
Bayesian Deep Learning (contd),
(Shallow and Deep) Generative Models

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

(Deep) Neural Networks

▪ These are nonlinear function approximators

▪ Consists of an input layer, one or more hidden layers, and an output layer

2

Hidden layers act as

feature extractors

Can think of the last hidden

layer’s node values being

used as features in a GLM

(linear/logistic/softmax, etc)

modeled by the output layer

Network weights typically learned

by backpropagation (basically,

gradient descent + chain rule)

CS772A: PML

Bayesian Neural Networks

▪ Backprop for neural nets only gives us point estimates for the weights

▪ Another alternative is to be Bayesian and learn the posterior distribution over weights

3

Standard neural net:

Each weight has a

fixed value, learned

by backprop

Bayesian neural net: Each

weight has a posterior

distribution inferred by some

Bayesian inference algo

(VI/MCMC/Laplace approx., etc)

Note: Just having a

likelihood and prior will

still give us a standard

neural net if we choose

to do MLE/MAP only

Also, test time will require

computing PPD, not just

a plug-in prediction

Pic from: *Weight Uncertainty in Neural Networks (Blundell et al, 2015)

VI for Bayesian

neural net

Using reparametrization

trick (known as “Bayes

by Backprop”* in this

context), BBVI etc

CS772A: PML

A Hybrid Bayesian Neural Net

▪ Learning the posterior for all weights can be expensive

▪ PPD computation is also slow if using Monte Carlo approximation for PPD

▪ A cheaper practical alternative is

▪ Do point estimation for hidden layer weights (𝐖)

▪ Infer the full posterior for output layer weights (𝐕)

▪ The PPD will then be

▪ A rough approximation of the above is the following
▪ Use a pretrained neural net to extract feature

▪ Train Bayesian linear model (e.g., Bayesian linear/logistic/softmax/GLM reg.) on these features

4

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝(𝑦∗|𝑥∗, 𝜃
𝑠)

where 𝜃(𝑠) ∼ 𝑝(𝜃|𝒟)

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝(𝑦∗|𝑥∗, 𝐕
𝑠 , ෡𝐖) where 𝐕(𝑠) ∼ 𝑝(𝐕|𝒟)

Faster because the posterior of

𝐕 is much lower dimensional

Approximation since in the hybrid approach,

we still learn 𝐖 and 𝐕 together, unlike this

approach where it is a two-step process

CS772A: PML

Bayesian Neural Networks: The Priors

▪ Zero-mean isotropic Gaussian priors are common and convenient

▪ Corresponds to weight-decay or ℓ2 regularizer

▪ Another alternative is to use sparsity-inducing priors, e.g.,

▪ Gaussian priors have been found somewhat problematic in recent work
▪ Cold-posterior effect

5

Pic from: *How Good is the Bayes Posterior in Deep Neural Networks Really? (Wenzel et al, 2020)

𝑇 = 1 is the standard

Bayesian inference

Recent work has shown that BNNs

with standard Gaussian priors work

poorly for 𝑇 = 1 but 𝑇 ≪ 1
improves performance Maybe Gaussian

priors aren’t really

ideal??

𝑇 is like temperature

CS772A: PML

Other Inference Methods for Bayesian Neural Nets

▪ Laplace approximation is very common: 𝑝 𝑊 𝒟 ≈ 𝒩(𝑊𝑀𝐴𝑃 , 𝐇
−1)

▪ However, can be slow since the number of parameters is very large

▪ One option is to use a simpler covariance matrix (e.g,, diagonal or block-diag)

▪ Another option is to use the hybrid Bayesian neural net

▪ Use MAP estimates for the hidden layer weights

▪ Use Laplace approximation only for the output layer weights

▪ Using SGD iterates obtained from backprop

6

𝑝 𝑤 𝒟 ≈

Pic from: *A Simple Baseline for Bayesian Uncertainty in Deep Learning (Maddox et al, 2019)

Stochastic weight

averaging (SWA)

SWA based Gaussian

approximation: SWAG

Extension: A mixture of Gaussian

approximation: Multi-SWAG – Run

SGD 𝑀 times and use a mixture of

M such Gaussians

CS772A: PML

Other Inference Methods for Bayesian Neural Nets

▪ Monte Carlo Dropout is another popular and efficient way

▪ Standard Dropout

▪ Drop some weights randomly (with some “drop” probability) during training

▪ At test time, multiply each weight by the “keep” probability

▪ Note: Dropout applied only at training time

▪Monte Carlo Dropout*

7

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝(𝑦∗|𝑥∗, 𝜃
𝑠)

where 𝜃(𝑠) ∼ 𝑝(𝜃|𝒟)

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝(𝑦∗|𝑥∗, 𝜃
𝑠)

where 𝜃(𝑠) = 𝜖(𝑠)⊙ ෠𝜃
Vector of Bernoulli

or Gaussian noise
Point estimate

*Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning (Gal and Ghahramani, 2016)

Elementwise

product

Can be seen as learning a

variational approximation of

the weights (see paper for

details, if interested)

CS772A: PML

Other Inference Methods for Bayesian Neural Nets

▪ SGMCMC methods like SGLD and SGHMC are also used nowadays (very efficient)

▪ Recently, SGMCMC with cyclic step sizes (cSGLD) was proposed (Zhang et al, 2020)
▪ Use big steps to explore different modes

▪ Use small steps later to sample once a mode is localized

8

Step size in

iteration 𝑘

A complex mixture of

Gaussian distributions

Pic from: *Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning (Zhang et al, 2020)

𝐾 is the total number of

iterations and 𝑀 is the

number of cycles

CS772A: PML

Deep Ensembles

▪ Most inference methods tend to produce local approximations only
▪ VI methods typically learn an approximation around one of the modes

▪ Sampling methods may give most samples near one of the modes (though in principle they may
explore other modes as well)

▪ Thus the uncertainties may be underestimated in general

▪ Deep Ensembles* is a method that tries to address this issue
▪ Train the network 𝑀 times with different seeds and permutations of training data

▪ Denote the learned weights by 𝜃1, 𝜃2, … , 𝜃𝑀 (assuming these are 𝑀 modes)

▪ Approximate the posterior by the following

▪ This approach is considered non-Bayesian but often performs better (in terms of more diversity in
the set of parameters learned) than other inference methods

9

𝑝 𝜃 𝒟 =
1

𝑀
෍

𝑚=1

𝑀

𝛿𝜃𝑚(𝜃)

*Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles (Lakshminarayanan, 2017)

Akin to Bayesian Model

Averaging using 𝑀 models

Both VI and Sampling

may be prone to

capturing only a single

“Basin of attraction”

CS772A: PML

10

Deep Generative Models
(for unsupervised learning)

CS772A: PML

Generative Models for Unsupervised Learning

▪ Many generative models for unsupervised learning have this form

▪ Depending on the prior, likelihood, and 𝑓, various latent factor models arise, e.g.,

▪ Factor Analysis and Probabilistic PCA: 𝑝 𝒙 𝑓 𝒛 = 𝑁(𝒙|𝑾𝒛, Σ)

▪ Gaussian Process Latent Variable Models (GPLVM) – 𝑓 is nonlinear modeled by a GP

▪ Deep generative models (constructed using deep neural nets)

▪ Variational Autoencoders (VAE) - 𝑓 is nonlinear modeled by a neural net

▪ Generative Adversarial Network (GAN) – 𝑓 is nonlinear modeled by a neural net and
the likelihood is only implicitly defined

▪ Denoising Diffusion Models

▪ .. and several others..

11

𝒛𝑛 𝒙𝑛

𝑝(𝒙|𝑓 𝒛)𝑝(𝒛)
There also exist generative

models that do not have latent

variables (example: NADE)

Latent variable Observation

Can be used as a

“representation” or

“code” or “embedding”

(often low-dim) for 𝒙𝑛

CS772A: PML

Some Classical Models

12

CS772A: PML

Factor Analysis and Probabilistic PCA

▪ Assumption: Latent variables 𝒛𝑛 ∈ ℝ
𝐾 typically assumed to have a Gaussian prior

▪ If we want sparse latent variable, can use Laplace or spike-and-slab prior on 𝒛𝑛
▪ More complex extensions of FA/PPCA use a mixture of Gaussians prior on 𝒛𝑛

▪ Assumption: Observations 𝒙𝑛 ∈ ℝ
𝐷 typically assumed to have a Gaussian likelihood

▪ Other likelihood models (e.g., exp-family) can also be used if data not real-valued

▪ Relationship between 𝒛𝑛 and 𝒙𝑛 modeled by a noisy linear mapping

▪ Unknowns 𝑾, 𝒛𝑛’s, and Ψ can be learned
▪ EM, VI, MCMC

13

𝒙𝑛 = 𝑾𝒛𝑛 + 𝜖𝑛 =෍
𝑘=1

𝐾

𝒘𝑘𝑧𝑛𝑘 + 𝜖𝑛
Zero-mean and diagonal or

spherical Gaussian noise Diagonal for FA,

spherical for PPCA

𝑝 𝐳𝑛 = 𝒩 𝐳𝑛 0, 𝐈

𝑝 𝐱𝑛|𝐳𝑛 = 𝒩 𝒙𝑛 𝐖𝐳𝑛, Ψ
Linear combination

of the columns of 𝑾

CS772A: PML

Some Other Classical Models

▪ Gamma-Poisson latent factor model

▪ Assumes 𝐾-dim non-negative latent variable 𝐳n and 𝐷-dim count-valued observations 𝐱n
▪ An example: Each 𝐱n is the word-count vector representing a document

▪ This can be thought of as a probabilistic non-negative matrix factorization model

▪Dirichlet-Multinomial/Multinoulli PCA

▪ Assumes 𝐾-dim non-negative latent variable 𝐳n and 𝐷 categorical obs 𝐱n = {𝒙𝑛𝑑}𝑑=1
𝐷

▪ An example: Each 𝐱n is a document with 𝐷 words in it (each word is a categorical value)

14

𝑝 𝐳n = ς𝑘=1
𝐾 Gamma(znk|ak, bk))

𝑝 𝐱n|𝐳n = ς𝑑=1
𝐷 Poisson(xnd|𝑓(𝐰d, 𝐳n))

This is the rate of the Poisson. It should

be non-negative, exp(𝐰𝑑
⊤𝒛𝑛), or simply

𝐰𝑑
⊤𝒛𝑛 if 𝒘𝑑 is also non-negative (e.g.,

using a gamma/Dirichlet prior on it)

Popular for modeling count-

valued data (in text analysis,

recommender systems, etc)

𝑝 𝐳n = Dirichlet(𝐳n|𝜶)

𝑝 𝐱n|𝐳n = ς𝑑=1
𝐷 Multinoulli(xnd|𝑓(𝐰d, 𝐳n))

This should give the probability vector of

the multinoulli over 𝑥𝑛𝑑 . It should be

non-negative and should sums to 1

Also sums to 1

Non-negative priors often give a nice
interpretability to such latent
variable models (will see some more
examples of such models shortly)

CS772A: PML

Latent Dirichlet Allocation (LDA)
a.k.a. “Topic Model”

15

CS772A: PML

▪ Assume 𝐷 documents, and document 𝑑 has 𝑁𝑑 words in it

▪ We can represent doc 𝑑 by a word count vector 𝒘𝑑

▪ Assuming a vocab of 𝑉 unique words, 𝑤𝑑 is a 𝑉 × 1 vector of counts

▪ 𝑤𝑑𝑣 = no of times word 𝑣 appears in doc 𝑑

▪ Let’s model the docs by a mixture of 𝐾 multinomial distributions, each 𝑉-dim

▪ The 𝑘𝑡ℎ multinomial modeled by a 𝑉-dim prob vector 𝜙𝑘 (sums to 1)

▪ 𝜙𝑘 can be thought of as a “topic vector” (or just “topic”), 𝜙𝑘𝑣: prob of word 𝑣 in topic 𝑘

▪ Generative model and plate diagram below

Motivation: Multinomial Mixture Model for Text
16

𝑤𝑑𝒛𝑑𝜋
𝐷

𝜙𝑘
𝐾

𝒛𝑑 ∼ multinoulli(𝜋)

𝒘𝑑 ∼ multinomial(𝜙𝑧𝑑 , 𝑁𝑑)

Each representing a

“topic” (𝐾 topics)

Topic Mixing

proportion vector

Cluster/topic of

document 𝑑

𝐾 topic

distributions

Limitation: Each doc 𝑑 belongs to a single cluster
𝒛𝑑 and all words in a document assumed to be
from the same topic. This is unrealistic/restrictive

Counts will sum to 𝑁𝑑

Each topic is a prob.

distribution over word tokens

CS772A: PML

Documents can be about multiple topics
17

How do we find the

word-topic associations

in each document?

How do we use them

to learn topics in the

given text collection?

How do we learn low-dim

document representations in terms

of the topics they represent?

CS772A: PML

▪ Assume a corpus-level topic mixing proportions 𝜶 (𝐾 × 1 prob vector)

▪ Also assume doc-level topic mixing props 𝜃𝑑 (𝐾 × 1 prob vector)

▪ Instead of assuming a single cluster 𝒛𝑑 for doc 𝑑, cluster each word in it

▪ 𝒛𝑑,𝑛 ∈ {1,2,… , 𝐾} denotes the cluster/topic of word 𝑤𝑑,𝑛 ∈ {1,2,… , 𝑉}

▪ Can obtain the “average” clustering for doc 𝑑 using 𝜃𝑑 or ത𝒛𝑑 =
1

𝑁𝑑
σ𝑛=1
𝑁𝑑 𝒛𝑑,𝑛

▪ The generative model is as follows

A More Fine-Grained Mixture Model for Text
18

𝝓𝑘

𝐾
𝜶

Each assumed a one-hot

𝐾 × 1 vector

𝜃𝑑 ∼ Dirichlet 𝜶 𝑑 = 1,2, … , 𝐷

𝒛𝑑,𝑛 ∼ multinoulli(𝜃𝑑)

𝒘𝑑,𝑛 ∼ multinoulli(𝜙𝑧𝑑,𝑛)
𝑤𝑑,𝑛𝒛𝑑,𝑛𝜽𝑑

𝑁𝑑
𝐷

𝜙𝑘 ∼ Dirichlet 𝜼 𝑘 = 1,2, … , 𝐾
𝜼

(𝑉-dim Dirichlet)

(𝐾-dim Dirichlet)

Latent Dirichlet
Allocation* (LDA)
Topic Model

Locally-conjugate. Easy

Gibbs sampling, VI, etc

Somewhat similar to

Dir-Mult PCA model

CS772A: PML

▪ A very widely used probabilistic model for text data

▪ Nice and easy insights into the text collection

▪ Each 𝜙𝑘 = [𝜙𝑘1, … , 𝜙𝑘𝑉] can be interpreted as topic (𝜙𝑘𝑣 = prob. of word 𝑣 in topic 𝑘)

▪ 𝜃𝑑 = [𝜃𝑑1, … , 𝜃𝑑𝐾]: how much each topic is present in document 𝑑 (topic distribution)

▪ ത𝒛𝑑 =
1

𝑁𝑑
σ𝑛=1
𝑁𝑑 𝒛𝑑,𝑛 also has a similar interpretation as 𝜃𝑑

Latent Dirichlet Allocation (LDA)
19

𝜙1

𝜙2

𝜙3

𝜙4

Distribution

over topics

Word-topic

assignments

15 most frequent (most

probable) words from four most

prominent topics in this doc

Topic distribution for

the document on left

A topic is a set of words that

tend to co-occur together

CS772A: PML

▪ LDA is locally conjugate. Many inference methods (VI, variational EM, Gibbs samp, etc)

▪ Can even collapse some variables and do collapsed Gibbs or collapsed VB

▪ E.g., collapse 𝜃𝑑 and 𝜙𝑘 (if needed, these can be approximated using 𝐙)

▪Many ways to evaluate how well LDA performs on some data

▪ Extrinsic measures: Perform LDA and use its output for another task (e.g., classification)

▪ Perplexity is another intrinsic measure to evaluate LDA-style models

LDA: Inference and Evaluation
20

Test set with 𝑀 docs

Marginal likelihood of all

words in the 𝑑𝑡ℎ test doc

Lower is better

CS772A: PML

LDA: Limitations and Extensions

▪ LDA assumes topics remain static over time (improvement: Dynamic Topic Model)

▪ LDA assumes topics are uncorrelated (improvement: Corr-LDA)
▪ Use a logistic normal distribution on 𝜃𝑑 (cov matrix of log-normal makes component correlated)

▪ LDA ignores the sequential structure in the text (improvement: HMM-LDA)

21

𝑤𝑘
𝑡 ∼ 𝒩(𝑤𝑘

𝑡−1, 𝜎2𝐼) 𝜙𝑘
𝑡 = 𝒮(𝑤𝑘

𝑡)
Simplex transformation (convert

𝑤𝑘
𝑡 into a probability vector)

Assume a first-order

Markov evolution for

each topic w.r.t. time

Evolution of topic “Neuroscience”
(learned from the journal Science)

Fig courtesy: Dynamic Topic Models (Blei and Lafferty, 2006)

CS772A: PML

LDA Extensions (Contd)

▪ LDA for non-text data, e.g., images
▪ Each image can be represented as a bag of “visual words” and LDA can be applied

▪ Supervised/Labeled LDA (when we have have a label for each document)

▪ LDA for paired/multimodality data (e.g., images and text caption)

▪ LDA for graph-structured data instead of documents

22

Plate diagrams for some LDA extensions

LDA is also equivalent to doing a non-negative

matrix fact. of the 𝑉 × 𝐷 word-document

matrix 𝐗 using a Poisson likelihood model*

𝚽 (𝑉 × 𝐾) and 𝚯 (𝐾 × 𝐷) can be given any

non-negative priors (Dirichlet/gamma)

This can be extended to “deep” matrix

factorization** (modeling 𝚯 using many layers)

𝐗 ∼ Poisson(𝚽𝚯)

*Sec 4 and 5 of “Beta-Negative Binomial Process
and Poisson Factor Analysis” (Zhou et al, 2012)

** Poisson-gamma belief networks” (Zhou et al, 2015)

CS772A: PML

Next Class

▪ Generative models using deep neural networks
▪ Variational Autoencoders

▪ Generative Adversarial Networks

▪ Denoising Diffusion Models

23

