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▪ Some other benefits of probabilistic machine learning

▪ Some basic ideas
▪ Likelihood, prior, posterior, marginal likelihood

▪ Parameter estimation via MLE, MAP, and fully Bayesian inference
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Use Probabilistic ML 
also because..
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Can Learn Data Distribution and Generate Data

▪Often wish to learn the underlying probability 
distribution 𝑝(𝒙) of the data from inputs 𝑥1, 𝑥2, … , 𝑥𝑁

▪ The task is commonly known as generative modeling

▪ Usually an unsupervised learning problem

▪ Useful for many tasks, e.g.,
▪ Can sample from this distribution to generate new “artificial” 

but realistic-looking data

▪ Outlier/novelty detection: Outliers will have low probability 
under 𝑝(𝒙)

4

Several models, such as generative adversarial 

networks (GAN), variational auto-encoders (VAE), 

denoising diffusion models, etc can generate realistic 

looking data (we will study some of these)

Pic credit: https://medium.com/analytics-vidhya/an-introduction-to-generative-deep-learning-792e93d1c6d4

▪Note: Even supervised learning problems can be thought of as generative 
modeling of  𝑝(𝑦|𝑥) (or if  we also wish to model the inputs 𝑥 then of 𝑝(𝑥, 𝑦)
using which we can get 𝑝(𝑦|𝑥) via Bayes rule) 

The probabilistic perspective of 

thinking about supervised learning
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Learning Latent Structures within Data

▪ Can endow generative models of data with latent variables. For example:

▪ Such models are used in many problems, especially unsupervised learning: Gaussian 
mixture model, probabilistic PCA, topic models, deep generative models, etc.

▪ We will look at several of these in this course and way to learn such models
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Each data point 𝒙𝑛 is 

associated with a 

latent variable 𝒛𝑛

The latent variable 𝒛𝑛 can be used to 

encode some property of 𝒙𝑛 (e.g., its 

cluster membership, or its low-dim 

representation, or missing parts of 𝒙𝑛)
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Helps in Sequential Decision-Making Problems

▪ Sequential decision-making: Information about uncertainty can “guide” us, e.g.,

▪ Applications in active learning, reinforcement learning, Bayesian optimization, etc
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Given our current estimate of the 

regression function, which training 

input(s) should we add next to 

improve its estimate the most?

Uncertainty can help here: Acquire training 

inputs from regions where the function is 

most uncertain about its current predictions

Blue curve is the mean of the 

function (learned so far using

the available data), shaded 

region denotes the current

predictive uncertainty
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Can Better Handle OOD Data

▪Many modern deep neural networks (DNN) tend to be overconfident

▪ Especially true if  test data is “out-of-distribution (OOD)”

▪ Prob. deep models often provide better uncertainty estimates to flag OOD data
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Low 
confidence

High 
confidence

Class 1

Class 2

Some OOD 
test data

Desirable confidence map Confidence map of a 
non-probabilistic DNN

Model has high confidence for 

predictions on even inputs that 

are far away from training data 

Overconfident

model

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” (Liu et al, 2020)

Confidence map of a probabilistic 
DNN incorporating uncertainty

For classification, “confidence” 

refers to the probability of the class 

predicted to be the most likely

One of the reasons is that they 

don’t incorporate uncertainty

https://papers.nips.cc/paper/2020/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf


CS772A: PML

Hyperparameter Estimation

▪ML models invariably have hyperparams, e.g., regularization/kernel h.p. in a 
linear/kernel regression, h.p.’s of a deep neural network, etc.

▪ Can specify the h.p.’s as additional unknowns and estimate them as well

▪ Can then estimate them, e.g., using a point estimate or a posterior distribution

▪ To find point estimate of h.p.’s, we can maximize 𝑝(𝐗|𝛼)w.r.t. the h.p.’s (details later)

▪ Posterior on h.p.’s can also be estimated using a prior on them (details later)
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A way to find the point estimate of 

the hyperparameters by 

maximizing the marginal likelihood

ො𝛼 = argmax
𝛼

log 𝑝(𝐗|𝛼)

= argmax
𝛼

log ∫ 𝑝 𝐗 𝜃 𝑝 𝜃 𝛼 𝜃

The approach of using marginal 

likelihood for doing such thing has some 

issues (e.g., dependence on the prior)

*Bayesian Model Selection, the Marginal Likelihood, and Generalization (Lotfi et al, 2022)

Other quantities can be used such as “conditional” 

marginal likelihood* σ𝑖=𝑘
𝑁 log 𝑝(𝑥𝑖|𝐗<𝑖 , 𝛼) for 𝑘 >= 1

(more on this later)

Assuming 𝜃 (its prior 

distribution) depends on 𝛼

Marginal likelihood (more on this 

later) is like an “averaged” 

likelihood (averaged over all 

parameters drawn from the prior)

This doesn’t require a 

separate validation set 

unlike cross-validation

Pretty much the same way 

we estimate other unknowns

https://arxiv.org/pdf/2202.11678.pdf
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Hierarchical Modeling

▪ Can design models that can jointly learn from multiple datasets and share information 
across multiple datasets using shared parameters with a prior distribution
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An example of transfer learning 

or multitask learning using a 

probabilistic approach

Example: Estimating the means 

of 𝑚 datasets, assuming the 

means are somewhat related. 

Can do this jointly rather than 

estimating independently

Easy to do it using a probabilistic 

approach with shared parameters (will 

see details later)

Helps especially if  the 

amount of training 

data per task is small

𝑝(𝜃𝑖|𝜃∗)

Prior with shared 

𝜃∗ parameters 
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Non-probabilistic ML Methods?

▪ Some non-probabilistic ML methods can give probabilistic answers via heuristics

▪ Doesn’t mean these methods are not useful/used but they don’t follow the PML 
paradigm, so we won’t study them in this course

▪ Some examples which you may have seen

▪ Converting distances from hyperplane (in hyperplane classifiers) to compute class probabilities

▪ Using class-frequencies in nearest neighbors to compute class probabilities

▪ Using class-frequencies at leaves of a Decision Tree to compute class probabilities

▪ Soft k-means clustering to compute probabilistic cluster memberships
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Or methods like Platt 

Scaling used to get class

probabilities for SVMs
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Basics of Probabilistic ML 
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Probabilistic Modeling

▪ Assume data 𝐗 = {𝒙𝑛}𝑛=1
𝑁 generated from a prob distribution with params 𝜃

▪ 𝑝 𝒙 𝜃,𝑚 is also known as the likelihood (a function of the parameters 𝜃)

▪ Assume a prior distribution 𝑝(𝜃|𝑚) on the parameters 𝜃

▪Note: Here 𝑚 collectively denotes “all other stuff” about the model, e.g.,
▪ An “index” for the type of model being considered (e.g., the type of distribution for 𝒙)

▪ Any other (hyper)parameters of the likelihood/prior

▪Note: Usually we will omit the explicit use of 𝑚 in the notation
▪ In some situations (e.g., when doing model comparison/selection), we will use it explicitly

▪Note: For some models, the likelihood is not defined explicitly using a probability 
distribution but implicitly† via a probabilistic simulation process
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𝒙𝑛 ∼ 𝑝 𝒙 𝜃,𝑚 𝑛 = 1,2, … , 𝑁

†Hierarchical Implicit Models and Likelihood-Free Variational Inference (Tran et al (NIPS 2017))
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Probabilistic Modeling

▪ The prior 𝑝(𝜃|𝑚) plays an important role in probabilistic/Bayesian modeling
▪ Reflects our prior beliefs about possible parameter values before seeing the data

▪ Can be “subjective” or “objective” (also a topic of debate, which we won’t get into)

▪ Subjective: Prior (our beliefs) derived from past experiments

▪ Objective: Prior represents “neutral knowledge” (e.g.. uniform, vague prior)

▪ Can also be seen as a regularizer (connection with non-probabilistic view)

▪ The goal of probabilistic modeling is usually one or more of the following
▪ Infer the unknowns/parameters 𝜃 given data 𝐗 (to summarize/understand the data)

▪ Use the inferred quantities to make predictions
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Parameter Estimation/Inference

▪ Can infer params by computing posterior distribution (fully Bayesian inference)

▪ Marginal likelihood is an important quantity (used for hyperparam est. or model sel.) 

▪ It’s the probability of data after integrating out some/all of the unknowns from the likelihood 𝑝(𝐗|𝜃,𝑚)

▪ 𝑝(𝐗|𝑚) above is the likelihood obtained after integrating out 𝜃 from the likelihood 𝑝(𝐗|𝜃,𝑚)

▪ Not always available in closed form (the key reason why full posterior is often hard to compute)
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𝑝 𝜃 𝐗,𝑚 =
𝑝(𝐗|𝜃,𝑚)𝑝 𝜃|𝑚

𝑝(𝐗|𝑚)
=

𝑝(𝐗|𝜃,𝑚)𝑝 𝜃|𝑚

∫ 𝑝(𝐗|𝜃,𝑚)𝑝 𝜃|𝑚 𝑑𝜃
=

likelihood × prior

marginal likelihood

Note: Prior and posterior are 

distributions over 𝜃. Likelihood

is just a function of 𝜃

Posterior’s spread/variance 

gets smaller as we use more 

and more data to infer it



CS772A: PML

Point Estimation of Parameters

▪ Recall that the posterior is 

▪ Point estimation is a cheaper alternative to computing the full posterior

▪ Maximum likelihood (ML) estimation: Find 𝜃 for which observed data has largest probability

▪ Maximum a posteriori (MAP) estimation: Find 𝜃 that has the largest posterior probability
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𝑝 𝜃 𝐗,𝑚 =
𝑝(𝐗|𝜃,𝑚)𝑝 𝜃|𝑚

𝑝(𝐗|𝑚)

መ𝜃𝑀𝐿 = argmax
𝜃

log 𝑝(𝐗|𝜃)

መ𝜃𝑀𝐴𝑃 = argmax
𝜃

log 𝑝 𝜃 𝐗 = argmax
𝜃

[log 𝑝 𝐗 𝜃 + log 𝑝 𝜃 ]

In some problems as we will see, hybrid 

inference is also possible/desirable –

infer full posterior for some parameters 

and point estimate for others

= argmin
𝜃

− log 𝑝(𝐗|𝜃) = argmin
𝜃

𝑁𝐿𝐿(𝜃)
Negative Log likelihood (equivalent to a loss function)

Akin to a regularizer added to the loss

= argmin
𝜃

[𝑁𝐿𝐿 𝜃 − log 𝑝 𝜃 ]
Note: The regularizer

hyperparameter is part 

of the prior

Like MLE with info from prior added

Intractable to compute except 

for some  very simple models or 

if  the likelihood and prior are 

conjugate (discussed later) to 

each other

Intractable mainly because the 

marginal likelihood (the denominator 

on the RHS is intractable in general)
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Making Predictions: Predictive Distribution

▪ Posterior can be used to compute the posterior predictive distribution (PPD)

▪ PPD is essentially our test time prediction using the learned model

▪ The PPD of a new observation 𝒙∗ given previous observations 𝐗 (𝑚 assumed fixed)

▪ Computing PPD requires doing a posterior-weighted averaging over all values of 𝜃

▪ A crude approximation: Instead of PPD, just use a plug-in predictive distribution

▪ Plug-in pred. is the same as PPD with 𝑝(𝜃|𝐗,𝑚) approximated by a point mass at 𝜃
▪ If  we are using plug-in predictive, we are not really being Bayesian!
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𝑝 𝒙∗ 𝐗,𝑚 = ∫ 𝑝(𝒙∗, 𝜃|𝐗,𝑚) 𝑑𝜃 = ∫ 𝑝 𝒙∗ 𝜃, 𝐗,𝑚 𝑝(𝜃|𝐗,𝑚) 𝑑𝜃

= ∫ 𝑝 𝒙∗ 𝜃,𝑚 𝑝(𝜃|𝐗,𝑚) 𝑑𝜃Assuming observations 

are i.i.d. given 𝜃

𝑝 𝒙∗ 𝐗,𝑚 ≈ 𝑝 𝒙∗ መ𝜃,𝑚
Here 𝜃 is the ML or MAP 

estimate of the parameters

Prediction by averaging over the posterior 

distribution of the unknowns parameters

However, this ignores all 

the uncertainty about 𝜃

This integral is only 

rarely tractableJust a simple example. The actual form of PPD 

(e.g., what we are predicting and what we 

condition on, etc) will depend on the problem, 

e.g., 𝑝(𝑦∗|𝒙∗, 𝐗, 𝒚) in supervised learning

Past (training) dataNew (test) data



CS772A: PML

Model Selection and Model Averaging

▪ Can use Bayes rule to find the best model from a set of models 𝑚 = 1,2,… ,𝑀

▪ If  all models equally likely a priori then

▪ For PPD, can use either the best model ෝ𝑚 or can average over all models 

17

𝑝 𝑚 𝐗 =
𝑝(𝐗|𝑚)𝑝 𝑚

𝑝(𝐗)
=

𝑝(𝐗|𝑚)𝑝 𝑚

σ𝑚=1
𝑀 𝑝(𝐗|𝑚)𝑝 𝑚

ෝ𝑚 = arg max
𝑚

𝑝 𝑚 𝐗Best model

Posterior 

probability 

of model 𝑚

Marginal likelihood 

of model 𝑚
Prior probability of 

choosing model 𝑚

Marginal likelihood 

over all models

= arg max
𝑚

𝑝(𝐗|𝑚)𝑝 𝑚

ෝ𝑚 = arg max
𝑚

𝑝(𝐗|𝑚)

Will discuss later how 

to compute marginal 

likelihood

In general, intractable 

to compute exactly

𝑝 𝑥∗ 𝐗 = 
𝑚=1

𝑀

𝑝 𝑥∗ 𝐗,𝑚 𝑝(𝑚|𝐗)𝑝 𝑥∗ 𝐗 ≈ 𝑝 𝑥∗ 𝐗, ෝ𝑚
OR

𝑝 𝐗 𝑚 = ∫ 𝑝 𝐗 𝜃,𝑚 𝑝 𝜃 𝑚 𝑑𝜃

Test data Training data

Integrating out all 

unknown parameters of 

the model
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Marginal Likelihood: An Illustration

▪Marginal likelihood is a hard-to-compute but an important quantity

▪ 𝑝(𝐗|𝛼) where 𝛼 is a hyperparameter can be used to find the best hyperparameter

▪ 𝑝(𝐗|𝑚) where 𝑚 is a model index can be used to find the best model

▪ Recall that marg. lik. is akin to “averaged” likelihood: 
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𝑝
(𝐗
|𝑚

)

Green lines/curves in each plot 

are parameters drawn from the 

prior 𝑝(𝜃|𝑚)

For a good model, most parameters from the 

prior will fit the expected trend reasonably 

(thus their averaged likelihood will be large). 

For a bad model, only a few params will fit well 

and others won’t (e.g., 𝑚 = 4 − 7 in right fig)

𝑝 𝐗 𝑚 = ∫ 𝑝 𝐗 𝜃,𝑚 𝑝 𝜃 𝑚 𝑑𝜃

Fitting regression models with 
polynomial degree 𝑚

Note that we can get these plots (and 

compute marginal likelihood) before doing 

parameter estimation for each model

No validation 

data needed


