
(Shallow and Deep) Generative Models

CS772A: Probabilistic Machine Learning

Piyush Rai



CS772A: PML

Plan for today

▪ Latent Factor Models

▪ Latent Dirichlet Allocation (LDA)

▪ Deep generative models: Variational Autoencoders
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Factor Analysis and Probabilistic PCA

▪ Assumption: Latent variables 𝒛𝑛 ∈ ℝ
𝐾 typically assumed to have a Gaussian prior

▪ If  we want sparse latent variable, can use Laplace or spike-and-slab prior on 𝒛𝑛
▪ More complex extensions of FA/PPCA use a mixture of Gaussians prior on 𝒛𝑛

▪ Assumption: Observations 𝒙𝑛 ∈ ℝ
𝐷 typically assumed to have a Gaussian likelihood

▪ Other likelihood models (e.g., exp-family) can also be used if  data not real-valued

▪ Relationship between 𝒛𝑛 and 𝒙𝑛 modeled by a noisy linear mapping

▪ Unknowns 𝑾, 𝒛𝑛’s, and Ψ can be learned
▪ EM, VI, MCMC
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𝒙𝑛 = 𝑾𝒛𝑛 + 𝜖𝑛 =෍
𝑘=1

𝐾

𝒘𝑘𝑧𝑛𝑘 + 𝜖𝑛
Zero-mean and diagonal or 

spherical Gaussian noise Diagonal for FA, 

spherical for PPCA

𝑝 𝐳𝑛 = 𝒩 𝐳𝑛 0, 𝐈

𝑝 𝐱𝑛|𝐳𝑛 = 𝒩 𝒙𝑛 𝐖𝐳𝑛, Ψ
Linear combination 

of the columns of 𝑾
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Some Other Classical Models

▪ Gamma-Poisson latent factor model

▪ Assumes 𝐾-dim non-negative latent variable 𝐳n and 𝐷-dim count-valued observations 𝐱n
▪ An example: Each 𝐱n is the word-count vector representing a document

▪ This can be thought of as a probabilistic non-negative matrix factorization model

▪Dirichlet-Multinomial/Multinoulli PCA

▪ Assumes 𝐾-dim non-negative latent variable 𝐳n and 𝐷 categorical obs 𝐱n = {𝒙𝑛𝑑}𝑑=1
𝐷

▪ An example: Each 𝐱n is a document with 𝐷 words in it (each word is a categorical value)
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𝑝 𝐳n = ς𝑘=1
𝐾 Gamma(znk|ak, bk))

𝑝 𝐱n|𝐳n = ς𝑑=1
𝐷 Poisson(xnd|𝑓(𝐰d, 𝐳n))

This is the rate of the Poisson. It should 

be non-negative, exp(𝐰𝑑
⊤𝒛𝑛), or simply 

𝐰𝑑
⊤𝒛𝑛 if  𝒘𝑑 is also non-negative (e.g., 

using a gamma/Dirichlet prior on it)  

Popular for modeling count-

valued data (in text analysis, 

recommender systems, etc)

𝑝 𝐳n = Dirichlet(𝐳n|𝜶)

𝑝 𝐱n|𝐳n = ς𝑑=1
𝐷 Multinoulli(xnd|𝑓(𝐰d, 𝐳n))

This should give the probability vector of 

the multinoulli over 𝑥𝑛𝑑 . It should be 

non-negative and should sums to 1

Also sums to 1

Non-negative priors often give a nice 
interpretability to such latent 
variable models (will see some more 
examples of such models shortly)
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Latent Dirichlet Allocation (LDA)
a.k.a. “Topic Model”
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▪ Assume 𝐷 documents, and document 𝑑 has 𝑁𝑑 words in it

▪ We can represent doc 𝑑 by a word count vector 𝒘𝑑

▪ Assuming a vocab of 𝑉 unique words, 𝑤𝑑 is a 𝑉 × 1 vector of counts

▪ 𝑤𝑑𝑣 = no of times word 𝑣 appears in doc 𝑑

▪ Let’s model the docs by a mixture of 𝐾 multinomial distributions, each 𝑉-dim

▪ The 𝑘𝑡ℎ multinomial modeled by a 𝑉-dim prob vector 𝜙𝑘 (sums to 1)

▪ 𝜙𝑘 can be thought of as a “topic vector” (or just “topic”), 𝜙𝑘𝑣: prob of word 𝑣 in topic 𝑘

▪ Generative model and plate diagram below

Motivation: Multinomial Mixture Model for Text
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𝑤𝑑𝒛𝑑𝜋
𝐷

𝜙𝑘
𝐾

𝒛𝑑 ∼ multinoulli(𝜋)

𝒘𝑑 ∼ multinomial(𝜙𝑧𝑑 , 𝑁𝑑)

Each representing a 

“topic” (𝐾 topics)

Topic Mixing 

proportion vector

Cluster/topic of 

document 𝑑

𝐾 topic 

distributions

Limitation: Each doc 𝑑 belongs to a single cluster 
𝒛𝑑 and all words in a document assumed to be 
from the same topic. This is unrealistic/restrictive

Counts will sum to 𝑁𝑑

Each topic is a prob. 

distribution over word tokens
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Documents can be about multiple topics
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How do we find the 

word-topic associations 

in each document?

How do we use them 

to learn topics in the 

given text collection?

How do we learn low-dim 

document representations in terms 

of the topics they represent?
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▪ Assume a corpus-level topic mixing proportions 𝜶 (𝐾 × 1 prob vector)

▪ Also assume doc-level topic mixing props 𝜃𝑑 (𝐾 × 1 prob vector)

▪ Instead of assuming a single cluster 𝒛𝑑 for doc 𝑑, cluster each word in it

▪ 𝒛𝑑,𝑛 ∈ {1,2,… , 𝐾} denotes the cluster/topic of word 𝑤𝑑,𝑛 ∈ {1,2,… , 𝑉}

▪ Can obtain the “average” clustering for doc 𝑑 using 𝜃𝑑 or ത𝒛𝑑 =
1

𝑁𝑑
σ𝑛=1
𝑁𝑑 𝒛𝑑,𝑛

▪ The generative model is as follows

A More Fine-Grained Mixture Model for Text
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𝝓𝑘

𝐾
𝜶

Each assumed a one-hot 

𝐾 × 1 vector

𝜃𝑑 ∼ Dirichlet 𝜶 𝑑 = 1,2, … , 𝐷

𝒛𝑑,𝑛 ∼ multinoulli(𝜃𝑑)

𝒘𝑑,𝑛 ∼ multinoulli(𝜙𝑧𝑑,𝑛)
𝑤𝑑,𝑛𝒛𝑑,𝑛𝜽𝑑

𝑁𝑑
𝐷

𝜙𝑘 ∼ Dirichlet 𝜼 𝑘 = 1,2, … , 𝐾
𝜼

(𝑉-dim Dirichlet)

(𝐾-dim Dirichlet)

Latent Dirichlet 
Allocation* (LDA) 
Topic Model

Locally-conjugate. Easy 

Gibbs sampling, VI, etc

Somewhat similar to 

Dir-Mult PCA model
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▪ A very widely used probabilistic model for text data

▪ Nice and easy insights into the text collection 

▪ Each 𝜙𝑘 = [𝜙𝑘1, … , 𝜙𝑘𝑉] can be interpreted as topic (𝜙𝑘𝑣 = prob. of word 𝑣 in topic 𝑘)

▪ 𝜃𝑑 = [𝜃𝑑1, … , 𝜃𝑑𝐾]: how much each topic is present in document 𝑑 (topic distribution)

▪ ത𝒛𝑑 =
1

𝑁𝑑
σ𝑛=1
𝑁𝑑 𝒛𝑑,𝑛 also has a similar interpretation as 𝜃𝑑

Latent Dirichlet Allocation (LDA)
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𝜙1

𝜙2

𝜙3

𝜙4

Distribution 

over topics

Word-topic 

assignments

15 most frequent (most 

probable) words from four most 

prominent topics in this doc

Topic distribution for 

the document on left

A topic is a set of words that 

tend to co-occur together
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▪ LDA is locally conjugate. Many inference methods (VI, variational EM, Gibbs samp, etc)

▪ Can even collapse some variables and do collapsed Gibbs or collapsed VB

▪ E.g., collapse 𝜃𝑑 and 𝜙𝑘 (if  needed, these can be approximated using 𝐙)

▪Many ways to evaluate how well LDA performs on some data

▪ Extrinsic measures: Perform LDA and use its output for another task (e.g., classification)

▪ Perplexity is another intrinsic measure to evaluate LDA-style models

LDA: Inference and Evaluation
10

Test set with 𝑀 docs

Marginal likelihood of all 

words in the 𝑑𝑡ℎ test doc

Lower is better
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LDA: Limitations and Extensions

▪ LDA assumes topics remain static over time (improvement: Dynamic Topic Model)

▪ LDA assumes topics are uncorrelated (improvement: Corr-LDA)
▪ Use a logistic normal distribution on 𝜃𝑑 (cov matrix of log-normal makes component correlated)

▪ LDA ignores the sequential structure in the text (improvement: HMM-LDA)
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𝑤𝑘
𝑡 ∼ 𝒩(𝑤𝑘

𝑡−1, 𝜎2𝐼) 𝜙𝑘
𝑡 = 𝒮(𝑤𝑘

𝑡)
Simplex transformation (convert 

𝑤𝑘
𝑡 into a probability vector)

Assume a first-order 

Markov evolution for 

each topic w.r.t. time

Evolution of topic “Neuroscience”
(learned from the journal Science)

Fig courtesy: Dynamic Topic Models (Blei and Lafferty, 2006)
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LDA Extensions (Contd)

▪ LDA for non-text data, e.g., images
▪ Each image can be represented as a bag of “visual words” and LDA can be applied

▪ Supervised/Labeled LDA (when we have have a label for each document)

▪ LDA for paired/multimodality data (e.g., images and text caption)

▪ LDA for graph-structured data instead of documents
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Plate diagrams for some LDA extensions

LDA is also equivalent to doing a non-negative 

matrix fact. of the 𝑉 × 𝐷 word-document 

matrix 𝐗 using a Poisson likelihood model*

𝚽 (𝑉 × 𝐾) and 𝚯 (𝐾 × 𝐷) can be given any 

non-negative priors (Dirichlet/gamma)

This can be extended to “deep” matrix 

factorization** (modeling 𝚯 using many layers)

𝐗 ∼ Poisson(𝚽𝚯)

*Sec 4 and 5 of “Beta-Negative Binomial Process 
and Poisson Factor Analysis” (Zhou et al, 2012)

** Poisson-gamma belief networks” (Zhou et al, 2015)

Also: “Neural” Topic Models are 
popular nowadays (𝑧 to 𝑥 mapping and vice-versa
modeled via deep nets)
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Constructing Generative Models using Neural Nets

▪ We can use a neural net to define the mapping from a 𝐾-dim 𝒛𝑛 to 𝐷-dim 𝒙𝑛

▪ If  𝒛𝑛 has a Gaussian prior, such models are called deep linear Gaussian models (DLGM)

▪ Since NN mapping can be very powerful, DLGM can generate very high-quality data 
▪ Take the trained network, generate a random 𝒛 from prior, pass it through the model to generate 𝒙
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𝒛𝑛 𝒙𝑛

𝑝(𝒙|NN 𝒛;𝐖 )𝑝(𝒛)

Some sample images generated by Vector Quantized Variational AutoEncoder (VQ-VAE), a state-of-the-art DLGM
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Variational Autoencoder (VAE)

▪ VAE* is a probabilistic extension of autoencoders (AE)

▪ The basic difference is that VAE assumes a prior 𝑝(𝒛) on the latent code 𝒛
▪ This enables it to not just compress the data but also generate synthetic data

▪ How: Sample 𝒛 from a prior and pass it through the decoder

▪ Thus VAE can learn good latent representation + generate novel synthetic data

▪ The name has “Variational” in it since it is learned  using VI principles
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Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html*Autoencoding Variational Bayes (Kingma and Welling, 2013)
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Variational Autoencoder (VAE)

▪ VAE has three main components

▪ A prior 𝑝𝜃 𝒛 over latent codes

▪ A probabilistic decoder 𝑝𝜃(𝒙|𝒛)

▪ A posterior or probabilistic encoder 𝑝𝜃 𝒛 𝒙 approx. by an “inference network” 𝑞𝜙 𝒛 𝒙

▪ VAE is learned by maximizing the ELBO

▪ The Reparametrization Trick is commonly used to optimize the ELBO

▪ Posterior is inferred only over z, and usually only point estimate on 𝜃 and 𝜙
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Using the idea of 

“Amortized Inference” 

(next slide)

ELBO for a 

single data 

point

−
𝑞𝜙 should reconstruct the data 

𝑥 well from 𝑧(high log-lik)

𝑞𝜙 should also be simple (close 

to the prior)

Maximized to 

find the optimal 

𝜃 and 𝜙

Here 𝜃 collectively denotes 

all the parameters of the 

prior and likelihood

Here 𝜙 collectively denotes all 

the parameters that define the 

inference network
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Amortized Inference

▪ Latent variable models need to infer the posterior 𝑝(𝒛𝑛|𝒙𝑛) for each observation 𝒙𝑛

▪ This can be slow if  we have lots of observations because

1. We need to iterate over each 𝑝(𝒛𝑛|𝒙𝑛)
2. Learning the global parameters needs wait for step 1 to finish for all observations

▪ One way to address this is via Stochastic VI (already saw)

▪ Amortized inference is another appealing alternative (used in VAE and other LVMs too)

▪ Thus no need to learn 𝜙𝑛’s (one per data point) but just a single NN with params 𝑾
▪ This will be our “encoder network” for learning 𝒛𝑛
▪ Also very efficient to get 𝑝 𝒛∗ 𝒙∗ for a new data point 𝒙∗
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𝑝 𝒛𝑛 𝒙𝑛 ≈ 𝑞 𝒛𝑛 𝜙𝑛 = 𝑞 𝒛𝑛 NN(𝒙𝑛;𝑾))
If 𝑞 is Gaussian then the NN will 

output a mean and a variance
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Variational Autoencoder: The Complete Pipeline

▪ Both probabilistic encoder and decoder learned jointly by maximizing the ELBO
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Pic source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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VAE and Posterior Collapse

▪ VAEs may suffer from posterior collapse

▪ Thus, due to posterior collapse, reconstruction will still be good but the code 𝒛
may be garbage (not useful as a representation for 𝒙)

▪ Several ways to prevent posterior collapse, e.g., 
▪ Use KL annealing

▪ Avoid KL from becoming 0 using some 𝑞 doesn’t collapse to the prior

▪ More tightly couple 𝑧 with 𝑥 using skip-connections (Skip-VAE)
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−

Decoder is a neural net 

and can be arbitrarily 

powerful making this 

term very large

Consequently, KL will 

become close to 

zero collapsing 

posterior to the prior

A carefully tuned value 

between 0 and 1
For example, keep the 

variance of 𝑞 as fixed

𝒛𝑛 𝒙𝑛
Hidden layers of NN

Besides these, MCMC (sometimes used for 
inference in VAE), or improved VI techniques can 
also help in preventing posterior collapse in VAEs


