Bayesian Deep Learning (contd),
(Shallow and Deep) Generative Models
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(Deep) Neural Networks

" These are nonlinear function approximators

= Consists of an input layer, one or more hidden layers, and an output layer

Can think of the last hidden
layer's node values being
used as features in a GLM
(linear/logistic/softmax, etc)
modeled by the output layer

EW(@ S Ko XK, tl\)letll\)/voLk vve|ghts‘ typ|cball>{ Ielelarned
((=1,....Lnd K, = D) y backpropagation (basically,

S : E et gradient descent + chain rule)
Hidden layers act as éhﬁf‘) :g(wwﬁhu))é R (N (LN K5 hidden units

W% is K, x K,
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Bayesian Neural Networks

" Backprop for neural nets only gives us point estimates for the weights
= Another alternative is to be Bayesian and learn the posterior distribution over weights

Bayesian neural net: Each
weight has a posterior
distribution inferred by some
Bayesian inference algo
(VI/MCMC/Laplace approx., etc)

Standard neural net:
Each weight has a
fixed value, learned
by backprop

Note: Just having a
likelihood and prior will
still give us a standard
neural net if we choose
to do MLE/MAP only

Also, test time will require

computing PPD, not just
a plug-in prediction
VI for Bayesian Using reparametrization

= arg 1'121‘1 KL [g(w|@) || P(W)] — Eg(w|o) [log P(D|w)]

e ME T T T T T T TT T T T T T T neural net =, trick (known as "Bayes

W e

| 1 10" = argmin KL[q(w/|0)|| P(w|D)] by Backprop™ in this

| _ i e 11 0 context), BBVl etc

| = arg max Z log P(yi|xi. W)

| v - ugmin/q(wlﬁ) log 2w\ dw I
11 =ar |

0 P(w)P(D

: w AP — arg maxlog P(w|D) : : (w)F(PIw) :

' 11 |

, |

= arg max log P(D|w) + log P(w)
W
s T T T T T T CS772A: PML

Pic from: *Weight Uncertainty in Neural Networks (Blundell et al, 2015)



A Hybrid Bayesian Neural Net s

p(.lx., D) ~ < p(y.|x., 06))

s=1

" | earning the posterior for all weights can be expensive where 8©) ~ p(8]|D)

* PPD computation is also slow if using Monte Carlo approximation for PPD

= A cheaper practical alternative is

= Do point estimation for hidden layer weights (W _
p y ghts (W) @

= Infer the full posterior for output layer weights (V)

, Faster because the posterior of
" The PPD will then be V is much lower dimensional

1 S -
p(yl|x,, D) = 3 E 1p(y*|x*,V(S),W) where V) ~ p(V|D)
S=

Approximation since in the hybrid approach,

= A rough approximation of the above is the following | we stil learn W and V together, urlike this
» Use a pretrained neural net to extract feature approach where it is a two-step process

* Train Bayesian linear model (e.g., Bayesian linear/logistic/softmax/GLM reg.) on these features
CS772A: PML



Bayesian Neural Networks: The Priors

" /ero-mean isotropic Gaussian priors are common and convenient
= Corresponds to weight-decay or €, regularizer

= Another alternative is to use sparsity-inducing priors, €.g.,

p(w) = HWN(wj\OjU%) + (1 —mN(w;|0,05) 01> 02 and o2 < 1
J

" (Gaussian priors have been found somewhat problematic in recent work

= Cold-posterior effect T = 1 is the standard

T is like temperature
Bayesian inference

1 1 _
ng P{ U‘|I. _l,-"] I = T llﬂg P{y w,T)+ lﬂg ,U{ "'11}. + Z{T] Recent work has shown that BNNs
» with standard Gaussian priors work
= | o — e . poorlyfor T =1butT <1
5 0% AN l\/lgybe Gaussian improves performance
< oo " priors aren't really
090 —e— SG-MCMC ,
. Baseline: SGD \ ideal??
0.88
107¢ 10-3 1072 107! 10°
Temperature T
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Pic from: *How Good is the Bayes Posterior in Deep Neural Networks Really? (Wenzel et al, 2020)



Other Inference Methods for Bayesian Neural Nets

= L aplace approximation is very common: p(W|D) = N (Wyap, H™1)

" However, can be slow since the number of parameters is very large
= One option is to use a simpler covariance matrix (e.g,, diagonal or block-diag)

» Another option is to use the hybrid Bayesian neural net Extension: A mixture of Gaussian
= Use MAP estimates for the hidden layer weights approximation: Multi-SWAG — Run
. _ _ SGD M times and use a mixture of
= Use Laplace approximation only for the output layer weights M such Gaussians

SWA based Gaussian

» Using SGD iterates obtained from backprop approximation: SWAG

Stochastic weight p(Wlﬂ) ~ CI(W|D) — N(lf_’b’? K)

averaging (SWA)

wr v‘v:lZw,, K:l<;Z(W,—w)(w,—w) —I——Zdzag(w,—w )

T—1

Learning Rate

_______________________

Approximate

Pretraining
o - -
with Gaussian

Training Epocl
i s s Pic from: *A Simple Baseline for Bayesian Uncertainty in Deep Learning (Maddox et al, 2019)
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* Monte Carlo Dropout is another popular and efficient way

= Standard Dropout FOUO"
* Drop some weights randomly (with some “drop” probability) during training
= At test time, multiply each weight by the "keep” probability
Can be seen as learning a

= Note: Dropout applied only at training time variational approximation of
the weights (see paper for
details, if interested)

* Monte Carlo Dropout®
1 S

1 S * x*;D ~ = * x*,Q(s)

p(y.lx.D) = < E 1p(y*|x*,9(s)) | p(y:|x., D) 464 )
S=

where 6) = e O

Vector of Bernoulli Point estimate

or Gaussian noise Elementwise
product

where 865 ~ p(0|D)

*Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning (Gal and Ghahramani, 2016) CS772A: PML



Other Inference Methods for Bayesian Neural Nets

» SGMCMC methods like SGLD and SGHMC are also used nowadays (very efficient)

0 = 00~V LVs[log p(D6) + log p(8)] |y + ¢

" Recently, SGMCMC with cyclic step sizes (cSGLD) was proposed (Zhang et al, 2020)

--- Exploration Stage

= Use big steps to explore different modes

—— Sampling Stage

—— Decay Stepsize

' : 0.10 .
" Use small steps later to sample once a mode is localized \
0.08 s
Slep size in v m mod(k — 1, [K/M) \
|terat|0ﬂ k (Yk — 7 COS I—I/'/A[] + 1 (-% 0.04
A
0.02
22222 7 \
»
- e @ K is the total number of R
LA AR R iterations and M is the I—
e v number of CydeS SGD 5.29i0?15 23.61i6.09
T b) SGLD SGLD
(a) Target  (b) (c)c SGDM 5.1740.09 22.98+027
Snapshot-SGD | 4.46+0.04 20.83=£0.01
A Complex mixture of Snapshot-SGDM | 4.39+0.01  20.81+0.10
. o SGLD 5202006 23.23L0.01
(Gaussian distributions ¢SGLD 4294006 20.55+0.06
SGHMC 493501  22.60L0.17
¢SGHMC 4274003  20.50-0.11
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Pic from: *Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning (Zhang et al, 2020)



Deep Ensembles

Both VI and Sampling
may be prone to
capturing only a single
"Basin of attraction”

= Most inference methods tend to produce local approximations only
= V| methods typically learn an approximation around one of the modes

= Sampling methods may give most samples near one of the modes (though in principle they may
explore other modes as well)

" Thus the uncertainties may be underestimated in general

" Deep Ensembles™ is a method that tries to address this issue
* Train the network M times with different seeds and permutations of training data
* Denote the learned weights by 84, 85, ..., 8y, (assuming these are M modes)

= Approximate the posterior by the following

1 M Akin to Bayesian Model
@|D) = — do. (O Averaging using M models
P M y om
m=

* This approach is considered non-Bayesian but often performs better (in terms of more diversity in
the set of parameters learned) than other inference methods

*Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles (Lakshminarayanan, 2017) CS772A: PML



Deep Generative Models
(for unsupervised learning)

CS772A: PML



Generative Models for Unsupervised Learning

= Many generative models for unsupervised learning have this form

There also exist generative

Can be used as a p(2) p(x|f(2)) models that do not have latent
:reprensen%ation” or ” (Z-\ variables (example: NADE)
(oen low-am) for x| Latent vaible [ \_/ @ Observatior
* Depending on the prior, likelihood, and f, various latent factor models arise, e.g.,

= Factor Analysis and Probabilistic PCA: p(x|f(z)) = N(x|Wz,X)

» Gaussian Process Latent Variable Models (GPLVM) — f is nonlinear modeled by a GP

= Deep generative models (constructed using deep neural nets)

= Variational Autoencoders (VAE) - f is nonlinear modeled by a neural net

» Generative Adversarial Network (GAN) — f is nonlinear modeled by a neural net and
the likelihood is only implicitly defined

= Denoising Diffusion Models
= and several others..

CS772A: PML
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Some Classical Models
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Factor Analysis and Probabilistic PCA

= Assumption: Latent variables z,, € R¥ typically assumed to have a Gaussian prior
" [f we want sparse latent variable, can use Laplace or spike-and-slab prior on z,,
* More complex extensions of FA/PPCA use a mixture of Gaussians prior on z,

= Assumption: Observations x,, € R typically assumed to have a Gaussian likelihood
= Other likelihood models (e.g., exp-family) can also be used it data not real-valued

» Relationship between z,, and x,, modeled by a noisy linear mapping

K
(zn) = N(z,[0,1)
x. =Wz., +€, = Wi Z + € P
n n n zk=1 Knk h P(Xnlzn) = N (xp|Wzp, ¥)

Zero-mean and diagonal or Linear combination

spherical Gaussian noise of the columns of W Diagonal for FA,
spherical for PPCA

* Unknowns W, z,,'s, and W can be learned
= EM, VI, MCMC

CS772A: PML



SOme Other ClaSS|Ca| MOdels Non-negative priors often give a nice

Popular for modeling count- interpretability to such latent

: valued data (in text analysis, variable models (will see some more
" Gamma-Poisson latent factor model recommender systems, etc) | | examples of such models shortly)

" Assumes K-dim non-negative latent variable z, and D-dim count-valued observations X,
" An example: Each x,, is the word-count vector representing a document

This is the rate of the Poisson. It should

p(zn) — I]§=1 Gamma(znk | dk, bk)) beTnon-negative, exp(W, z,,), or simply
_ L if wyis al negative (e.g.
p(Xp|Zy) = [14-1 Poisson(Xpqlf (Wg, Zp)) g 2 garmrma/Dirchiet prior o iifg

" This can be thought of as a probabilistic non-negative matrix factorization model

= Dirichlet-Multinomial/Multinoulli PCA

= Assumes K-dim non-negative latent variable z, and D categorical obs X, = {X,q}0-1
= An example: Each x,, is a document with D words in it (each word is a categorical value)

Also sums to 1 . hl This should give the probability vector of
7. ) = Dirichlet(z.|a the multinoulli over x,,4. It should be
p( n) D ( .Il | ) ] non-negative and should sums to 1
P(Xn|Zn) = [lg=1 Multinoulli(xnq|f (W4, Zn))

CS772A: PML
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Latent Dirichlet Allocation (LDA)
a.k.a. “Topic Model”

CS772A: PML



Motivation: Multinomial Mixture Model for Text

= Assume D documents, and document d has Nz words in it -
Fach topic is a prob.

» \We can represent doc d by a word count vector wy distribution over word tokens

= Assuming a vocab of V' unique words, wg is @ V X 1 vector of counts | gach representing a
" Wy, = NO Of times word v appears in doc d “topic” (K topics)

" | et's model the docs by a mixture of K multinomial distributions, each V-dim

= The k" multinomial modeled by a V-dim prob vector ¢, (sums to 1)
" ¢, can be thought of as a "topic vector” (or just “topic”), ¢g,: prob of word v in topic k

® Generative model and plate d|ag ram below Limitation: Each doc d belongs to a single cluster

Z4 and all words in a document assumed to be
from the same topic. This is unrealistic/restrictive

Topic Mixing Cluster/topic of

~ mu1t1n0u111(77,') proportion vector | | document d

/-\ K topic
~ mu1t1n0mlal(¢zd, Nd) Q_ ¢k distributions
D UK

Counts will sum to Ny CS772A: PML




Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an Organism need to
survive? Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed forlife.
One research team, using computer analy-
ses to compare known genomes, concluded
that today’s/@rganisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 genes. The
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don’t

match precisely, those predictions

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE e VOL. 272 * 24 MAY 1996

P, pathways s
oA aen \ +22genes N
Mycoplasma — 25 L!/\'%"L:/m\\‘
| gemes {oe ! \

“are not all thar far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
8CC number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced genome,” explains
Arcady Mushegian, a computational mo-

lecular biologist at the National Center
\ for Biotechnology Information (NCBI)
} in Bethesda, Maryland. Comparing an

f Redundant and Related and
/ Genes parasite-specific modern genes
needed genes removed removed
for biochemical —4 genes -122 genes

/

\ ; 250 genes | \ - 4
4 \__/ Ancestral
gene set

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

Documents can be about multiple topics

ADAPTED FROM NCBI
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How do we find the
word-topic associations
in each document?

How do we use them
to learn topics in the
given text collection?

How do we learn low-dim
document representations in terms
of the topics they represent?

CS772A: PML



A More Fine-Grained Mixture Model for Text

» Assume a corpus-level topic mixing proportions & (K X 1 prob vector)
" Also assume doc-level topic mixing props 84 (K X 1 prob vector)

" |nstead of assuming a single cluster z,4 for doc d, cluster each word in it

" Zgn € {1,2, ..., K} denotes the cluster/topic of word wg, € {1,2,...,V} E(aih fsvseucToerd a one-ho!
= Can obtain the "average” clustering for doc d using 84 or Zz; = —Zn 1Zan
Locally-conjugate. Easy Somewhat similar to
= [he generatlve model is as follows Gibbs sampling, VI, etc Latent Dirichlet ). Dir-Mult PCA model
¢, ~ Dirichlet(n) k =1,2,...,K  (v-dim Dirichlet) ?"O_Ca&oz*l(LDA)
.. o opic Mode
0, ~ Dirichlet(a) d =1,2,...,D  (K-dimDirichlet) N
Z4 , ~ multinoulli(8,)
Wq ., ~ multinoulli(¢,, ) @ @ @ P S
N, N
CS772A: PML




Latent Dirichlet Allocation (LDA) ®
» A very widely used probabilistic model for text data @_ b

= Nice and easy insights into the text collection D
» Fach @) = [Pk, ---» Pry] can be interpreted as topic (¢, = prob. of word v in topic k)
" 0, =041, ..., 04K ]: how much each topic is present in document d (topic distribution)

— 1 N L : ,
"Zg = — 2.2 Z4, also has a similar interpretation as 84 15 most frequent (most
Na A topic is a set of words that probgble) Worfjs flrom.four most
prominent topics in this doc

: Topic proportions and tend to co-occur together
Topics Documents assignments g
gene 0.04 “Genetics” “Evolution™ “Disease “Computers”
dna 0.02 - ) - aas human evolution disease computer
le genetic 0,01 Seeking Life’s Bare (Genetic) Necessities R ity S e
“rr COLD SPRING HARBOR, NEW YORK— we not all that far apart,” especially i LE— = £
How many Joes an [SEEMEMncgd to  comparison to the 75,000 the | = dna species bacteria information
_— — T e S genetic organisms diseases data
differ lemen SO0 pawert®T. Dut coming up with acons o ~ - £a rocictance on e
ife 0.02 o forfll 4 S ansscer may be mor Eon Tt & j S 1 genes life resistance computers
evolve 0.01 ne ey R T-paricuapsasTinore g \ > sequence ongin bacterial system
¢2 organism  0.01 hats Siwith,  sequeniEed oIt it e & sear' of ofGARTING \ H T ce gene biology new network
vy just 2 he carliest life forms ny newly explains ] H =° . 7%
requi he b Arcady Mushegian, a = molecular g trai ystem
——— s o e e i i = ‘ - —
mate u.:w Sename in Bethesda, Maryland. Comparing a¥ D|Str|but| )r = m fectic p el
brain 0.04 ‘ e m diver malaria method
(]5 3 | newon 002 over topids 2 |1 SR o 7 i
nerve 0.01 = vt group pa net
%) § ‘ s R :f‘ r A mapping new parasites softwa
-_ enome 3 : \/\/OFd—tOpIC - project two united
ing, Cold Spring Harbor, New York ysis yields an esti- - . o = =
May 80 12 mate of the minimum modern and ancient genomes. ' sequences commao tuberculosis =
G 002 v ok . assignments ) .
> i IENCE o o 24 MAY 199 . . . .
ba s M : Topic distribution for
T
T
| the document on left
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LDA: Inference and Evaluation  olaic@le

aip

" | DA is locally conjugate. Many inference methods (VI, variational EM, Gibbs samp, etc)

p(W|®, Z)p(Z|O)p(®|n)p(O|a)
p(W/a, n)

= Can even collapse some variables and do collapsed Gibbs or collapsed VB
= £.g., collapse 84 and ¢ (if needed, these can be approximated using Z)

p(Z,0,®|W,a,n) =

(assuming hyperparams «, 7 are fixed)

» Many ways to evaluate how well LDA performs on some data

" Extrinsic measures: Perform LDA and use its output for another task (e.g., classification)
" Perplexity is another intrinsic measure to evaluate LDA-style models

Marginal likelihood of all

Test set with M docs words in the dt" test doc
Lower is better z 3 100 p ( W 7 )
perplexity( Diest) = exp { - — ‘
Zd—l ]v(/
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LDA: Limitations and Extensions

" | DA assumes topics remain static over time (improvement: Dynamic Topic Model)

Assume a first-order t t—1 _2 t t~. Simplex transformation (convert
Markov evolution for Wi ~ N(Wk O I) ¢k - 'S(Wk) wi into a probability vector)
each topic wirt. time

1881 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
brain movement brain movement movement stimulate record respons response respons cell cell neuron
movement eye eye brain sound muscle nerve record stimulate cell neuron channel active
action right movement sound muscle sound stimulate stimulate record potential response neuron brain
right hand right nerve active movement response nerve condition stimul active caz2 cell
eye (> brain P left H» active » nerve (| response —» muscle » muscle »| active » neuron [» brain »| active —» fig
hand left hand muscle stimulate nerve electrode active potential active stimul brain response
left action nerve left fiber frequency active frequency stimulus nerve muscle receptor channel
muscle muscle vision eye reaction fiber brain electrode nerve eye system muscle receptor
nerve sound sound right brain active fiber potential subject record nerve respons synapse
sound experiment muscle nervous response brain potential study eye abstract receptor current signal

neuron

Evolution of topic “Neuroscience” | .
(learned from the journal Science) ‘ | | | ‘ l ‘

1880 1900 1920 1940 1960 1980 2000

» | DA assumes topics are uncorrelated (improvement: Corr-LDA)
= Use a logistic normal distribution on 84 (cov matrix of log-normal makes component correlated)

= | DA ignores the sequential structure in the text (improvement: HMM-LDA)

| - | CS772A: PML
Fig courtesy: Dynamic Topic Models (Blei and Lafferty, 2006)



LDA Extensions (Contd)

= | DA for non-text data, e.g., images
* Fach image can be represented as a bag of “visual words™ and LDA can be applied

» Supervised/Labeled LDA (when we have have a label for each document)
= | DA for paired/multimodality data (e.g., images and text caption)

= | DA for graph-structured data instead of documents | LDA'is also equivalent to doing a non-negative

matrix fact. of the VX D word-document

Plate diagrams for some LDA extensions matrix X using a Poisson likelihood model*

l

I

l
@@ I
ol 1
I

l

I

HOTOEOA, X ~ Poisson(®0)
1 DO ® ® (VX K)and ® (K X D) can be given any

non-negative priors (Dirichlet/gamma)

I
* | 1 This can be extended to "deep” matrix

| factorization** (modeling ® using many layers)

1 Y Parse trees

B4 grouped into M

documents

N A

LY = i z , A ) m’f‘ I *Sec 4 and 5 of “Beta-Negative Binomial Process
0 i M B 9 | and Poisson Factor Analysis” (Zhou et al, 2012)
St41

ORORO
-
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I** Poisson-gamma belief networks” (Zhou et al, 2015)



Next Class

* Generative models using deep neural networks
= Variational Autoencoders
" Generative Adversarial Networks
= Denoising Diffusion Models
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