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Plan

▪ Variational Autoencoders

▪ Generative Adversarial Networks

▪ Denoising Diffusion Models
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Constructing Generative Models using Neural Nets

▪ We can use a neural net to define the mapping from a 𝐾-dim 𝒛𝑛 to 𝐷-dim 𝒙𝑛

▪ If  𝒛𝑛 has a Gaussian prior, such models are called deep latent Gaussian models (DLGM)

▪ Since NN mapping can be very powerful, DLGM can generate very high-quality data 
▪ Take the trained network, generate a random 𝒛 from prior, pass it through the model to generate 𝒙
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𝒛𝑛 𝒙𝑛

𝑝(𝒙|NN 𝒛;𝐖 )𝑝(𝒛)

Some sample images generated by Vector Quantized Variational Auto-Encoder (VQ-VAE), a state-of-the-art DLGM

Another alternative is 

to use a GP instead of 

a neural net
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Variational Autoencoder (VAE)

▪ VAE* is a probabilistic extension of autoencoders (AE)

▪ The basic difference is that VAE assumes a prior 𝑝(𝒛) on the latent code 𝒛
▪ This enables it to not just compress the data but also generate synthetic data

▪ How: Sample 𝒛 from a prior and pass it through the decoder

▪ Thus VAE can learn good latent representation + generate novel synthetic data

▪ The name has “Variational” in it since it is learned  using VI principles
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Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html*Autoencoding Variational Bayes (Kingma and Welling, 2013)
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Variational Autoencoder (VAE)

▪ VAE has three main components

▪ A prior 𝑝𝜃 𝒛 over latent codes

▪ A probabilistic decoder/generator 𝑝𝜃(𝒙|𝒛), modeled by a deep neural net

▪ A posterior or probabilistic encoder 𝑝𝜃 𝒛 𝒙 approx. by an “inference network” 𝑞𝜙 𝒛 𝒙

▪ VAE is learned by maximizing the ELBO

▪ The Reparametrization Trick is commonly used to optimize the ELBO

▪ Posterior is inferred only over z, and usually only point estimate on 𝜃 and 𝜙
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Using the idea of 

“Amortized Inference” 

(next slide)

ELBO for a 

single data 

point

−
𝑞𝜙 should be such that data 𝑥 is 

reconstruct well from 𝑧(high log-lik)

𝑞𝜙 should also be simple (close 

to the prior)

Maximized to 

find the optimal 

𝜃 and 𝜙

Here 𝜃 collectively denotes all the 

parameters of the prior and likelihood

Here 𝜙 collectively denotes all 

the parameters that define the 

inference network
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Amortized Inference

▪ Latent variable models need to infer the posterior 𝑝(𝒛𝑛|𝒙𝑛) for each observation 𝒙𝑛

▪ This can be slow if  we have lots of observations because

1. We need to iterate over each 𝑝(𝒛𝑛|𝒙𝑛)
2. Learning the global parameters needs wait for step 1 to finish for all observations

▪ One way to address this is via Stochastic VI

▪ Amortized inference is another appealing alternative (used in VAE and other LVMs too)

▪ Thus no need to learn 𝜙𝑛’s (one per data point) but just a single NN with params 𝑾
▪ This will be our “encoder network” for learning 𝒛𝑛
▪ Also very efficient to get 𝑝 𝒛∗ 𝒙∗ for a new data point 𝒙∗
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𝑝 𝒛𝑛 𝒙𝑛 ≈ 𝑞 𝒛𝑛 𝜙𝑛 = 𝑞 𝒛𝑛 NN(𝒙𝑛;𝑾))
If 𝑞 is Gaussian then the NN will 

output a mean and a variance
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Variational Autoencoder: The Complete Pipeline

▪ Both probabilistic encoder and decoder learned jointly by maximizing the ELBO
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Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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VAE and Posterior Collapse

▪ VAEs may suffer from posterior collapse

▪ Thus, due to posterior collapse, reconstruction will still be good but the code 𝒛
may be garbage (not useful as a representation for 𝒙)

▪ Several ways to prevent posterior collapse, e.g., 
▪ Use KL annealing

▪ Avoid KL from becoming 0 using some 𝑞 that doesn’t collapse to the prior

▪ More tightly couple 𝑧 with 𝑥 using skip-connections (Skip-VAE)
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−

Decoder is a neural net 

and can be arbitrarily 

powerful making this 

term very large

Consequently, KL will 

become close to 

zero collapsing 

posterior to the prior

A carefully tuned value 

between 0 and 1
For example, keep the 

variance of 𝑞 as fixed

𝒛𝑛 𝒙𝑛
Hidden layers of NN

Besides these, MCMC (sometimes used for 
inference in VAE), or improved VI techniques can 
also help in preventing posterior collapse in VAEs
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VAE: Some Comments

▪ One of the state-of-the-art latent variable models

▪ Useful for both generation as well as representation learning

▪ Many improvements and extensions, e.g., 

▪ For text data and sequences (VAE for topic models or “neural topic models”)

▪ VAE-style models with more than one layer of latent variables (Sigmoid Belief Networks, 
hierarchical VAE, Ladder VAE, Deep Exponential Families, etc)
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Document (e.g., as a 

vector of word counts)

Decoupling Sparsity and Smoothness in the Dirichlet Variational Autoencoder Topic Model (Burkhardt and Kramer, 2020)
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Generative Adversarial Network (GAN)

▪ GAN is an implicit generative latent variable model

▪ Can generate from it but can’t compute 𝑝(𝒙) - the model doesn’t define it explicitly

▪ GAN is training using an adversarial way (Goodfellow et al, 2013)
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Unlike VAE, no explicit parametric 

likelihood model 𝑝(𝑥|𝑧)

Thus can’t train 

using methods that 

require likelihood 

(MLE, VI, etc)

Discriminator network is trained to 

make 𝐷(𝑥) close to 1

Discriminator network is trained to make 𝐷 𝐺 𝑧

close to 0 and generator network is trained to make it 

to be close to 1 to fool the discriminator into 

believing that 𝐺(𝑧) is a real sample

Min-max optimization

Assuming data 

is images

The discriminator can be a 

binary classifier or any method 

that can compare b/w two 

distributions (real and fake here)
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Generative Adversarial Network (GAN)

▪ The GAN training criterion was

▪ With 𝐺 fixed, the optimal 𝐷 (exercise)

▪ Given the optimal 𝐷, The optimal generator 𝐺 is found by minimizing
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Distribution of synthetic data𝐷𝐺
∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

Distribution of real data

𝑉 𝐷𝐺
∗ , 𝐺 = 𝔼𝒙∼𝑝𝑑𝑎𝑡𝑎 log

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)
+ 𝔼𝒙∼𝑝𝑔 log

𝑝𝑔(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

= KL 𝑝𝑑𝑎𝑡𝑎 𝑥
𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

2
+ KL 𝑝𝑔 𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝑔(𝑥)

2
− log 4

Jensen-Shannon 

divergence between 

𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑔.

Minimized when 

𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎

Thus GAN can learn the true data 

distribution if  the generator and 

discriminator have enough modeling power
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GAN Optimization

▪ The GAN training procedure can be summarized as
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𝜃𝑔 and 𝜃𝑑 denote the params of the deep neural nets 

defining the generator and discriminator, respectively

In practice, in this step, instead of minimizing 

log(1 − 𝐷(𝐺 𝑧 ), we maximize log 𝐷 𝐺 𝑧

In practice, for stable training, we run 𝐾 > 1 steps of 

optimizing w.r.t. 𝐷 and 1 step of optimizing w.r.t. 𝐺

Reason: Generator is bad initially so 

discriminator will always predict correctly 

initially and log(1 − 𝐷(𝐺 𝑧 ) will saturate 
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GANs that also learn latent representations

▪ The standard GAN can only generate data. Can’t learn the latent 𝒛 from 𝒙

▪ Bidirectional GAN* (BiGAN) is a GAN variant that allows this

▪ Adversarially Learned Inference# (ALI) is another variant that can learn representations
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Consists of an 

encoder as well Real pair/fake pair?

Can be shown* 

to “invert” 𝐺

*Adversarial Feature Learning (Donahue et a Dumoulin l, 2017)

Encoder with joint 

𝑞 𝑥, 𝑧 = 𝑞 𝑥 𝑞(𝑧|𝑥)
Decoder/generator with joint 

𝑝 𝑥, 𝑧 = 𝑝 𝑧 𝑝(𝑥|𝑧)

Discriminator: Real pair 

or fake pair?

#Adversarially Learned Inference (Dumoulin et al, 2017)
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Evaluating GANs

▪ Two measures that are commonly used to evaluate GANs
▪ Inception score (IS): Evaluates the distribution of generated data

▪ Frechet inception distance (FID): Compared the distribution of real data and generated data

▪ Inception Score defined as exp(𝔼𝑥∼𝑝𝑔[KL(𝑝(𝑦|𝑥)| 𝑝 𝑦 ]) will be high if

▪ Very few high-probability classes in each sample 𝑥: Low entropy for 𝑝 𝑦 𝑥

▪ We have diverse classes across samples: Marginal 𝑝(𝑦) is close to uniform (high entropy) 

▪ FID uses extracted features (using a deep neural net) of real and generated data
▪ Usually from the layers closer to the output layer

▪ These features are used to estimate two Gaussian distributions

▪ FID is then defined as FID = 𝜇𝐺 − 𝜇𝑅
2 + trace(Σ𝐺 + Σ𝑅 − Σ𝐺Σ𝑅

1/2)
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𝒩(𝜇𝐺 , ΣG)𝒩(𝜇𝑅 , ΣR)Using real data Using generated data

Both IS and FID measure how 

realistic the generated data is

High IS and low 

FID is desirable
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GAN: Some Issues/Comments

▪ GAN training can be hard and the basic GAN suffers from several issues 

▪ Instability of training procedure

▪ Mode Collapse problem: Lack of diversity in generated samples

▪ Generator may find some data that can easily fool the discriminator

▪ It will stuck at that mode of the data distribution and keep generating data like that

▪ Some work on addressing these issues (e.g., Wasserstein GAN, Least Squares GAN, etc)
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GAN 1: No mode collapse (all 10 
modes captured in generation)

GAN 2: Mode collapse (stuck on 
one of the modes)
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Denoising Diffusion Models

▪ Based on a forward (adding noise) process and a reverse (denoising) process

▪ Steps of the forward process are defined by a fixed Gaussian 𝑞(𝑥𝑡|𝑥𝑡−1)
▪ The f.p. starts with the clean image 𝑥0 and adds zero-mean Gaussian noise at each step

▪ The f.p. distribution is defined as 𝑞 𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡| 1 − 𝛽𝑡 𝑥𝑡−1, 𝛽𝑡𝐼)

▪ Eventually as 𝑇 → ∞, we get 𝑥𝑇 which is isotropic Gaussian noise

▪ Can show: 𝑞 𝑥𝑡 𝑥0 = 𝒩(𝑥𝑡| ത𝛼𝑡𝑥0, (1 − ത𝛼𝑡)𝐼) where 𝛼𝑡 = 1 − 𝛽𝑡 and ത𝛼𝑡 = ς𝑖=1
𝑡 𝛼𝑖

▪ Steps of the reverse process are defined by a learnable Gaussian 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)
▪ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) is an approximation of the reverse diffusion 𝑞 𝑥𝑡−1 𝑥𝑡
▪ 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) modeled as 𝒩(𝑥𝑡−1|𝜇𝜃 𝑥𝑡 , Σ𝜃 𝑥𝑡 ) where 𝜇𝜃 and Σ𝜃 are neural nets   

16After learning the model, can use 

the reverse process to generate 

data from random noise

𝛽𝑡 ∈ (0,1)
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Denoising Diffusion Models: Training

▪ The model is trained by minimizing the following objective

▪ In some ways, denoising diffusion models are similar to VAEs
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𝔼 −log 𝑝𝜃 𝑥0 ≤ 𝔼 −log
𝑝𝜃 𝑥0:𝑇
𝑞 𝑥1:𝑇 𝑥0

≔ ℒ

Upper bound on the 

negative log-likelihood 

(negative of the ELBO)

ℒ = 𝐿0 + 𝐿1 + 𝐿2 +⋯+ 𝐿𝑇−1 + 𝐿𝑇

This is also a Gaussian

Overall loss is just a sum of 

several KL divergences between 

Gaussians, and thus available in 

closed form
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Summary 

▪ Looked at various methods for generative modeling for unsupervised learning

▪ Classical methods (FA, PPCA, other latent factor models, topic models, etc)

▪ Deep generative models (VAE, GAN, Denoising Diffusion Models)

▪Many of these methods can also be extended to model data other than images

▪ There are also generative models that do not use latent variables

▪ Can still be used to generate data and learn the underlying data distribution
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Assuming each 

observation is 

n-dimensional
An auto-regressive 

model

Can use a neural network to 

learn (parameters of) each 

of these distributions

An example: Neural 

Autoregressive Density 

Estimator (NADE)


