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Estimating a Coin’s Bias: MLE

= Consider a sequence of N coin toss outcomes (observations) Probability
of a head

" Fach observation vy, is a binary random variable. Head: y,, = 1, Tail: y,, = 0

* Fach y, is assumed generated by a Bernoulli distribution with param 8 € (0,1)

Likelihood or _ 1—
observation model P(yn|9) = Bernomh()’nl@) = grn (1-26) In

" Here 6 the unknown param (probability of head). Want to estimate it using MLE

assuming i.i.d. data

" Log-likelihood: Yp=1 108 p(¥10) = IN_; [yulog8 + (1 —yy)log (1 — 6)]

* Maximizing log-lik, or minimizing neg. log-lik (NLL) w.rt. 8 gives

| g ) ) o and N Thus MLE Indeed, with a small number of
tOS,SG a comn 5 times — gave 1?? cad an —1 yn solution is simply | | training observations, MLE may
4 tails. Does it means 6 = OZ 2 The 6 — n= the fraction of overfit and may not be reliable. An
MLE approach Says so.lV\/hat s I'see O MLE N heads! © Makes | | alternative is MAP estimation
& head and 5 tails. Does it mean 8 = Q7 ntuitive sensel which can incorporate a prior
. distribution over 8
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Estimating a Coin’s Bias: MAP

" | et's again consider the coin-toss problem (estimating the bias of the coin)

= Fach likelihood term is Bernoulli
p(y,10) = Bernoulli(y,|0) = 67 (1 — )17 In

" Also need a prior since we want to do MAP estimation

" Since 8 € (0,1), a reasonable choice of prior for 8 would be Beta distribution

- Tla+p)
POIEE) = Har)

The gamma function «a and B (both non-negative reals)
are the two hyperparameters of this

Beta prior

6&—1(1 _ H)ﬁ—l

Usinga = 1 and f = 1 will make
the Beta prior a uniform prior

Can set these based on intuition,
cross-validation, or even learn them




Estimating a Coin’s Bias: MAP

" The log posterior for the coin-toss model is log-lik + log-prior

N
LP(0) =z log p(y,10) +logp(Bla,p)

n=1
" Plugging in the expressions for Bernoulli and Beta and ignoring any terms that
don't depend on 8, the log posterior simplifies to
N
LP(0) = z |y, log0 4+ (1 —y,)log(1—6)]+ (a—1)logh + (f — 1)log(1 —0)

n=1

= Maximizing the above log post. (or min. of its negative) w.rt. 8 gives

Prior's hyperparameters have an

Usinga = 1and f = 1 gives us N +a—1 interesting interpretation. Can think of
the same solution as MLE H _ n=1 Yn a — 1 and B — 1 as the number of

MAP — N + a + ﬁ — 9 heads and tails, respectively, before
Recall that @ = 1 and 8 = 1 for Beta starting the coin-toss experiment
distribution is in fact equivalent toa Such interpretations of prior's hyperparameters as (akin to “pSGUdO_ObservaﬂonS”)
uniform pr]or (hence making MAP being “pseudo-observations” exist for various other

val MLE prior distributions as well (in particular, distributions
equivalent to ) belonging to “exponential family” of distributions CS772A: PML



Estimating a Coin’s Bias: Fully Bayesian Inference

" |n fully Bayesian inference, we compute the posterior distribution
= Bernoulli likelihood: p(y,,|6) = Bernoulli(y,|0) = 6Yr (1 — 0)* ™ ¥»

= Beta prior: p(6) = Beta(@|a, ) = Fiii;f[;) 9“‘1(% — Hf)hﬁd_iv) Number of tails (Np)

" [he posterior can be computed as IN=1Yn (1 — G)N-IN=1Yn

p(0y) = LOPOIO) _ p(@) Mo pOnl6) _ o 000 Moo oo
p(y) p(y) f%@a—l(l_g)ﬁ—l Hg:l Yyn (1-0)1-Ynde

" Here, even without computing the denominator (marg lik), we can identify the posterior
= |t s Beta distribution since p(0|y) 0.4 9“+N1_1(1 — 9)'B+N0_1 Exercise: Show that the A

. Hint: Use the fact that the normalization constant equals | G | /
= Thus p(@ |y) — Beta(e | a + Nl' :B + NO) posterior must integrate to 1 r(“+zf=1r’;")r(5+n’:‘;_2f=l Xn) e»
[ p(6ly)ds = 1 e

" Here, finding the posterior boiled down to simply "multiply, add stuff, and identify”

" Here, posterior has the same form as prior (both Beta): property of conjugate prigrs.. st



Conjugacy and Conjugate Priors

* Many pairs of distributions are conjugate to each other
= Bernoulli (likelihood) + Beta (prior) = Beta posterior
= Binomial (likelihood) + Beta (prior) = Beta posterior
= Multinomial (likelihood) + Dirichlet (prior) = Dirichlet posterior | Not true in general, but in some
: : : . , cases (e.g., the variance of the
= Poisson (likelihood) + Gamma (prior) = Gamma posterior Gaussian likelihood is fixed)
" Gaussian (likelihood) + Gaussian (prior) = Gaussian posterior

" and many other such pairs ..

= Tip: If two distr are conjugate to each other, their functional forms are similar

» Example: Bernoulli and Beta have the forms This is why, when we multiply them while
computing the posterior, the exponents get added
. _ ny _ o\1-y and we get the same form for the posterior as the
Bernoulh(yl@) =0 (1 0) prior but with just updated hyperparameter. Also,
F(Ol + ﬁ) we can identify the posterior and its
Beta(@|a,f) = ———= 0% 1(1 - H)ﬁ_l hyperparameters simply by inspection
F(a)r'(B)

= More on conjugate priors when we ook at exponential family distributionscs772A_ .



Making Predictions

" Suppose we want to compute the prob that the next outcome xpy 44 Will be head (=1)
= The plug-in predictive distribution using a point estimate 8 (e.g., using MLE/MAP)

p(xns1 = 1|X) = p(xns1 = 1|6) = 6 or equivalently p(xn+1]X) =~ Bernoulli(xys1 | 6)

" The posterior predictive distribution (averaging over all 8's weighted by their respective

osterior probabilities
’ ’ ) p(xnt1 = 1|X) = /1 P(xn+1 = 1[0)p(6|X)d6
Jo

1
= / 6 x Beta(f|a + N1, B+ No)d6
Jo

Expectation of 8 wurt. the Beta
— E[Q | X] posterior distribution

a + Ny
a+ B+ N

» Therefore the PPD is p(xn41|X) = Bernoulli(xy41 | E[0]X])
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