BO

(assuming we are finding the minima)
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Acquisition Functions: Probability of Improvement

» Assume past queries Dy = (X, f) = (xn,f(xn)):=1 and suppose fimin = min f

" Suppose frew denotes the function’s value at the next query point Xpew

= We have an improvement if few < fmin (recall we are doing minimization)

= Assuming the function is real-valued, suppose the posterior predictive for x;,0 IS
P (frnew|Xnew» Dn) = N (fnew |4 (Xnew), Uz(xnew))

» \We can define a probability of improvement based acquisition function

Exercise: Verify

fmin fmin — U(Xnew)
Apt(Xnew) = P(fnew < frmin) = N (Fnew 1(new), 0% (new)) A frew = CD( 0 (Xnew) )
= The optimal query point will be one that maximizes Ap; (Xpew) PO enores COF

of N'(0,1)

X, = argmax, . Apj (Xnew) CS772A: PML



Acquisition Functions: Expected Improvement

" Pl doesn't take into account the amount of improvement

" Expected Improvement (El) takes this into account and is defined as

fmin
Ag1 (new) = Elfmin — frew] = j_ (fmin — fnew)N(fnewlli(xnew):Uz(xnew))dfnew

Exercise: Prove fmin — B (Xnew) fmin — B (Xnew)
. = . — U(x () + o(x N 00,1
thlS reSU|t (fmm ‘Ll( TlQW)) < O_(xnew) ) ( new) < O_(xnew)
. : . v Focus on points where
= The optimal query point will be one that maximizes Ag;(Xpew) the function has high
Focus on points where uncle(rjtainti (50 that
_ - including them
X, = argmaxy, . Ap;(Xnpew) | Dolroniesmal e ourestimate
looking for its minima) of the function)

» Note that the above acquisition function trades off exploitation vs exploration
= Will prefer points with small predictive mean u(x,,.,,): Exploitation

= Wil prefer points with large predictive variance a(x;,,,): Exploration
CS772A: PML



Acquisition Functions: Lower Confidence Bound

= | ower Confidence Bound (LCB) also takes into account exploitation vs exploration

: . . When using BO for maximization, we use
* Used when the regression model is a Gaussian Process (GP) | upper Confidence Bound (UCB) defined as

Ayce(new) = U(Xpew) + K 0(Xpey) and
Xy = argmaXxnewAUCB (xnew)

" Assume the posterior predictive for a new point to be

P (frew|Xnew D) = N (frew |1 (Xnew), 0% (Xnew))
* The LCB based acquisition function is defined as

0/

Thus prefer points at which

ALCB (x’new) — u(xnew) — K O-(xnew) the function has low mean

but high variance

" Point with the smallest LCB is selected as the next query point

Xy = ar'grninxnewALCB (Xnew)
" K is a parameter to trade-off exploitation (low mean) and exploration (high variance)

» Under certain conditions, the iterative application of this acquisition function will

converge to the true global optima of f (Srinivas et al. 2010) ST PMIL



Bayesian Optimization: The Overall Algo

" |nitialize D = {}

»Forn =1,2,..,N (or until the budget doesn't exhaust)

" Select the next query point x,, by optimizing the acquisition function
X, = argopt, A(x)

» Get function's value from the black-box oracle: f,, = f(xy;,)

Can get the function's

m D = {D U (xn,fn)} minima from this set of

function’s values

» Update the regression model for f using data D
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BO: Some Challenges/Open Problems

" | earning the regression model for the function

* GPs are flexible but can be expensive as N grows
= Bayesian neural networks can be an more efficient alternative to GPs (Snoek et al, 2015)
* Hyperparams of the regression model itself (e.g., GP cov. function, Bayesian NN hyperparam)

" High-dimensional Bayesian Optimization (optimizing functions of many variables)
= Most existing methods work well only for a moderate-dimensional x
= Number of function evaluations required would be quite large in high dimensions
" | ot of recent work on this (e.g., based on dimensionality reduction)

= Multitask Bayesian Optimization (joint BO for several related functions)
» Basic idea: If two functions are similar their optima would also be nearby
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BO: Some Further Resources

" Some survey papers:

= A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning (Brochu et al., 2010)

* Taking the Human Out of the Loop: A Review of Bayesian Optimization (Shahriari et al., 2015)

= Some open source software libraries
= BoTorch: Bayesian Optimization in PyTorch
= GPflowOpt: Bayesian Optimization in Tensorflow (and using GP for modeling the function)
= Also available in scikit-optimize
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Frequentist Statistics
(vs Bayesian Statistics)
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Frequentist Statistics

* The Bayesian approach treats parameters/model unknowns as random variables
" |n the Bayesian approach, the posterior over these rv.'s help capture the uncertainty

" The Frequentist approach is a different way to capture uncertainty
, : This can be some point
= Don't treat parameters as r.v. but as fixed unknowns estimate, e.g,, MLE, MAP,

= Treat parameters as a function of the dataset, e.g., (D) = m(D)~ " ororomens e
" Variations in param estimates over different datasets represents their uncertainty

True unknown value

A random dataset
of the parameter

drawn from the true N
data distribution D[:S) _ {L-[fn ~ P $n|9* e =1 - :\*} (s=12,..,5)

The estimated distribution of the o fimate using th
parameters given any randomly drawn aram estimate using the

S
dataset from the true data distribution [T‘{ﬂ |'JD QH E — T' ‘I’:}[ >~ s-th sampled dataset
_f‘..:

As § — oo, this is known as the

‘sampling distribution” of the estimator Note that sampling distribution is different from a But if the estimator is MLE and Bayesian method's prior is

posterior distribution we infer in Bayesian learning uniform, then both distributions are very similar (sampling

(there, we condition on a fixed training set) distribution is often called “poor man’s posterior” PML



Approximating the sampling distribution

= Since the true 8™ is not known, we can't compute the sampling distribution exactly
D) — {:B ~ P :Izn\f?* n=1:N} (s=12,..,5)

p(n(D) = Z x(D)))

= Bootstrap is a popular method to approximate the sampling distribution
" Two types of bootstrap methods: parametric and nonparametric bootstrap

Parametric Bootstrap Nonparametric Bootstrap
KGet a point est. of @ using training data KUse sampling with replacement on origin%
0 =n(D) training set to generate S datasets with N
» Generate multiple datasets using 6 as datapoints in each -, fach datasetwil contan
roughly 63% unique datapoints

@(s) _ {CUn -~ p(wn‘é) n=1: N} (S — 1’ 2’ ...,S) from original training set

= Now compute the approximation as " Now compute the approximation as
m S R

~ 1 (s
(r(D) = 0D ~ 6%) = ~ 5 6(6 = x(D®)) p(r(D) = 6D ~ 6%) = SZa(e—T(D )
\ ’ S; / \ = CS7LZ/A{PML
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Model Calibration
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Evaluation of Predictive Models

= Assume a predictive distribution pg (y|x)
» Define score of pg on an example (x,y) ~ p*(x,y) = p*(x)p*(y|x) as s(pg, (x,y))

" The expected score of pg will be

s(pe,p") = [ p* (" WIx)s(pe, (x,¥))dydx
» A scoring rule is said to be a “proper scoring rule” if s(pg,p™) < s(p*,p*)
= The log-likelihood s(pg, (x,¥)) = log pe(y|x) is a proper scoring rule because

Holds because of

S(Pe,0") = Ep (@)p= (yl) 108 Do (Y]|2)] < Eps ()p= (y]2) 108 D" (y]2)] = Gibbs inequality

* Another proper scoring rule is the Brier score (lower is better) Squared error of predictive
C distribution as compared to
N ] «— 5 “1.0one-hot vector
Spe- (y.x)) = = D _(poly = clx) = I(y = 0))’
T e=1
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Calibration

» A model called calibrated it predicted class probabilities match empirical frequencies

" Example: For binary classification, it for all test examples for which the model predicts
p(y = 1]x) = 0.8, about 80% have true label = 1, then this model is well-calibrated

» Expected Calib. Error (ECE) often used a measure of model calib. (so is Brier Score)
" Suppose f(x) =p(y =clx), I = drgmaxc—ry 2, .., C}f(xn)c’ bn = maXc={1,2,...,C}f(xn)c

" Suppose predicted probabilities are divided into B bins

. . b-1 b,
= Assume By, as set of samples whose predicted probabilities fall in I, = (—B 5.
N
_ 1 - BRI o ~ 18y
acc(By) = B—b,,;bﬂ (I = ya) conf(By) = o= ﬂ%;b P EECE( f) = ; = ace(By) - conf(Bb)j

Difference between

confidence and accuracy CS772A: PML



Calibration

= A reliability diagram is often used as a visual indicator of calibration

ECE is the average "gap”
area in the reliability diagram

Reliability diagram of an
uncalibrated model
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= Several approaches to improve a model's calibration

" |n general, we want to reduce the model’s overconfidence
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“Temperature scaling” of softmax
outputs as softmax(a/T) is a
popular and simple approach to
reduce overconfidence (for figure o4
on right, a = [3,0,1])
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Reliability diagram of the same

model after applying calibration

post-processing via temperature
scaling method

Many other approaches: Platt Scaling,
Histogram Binning, Label Smoothing, etc
are also popular, and can be applied as
post-processing step to the outputs of
Bayesian/non-Bayesian methoods to
improve calibration

Bayesian methods are usually better
calibrated but can still have poor
calibration if test data is from a different
distribution
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Conformal Prediction
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Conformal Prediction

» A simple technique to easily obtain confidence intervals
" [n classification, such an interval may refer to the set of highly likely classes for a test input

. / ¥ - \
. “.t\ . 2 uw! ol N N 4
..’.; N ‘\\' - S . ! 3 4 E .'~‘ )
‘\ 5 . 3 ) .
e N L f 3 \d-Squirrel (Alaska) " Copyright 1998 - Mon|
fox gray g rain marmot fox ) (. haaal, e 23 :
' . ucket, S 9 squirre mi , weasel, beaver, poleca
Squrrel squo 181;re1 ’ goole 0.02 b‘?'r”r__‘(‘l 0.30 ' 59 0 122+= ‘" 0.18 0.16 0.03 0.01
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» For more difficult test inputs, the set would typically be larger

" In a way, conformal prediction gives predictive uncertainty
* However, unlike Bayesian ML, we don't get model uncertainty
= Only one model is learned in the standard way and we construct the set of likely classes
" [t's like a black-box method; no change to training procedure for the model CS772A: PML



CO n fO r m a | P re d I Ct I O n Assume it's a classification model Conformal prediction can

which produces softmax scores be used for regression
problems too*

= Assume we already have a trained model f using some labelled data

" |[dea: Use a calibration set of n examples to generate a prediction set C(X¢est) St

Qs 3 user Another fresh

Its true label :
chosen error rate test input 1

1 —a< p(Ytest < C(Xtest)) <1-a+ =+ 1
* The approach* to construct the prediction set C(X;est) IS as follows:

* Assuming classification task, for each example in the calibration set, compute
high means bad

Conformal score: one

2 (1)conr1]p?c§e ustcgrttes (2) get quantile (3) cogisttr_uct :
g —_— on holdout data rediction se
prediction by the minus the softmax score Si — 1 — f(xl)yl 5 *gp
model of the correct class (. R 3
: j * :
. TP : £
= Compute the 1 — a quantile of sq, S5, ...,8,. Call it g 3 g ] |
class scores, {5} class

* Now the calibration set for a new test input X;eqp Can be defined as

Set of all classes whose predicted _ T oA
softmax values are “high enough” C(Xtest) - {y f(Xtest)y =1 q}

*A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification (Angelopoulos and Bates, 2022) CS772A: PML



