
Deep Generative Models

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Plan

▪ Variational Autoencoders

▪ Generative Adversarial Networks

▪ Denoising Diffusion Models

2

CS772A: PML

Constructing Generative Models using Neural Nets

▪ We can use a neural net to define the mapping from a 𝐾-dim 𝒛𝑛 to 𝐷-dim 𝒙𝑛

▪ If 𝒛𝑛 has a Gaussian prior, such models are called deep latent Gaussian models (DLGM)

▪ Since NN mapping can be very powerful, DLGM can generate very high-quality data
▪ Take the trained network, generate a random 𝒛 from prior, pass it through the model to generate 𝒙

3

𝒛𝑛 𝒙𝑛

𝑝(𝒙|NN 𝒛;𝐖)𝑝(𝒛)

Some sample images generated by Vector Quantized Variational Auto-Encoder (VQ-VAE), a state-of-the-art DLGM

Another alternative is

to use a GP instead of

a neural net

CS772A: PML

Variational Autoencoder (VAE)

▪ VAE* is a probabilistic extension of autoencoders (AE)

▪ The basic difference is that VAE assumes a prior 𝑝(𝒛) on the latent code 𝒛
▪ This enables it to not just compress the data but also generate synthetic data

▪ How: Sample 𝒛 from a prior and pass it through the decoder

▪ Thus VAE can learn good latent representation + generate novel synthetic data

▪ The name has “Variational” in it since it is learned using VI principles

4

Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html*Autoencoding Variational Bayes (Kingma and Welling, 2013)

CS772A: PML

Variational Autoencoder (VAE)

▪ VAE has three main components

▪ A prior 𝑝𝜃 𝒛 over latent codes

▪ A probabilistic decoder/generator 𝑝𝜃(𝒙|𝒛), modeled by a deep neural net

▪ A posterior or probabilistic encoder 𝑝𝜃 𝒛 𝒙 approx. by an “inference network” 𝑞𝜙 𝒛 𝒙

▪ VAE is learned by maximizing the ELBO

▪ The Reparametrization Trick is commonly used to optimize the ELBO

▪ Posterior is inferred only over z, and usually only point estimate on 𝜃 and 𝜙

5

Using the idea of

“Amortized Inference”

(next slide)

ELBO for a

single data

point

−
𝑞𝜙 should be such that data 𝑥 is

reconstruct well from 𝑧(high log-lik)

𝑞𝜙 should also be simple (close

to the prior)

Maximized to

find the optimal

𝜃 and 𝜙

Here 𝜃 collectively denotes all the

parameters of the prior and likelihood

Here 𝜙 collectively denotes all

the parameters that define the

inference network

CS772A: PML

Amortized Inference

▪ Latent variable models need to infer the posterior 𝑝(𝒛𝑛|𝒙𝑛) for each observation 𝒙𝑛

▪ This can be slow if we have lots of observations because

1. We need to iterate over each 𝑝(𝒛𝑛|𝒙𝑛)
2. Learning the global parameters needs wait for step 1 to finish for all observations

▪ One way to address this is via Stochastic VI

▪ Amortized inference is another appealing alternative (used in VAE and other LVMs too)

▪ Thus no need to learn 𝜙𝑛’s (one per data point) but just a single NN with params 𝑾
▪ This will be our “encoder network” for learning 𝒛𝑛
▪ Also very efficient to get 𝑝 𝒛∗ 𝒙∗ for a new data point 𝒙∗

6

𝑝 𝒛𝑛 𝒙𝑛 ≈ 𝑞 𝒛𝑛 𝜙𝑛 = 𝑞 𝒛𝑛 NN(𝒙𝑛;𝑾))
If 𝑞 is Gaussian then the NN will

output a mean and a variance

CS772A: PML

Variational Autoencoder: The Complete Pipeline

▪ Both probabilistic encoder and decoder learned jointly by maximizing the ELBO

7

Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

CS772A: PML

VAE and Posterior Collapse

▪ VAEs may suffer from posterior collapse

▪ Thus, due to posterior collapse, reconstruction will still be good but the code 𝒛
may be garbage (not useful as a representation for 𝒙)

▪ Several ways to prevent posterior collapse, e.g.,
▪ Use KL annealing

▪ Avoid KL from becoming 0 using some 𝑞 that doesn’t collapse to the prior

▪ More tightly couple 𝑧 with 𝑥 using skip-connections (Skip-VAE)

8

−

Decoder is a neural net

and can be arbitrarily

powerful making this

term very large

Consequently, KL will

become close to

zero collapsing

posterior to the prior

A carefully tuned value

between 0 and 1
For example, keep the

variance of 𝑞 as fixed

𝒛𝑛 𝒙𝑛
Hidden layers of NN

Besides these, MCMC (sometimes used for
inference in VAE), or improved VI techniques can
also help in preventing posterior collapse in VAEs

CS772A: PML

VAE: Some Comments

▪ One of the state-of-the-art latent variable models

▪ Useful for both generation as well as representation learning

▪ Many improvements and extensions, e.g.,

▪ For text data and sequences (VAE for topic models or “neural topic models”)

▪ VAE-style models with more than one layer of latent variables (Sigmoid Belief Networks,
hierarchical VAE, Ladder VAE, Deep Exponential Families, etc)

9

Document (e.g., as a

vector of word counts)

Decoupling Sparsity and Smoothness in the Dirichlet Variational Autoencoder Topic Model (Burkhardt and Kramer, 2020)

CS772A: PML

Generative Adversarial Network (GAN)

▪ GAN is an implicit generative latent variable model

▪ Can generate from it but can’t compute 𝑝(𝒙) - the model doesn’t define it explicitly

▪ GAN is training using an adversarial way (Goodfellow et al, 2013)

10

Unlike VAE, no explicit parametric

likelihood model 𝑝(𝑥|𝑧)

Thus can’t train

using methods that

require likelihood

(MLE, VI, etc)

Discriminator network is trained to

make 𝐷(𝑥) close to 1

Discriminator network is trained to make 𝐷 𝐺 𝑧

close to 0 and generator network is trained to make it

to be close to 1 to fool the discriminator into

believing that 𝐺(𝑧) is a real sample

Min-max optimization

Assuming data

is images

The discriminator can be a

binary classifier or any method

that can compare b/w two

distributions (real and fake here)

CS772A: PML

Generative Adversarial Network (GAN)

▪ The GAN training criterion was

▪ With 𝐺 fixed, the optimal 𝐷 (exercise)

▪ Given the optimal 𝐷, The optimal generator 𝐺 is found by minimizing

11

Distribution of synthetic data𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

Distribution of real data

𝑉 𝐷𝐺
∗ , 𝐺 = 𝔼𝒙∼𝑝𝑑𝑎𝑡𝑎 log

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)
+ 𝔼𝒙∼𝑝𝑔 log

𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

= KL 𝑝𝑑𝑎𝑡𝑎 𝑥
𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

2
+ KL 𝑝𝑔 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

2
− log 4

Jensen-Shannon

divergence between

𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑔.

Minimized when

𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎

Thus GAN can learn the true data

distribution if the generator and

discriminator have enough modeling power

CS772A: PML

GAN Optimization

▪ The GAN training procedure can be summarized as

12

𝜃𝑔 and 𝜃𝑑 denote the params of the deep neural nets

defining the generator and discriminator, respectively

In practice, in this step, instead of minimizing

log(1 − 𝐷(𝐺 𝑧), we maximize log 𝐷 𝐺 𝑧

In practice, for stable training, we run 𝐾 > 1 steps of

optimizing w.r.t. 𝐷 and 1 step of optimizing w.r.t. 𝐺

Reason: Generator is bad initially so

discriminator will always predict correctly

initially and log(1 − 𝐷(𝐺 𝑧) will saturate

CS772A: PML

GANs that also learn latent representations

▪ The standard GAN can only generate data. Can’t learn the latent 𝒛 from 𝒙

▪ Bidirectional GAN* (BiGAN) is a GAN variant that allows this

▪ Adversarially Learned Inference# (ALI) is another variant that can learn representations

13

Consists of an

encoder as well Real pair/fake pair?

Can be shown*

to “invert” 𝐺

*Adversarial Feature Learning (Donahue et a Dumoulin l, 2017)

Encoder with joint

𝑞 𝑥, 𝑧 = 𝑞 𝑥 𝑞(𝑧|𝑥)
Decoder/generator with joint

𝑝 𝑥, 𝑧 = 𝑝 𝑧 𝑝(𝑥|𝑧)

Discriminator: Real pair

or fake pair?

#Adversarially Learned Inference (Dumoulin et al, 2017)

CS772A: PML

Evaluating GANs

▪ Two measures that are commonly used to evaluate GANs
▪ Inception score (IS): Evaluates the distribution of generated data

▪ Frechet inception distance (FID): Compared the distribution of real data and generated data

▪ Inception Score defined as exp(𝔼𝑥∼𝑝𝑔[KL(𝑝(𝑦|𝑥)| 𝑝 𝑦]) will be high if

▪ Very few high-probability classes in each sample 𝑥: Low entropy for 𝑝 𝑦 𝑥

▪ We have diverse classes across samples: Marginal 𝑝(𝑦) is close to uniform (high entropy)

▪ FID uses extracted features (using a deep neural net) of real and generated data
▪ Usually from the layers closer to the output layer

▪ These features are used to estimate two Gaussian distributions

▪ FID is then defined as FID = 𝜇𝐺 − 𝜇𝑅
2 + trace(Σ𝐺 + Σ𝑅 − Σ𝐺Σ𝑅

1/2)

14

𝒩(𝜇𝐺 , ΣG)𝒩(𝜇𝑅 , ΣR)Using real data Using generated data

Both IS and FID measure how

realistic the generated data is

High IS and low

FID is desirable

CS772A: PML

GAN: Some Issues/Comments

▪ GAN training can be hard and the basic GAN suffers from several issues

▪ Instability of training procedure

▪ Mode Collapse problem: Lack of diversity in generated samples

▪ Generator may find some data that can easily fool the discriminator

▪ It will stuck at that mode of the data distribution and keep generating data like that

▪ Some work on addressing these issues (e.g., Wasserstein GAN, Least Squares GAN, etc)

15

GAN 1: No mode collapse (all 10
modes captured in generation)

GAN 2: Mode collapse (stuck on
one of the modes)

CS772A: PML

Denoising Diffusion Models

▪ Based on a forward (adding noise) process and a reverse (denoising) process

▪ Steps of the forward process are defined by a fixed Gaussian 𝑞(𝑥𝑡|𝑥𝑡−1)
▪ The f.p. starts with the clean image 𝑥0 and adds zero-mean Gaussian noise at each step

▪ The f.p. distribution is defined as 𝑞 𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡| 1 − 𝛽𝑡 𝑥𝑡−1, 𝛽𝑡𝐼)

▪ Eventually as 𝑇 → ∞, we get 𝑥𝑇 which is isotropic Gaussian noise

▪ Can show: 𝑞 𝑥𝑡 𝑥0 = 𝒩(𝑥𝑡| ത𝛼𝑡𝑥0, (1 − ത𝛼𝑡)𝐼) where 𝛼𝑡 = 1 − 𝛽𝑡 and ത𝛼𝑡 = ς𝑖=1
𝑡 𝛼𝑖

▪ Steps of the reverse process are defined by a learnable Gaussian 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)
▪ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) is an approximation of the reverse diffusion 𝑞 𝑥𝑡−1 𝑥𝑡
▪ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) modeled as 𝒩(𝑥𝑡−1|𝜇𝜃 𝑥𝑡 , Σ𝜃 𝑥𝑡) where 𝜇𝜃 and Σ𝜃 are neural nets

16After learning the model, can use

the reverse process to generate

data from random noise

𝛽𝑡 ∈ (0,1)

CS772A: PML

Denoising Diffusion Models: Training

▪ The model is trained by minimizing the following objective

▪ In some ways, denoising diffusion models are similar to VAEs

17

𝔼 −log 𝑝𝜃 𝑥0 ≤ 𝔼 −log
𝑝𝜃 𝑥0:𝑇
𝑞 𝑥1:𝑇 𝑥0

≔ ℒ

Upper bound on the

negative log-likelihood

(negative of the ELBO)

ℒ = 𝐿0 + 𝐿1 + 𝐿2 +⋯+ 𝐿𝑇−1 + 𝐿𝑇

This is also a Gaussian

Overall loss is just a sum of

several KL divergences between

Gaussians, and thus available in

closed form

CS772A: PML

Summary

▪ Looked at various methods for generative modeling for unsupervised learning

▪ Classical methods (FA, PPCA, other latent factor models, topic models, etc)

▪ Deep generative models (VAE, GAN, Denoising Diffusion Models)

▪Many of these methods can also be extended to model data other than images

▪ There are also generative models that do not use latent variables

▪ Can still be used to generate data and learn the underlying data distribution

18

Assuming each

observation is

n-dimensional
An auto-regressive

model

Can use a neural network to

learn (parameters of) each

of these distributions

An example: Neural

Autoregressive Density

Estimator (NADE)

