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Estimating a Coin’s Bias: MLE
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▪ Consider a sequence of 𝑁 coin toss outcomes (observations)

▪ Each observation 𝑦𝑛 is a binary random variable. Head: 𝑦𝑛 = 1, Tail: 𝑦𝑛 = 0

▪ Each 𝑦𝑛 is assumed generated by a Bernoulli distribution with param 𝜃 ∈ (0,1)

▪ Here 𝜃 the unknown param (probability of head). Want to estimate it using MLE

▪ Log-likelihood: σ𝑛=1
𝑁 log 𝑝 𝑦𝑛 𝜃 = σ𝑛=1

𝑁 [𝑦𝑛log θ + (1 − 𝑦𝑛)log (1 − 𝜃)]

▪ Maximizing log-lik, or minimizing neg. log-lik (NLL) w.r.t. 𝜃 gives 

𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 = 𝜃𝑦𝑛 (1 − 𝜃)1−𝑦𝑛

Probability 

of a head

𝜃𝑀𝐿𝐸 =
σ𝑛=1
𝑁 𝑦𝑛
𝑁

Thus MLE 

solution is simply 

the fraction of 

heads! ☺ Makes 

intuitive sense!

I tossed a coin 5 times – gave 1 head and 

4 tails. Does it means 𝜃 = 0.2?? The 

MLE approach says so. What is I see 0 

head and 5 tails. Does it mean 𝜃 = 0? 

Indeed, with a small number of 

training observations, MLE may 

overfit and may not be reliable. An 

alternative is MAP estimation 

which can incorporate a prior 

distribution over 𝜃

assuming i.i.d. data

Likelihood or 

observation model
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Estimating a Coin’s Bias: MAP
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▪ Let’s again consider the coin-toss problem (estimating the bias of the coin)

▪ Each likelihood term is Bernoulli 

▪ Also need a prior since we want to do MAP estimation

▪ Since 𝜃 ∈ (0,1), a reasonable choice of prior for 𝜃 would be Beta distribution

𝑝 𝜃 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1 − 𝜃 𝛽−1

The gamma function 𝛼 and 𝛽 (both non-negative reals) 

are the two hyperparameters of this 

Beta prior
Using 𝛼 = 1 and 𝛽 = 1 will make 

the Beta prior a uniform prior

Can set these based on intuition, 

cross-validation, or even learn them

𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 = 𝜃𝑦𝑛 (1 − 𝜃)1−𝑦𝑛
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Estimating a Coin’s Bias: MAP
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▪ The log posterior for the coin-toss model is log-lik + log-prior

▪ Plugging in the expressions for Bernoulli and Beta and ignoring any terms that 
don’t depend on 𝜃, the log posterior simplifies to

▪ Maximizing the above log post. (or min. of its negative) w.r.t. 𝜃 gives

𝐿𝑃 𝜃 =෍
𝑛=1

𝑁

log 𝑝 𝑦𝑛 𝜃 + log 𝑝 𝜃 𝛼, 𝛽

𝐿𝑃 𝜃 =෍
𝑛=1

𝑁

𝑦𝑛log θ + (1 − 𝑦𝑛 log 1 − 𝜃 ] + 𝛼 − 1 log 𝜃 + 𝛽 − 1 log(1 − 𝜃)

𝜃𝑀𝐴𝑃 =
σ𝑛=1
𝑁 𝑦𝑛 + 𝛼 − 1

𝑁 + 𝛼 + 𝛽 − 2

Using 𝛼 = 1 and 𝛽 = 1 gives us 

the same solution as MLE

Recall that 𝛼 = 1 and 𝛽 = 1 for Beta 

distribution is in fact equivalent to a 

uniform prior (hence making MAP 

equivalent to MLE)

Prior’s hyperparameters have an 

interesting interpretation. Can think of 

𝛼 − 1 and 𝛽 − 1 as the number of 

heads and tails, respectively, before 

starting the coin-toss experiment 

(akin to “pseudo-observations”)
Such interpretations of prior’s hyperparameters as 

being “pseudo-observations” exist for various other 

prior distributions as well (in particular, distributions 

belonging to “exponential family” of distributions
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Estimating a Coin’s Bias: Fully Bayesian Inference

▪ In fully Bayesian inference, we compute the posterior distribution

▪ Bernoulli likelihood: 𝑝 𝑦𝑛 𝜃 = Bernoulli 𝑦n 𝜃 = 𝜃𝑦𝑛 (1 − 𝜃)1−𝑦𝑛

▪ Beta prior: 𝑝 𝜃 = Beta 𝜃 𝛼, 𝛽 =
Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1 − 𝜃 𝛽−1

▪ The posterior can be computed as 

▪ Here, even without computing the denominator (marg lik), we can identify the posterior
▪ It is Beta distribution since 

▪ Thus 𝑝 𝜃 𝒚 = Beta 𝜃 𝛼 + 𝑁1, 𝛽 + 𝑁0

▪ Here, finding the posterior boiled down to simply “multiply, add stuff, and identify”

▪ Here, posterior has the same form as prior (both Beta): property of conjugate priors.
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𝑝 𝜃 𝒚 =
𝑝 𝜃 𝑝(𝒚|𝜃)

𝑝(𝒚)
=

𝑝 𝜃 ς𝑛=1
𝑁 𝑝(𝑦𝑛|𝜃)

𝑝(𝒚)
=

Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1−𝜃 𝛽−1 ς𝑛=1

𝑁 𝜃𝑦𝑛 (1−𝜃)1−𝑦𝑛

∫
Γ(𝛼+𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1−𝜃 𝛽−1 ς𝑛=1

𝑁 𝜃𝑦𝑛 (1−𝜃)1−𝑦𝑛𝑑𝜃

𝜃σ𝑛=1
𝑁 𝑦𝑛 (1 − 𝜃)𝑁−σ𝑛=1

𝑁 𝑦𝑛

Number of heads (𝑁1)

Number of tails (𝑁0)

𝑝 𝜃 𝒚 ∝ 𝜃𝛼+𝑁1−1 1 − 𝜃 𝛽+𝑁0−1 Exercise: Show that the 

normalization constant equals
Hint: Use the fact that the 

posterior must integrate to 1

∫ 𝑝 𝜃 𝒚 𝑑𝜃 = 1
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Conjugacy and Conjugate Priors
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▪Many pairs of distributions are conjugate to each other
▪ Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior 

▪ Binomial (likelihood) + Beta (prior) ⇒ Beta posterior 

▪ Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior 

▪ Poisson (likelihood) + Gamma (prior) ⇒ Gamma posterior 

▪ Gaussian (likelihood) + Gaussian (prior) ⇒ Gaussian posterior 

▪ and many other such pairs ..

▪ Tip: If  two distr are conjugate to each other, their functional forms are similar
▪ Example: Bernoulli and Beta have the forms

▪More on conjugate priors when we look at exponential family distributions

Not true in general, but in some 

cases (e.g., the variance of the 

Gaussian likelihood is fixed)

Bernoulli 𝑦 𝜃 = 𝜃𝑦 (1 − 𝜃)1−𝑦

Beta 𝜃 𝛼, 𝛽 =
Γ(𝛼 + 𝛽)

Γ 𝛼 Γ 𝛽
𝜃𝛼−1 1 − 𝜃 𝛽−1

This is why, when we multiply them while 

computing the posterior, the exponents get added 

and we get the same form for the posterior as the 

prior but with just updated hyperparameter. Also, 

we can identify the posterior and its 

hyperparameters simply by inspection



CS772A: PML

Making Predictions

▪ Suppose we want to compute the prob that the next outcome 𝑥𝑁+1 will be head (=1)

▪ The plug-in predictive distribution using a point estimate መ𝜃 (e.g., using MLE/MAP)

▪ The posterior predictive distribution (averaging over all 𝜃’s weighted by their respective 
posterior probabilities)

▪ Therefore the PPD is 

7

Expectation of 𝜃 w.r.t. the Beta 

posterior distribution


