Parameter Estimation in Probabilistic Models: An Example

CS772A: Probabilistic Machine Learning

Piyush Rai

Estimating a Coin's Bias: MLE

- Consider a sequence of N coin toss outcomes (observations)
- Each observation y_{n} is a binary random variable. Head: $y_{n}=1$, Tail: $y_{n}=0$
- Each y_{n} is assumed generated by a Bernoulli distribution with param $\theta \in(0,1)$

Likelihood or
observation model
\square

- Here θ the unknown param (probability of head). Want to estimate it using MLE assuming i.i.d. data
- Log-likelihood: $\sum_{n=1}^{N} \log p\left(y_{n} \mid \theta\right)=\sum_{n=1}^{N}\left[y_{n} \log \theta+\left(1-y_{n}\right) \log (1-\theta)\right]$
- Maximizing log-lik, or minimizing neg. log-lik (NLL) w.r.t. θ gives

Indeed, with a small number of training observations, MLE may overfit and may not be reliable. An alternative is MAP estimation which can incorporate a prior distribution over θ

Estimating a Coin's Bias: MAP

- Let's again consider the coin-toss problem (estimating the bias of the coin)
- Each likelihood term is Bernoulli

$$
p\left(y_{n} \mid \theta\right)=\operatorname{Bernoulli}\left(y_{\mathrm{n}} \mid \theta\right)=\theta^{y_{n}}(1-\theta)^{1-y_{n}}
$$

- Also need a prior since we want to do MAP estimation
- Since $\theta \in(0,1)$, a reasonable choice of prior for θ would be Beta distribution

$\qquad p(\theta \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}$
The gamma function
:---
are the two hyperparameters of this
Beta prior

Estimating a Coin's Bias: MAP

- The log posterior for the coin-toss model is log-lik + log-prior

$$
L P(\theta)=\sum_{n=1}^{N} \log p\left(y_{n} \mid \theta\right)+\log p(\theta \mid \alpha, \beta)
$$

- Plugging in the expressions for Bernoulli and Beta and ignoring any terms that don't depend on θ, the log posterior simplifies to

$$
L P(\theta)=\sum_{n=1}^{N}\left[y_{n} \log \theta+\left(1-y_{n}\right) \log (1-\theta)\right]+(\alpha-1) \log \theta+(\beta-1) \log (1-\theta)
$$

- Maximizing the above log post. (or min. of its negative) w.r.t. θ gives

Estimating a Coin's Bias: Fully Bayesian Inference

- In fully Bayesian inference, we compute the posterior distribution
- Bernoulli likelihood: $p\left(y_{n} \mid \theta\right)=\operatorname{Bernoulli}\left(y_{\mathrm{n}} \mid \theta\right)=\theta^{y_{n}}(1-\theta)^{1-y_{n}}$
- Beta prior: $p(\theta)=\operatorname{Beta}(\theta \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}$

$$
\text { Number of tails }\left(N_{0}\right)
$$

- The posterior can be computed as

$$
\theta^{\sum_{n=1}^{N} y_{n}}(1-\theta)^{N-\sum_{n=1}^{N} y_{n}}
$$

$$
\boldsymbol{p}(\theta \mid \boldsymbol{y})=\frac{p(\theta) p(y \mid \theta)}{p(\boldsymbol{y})}=\frac{p(\theta) \prod_{n=1}^{N} p\left(y_{n} \mid \theta\right)}{p(\boldsymbol{y})}=\frac{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} \prod_{n=1}^{N} \theta^{y_{n}}(1-\theta)^{1-y_{n}}}{\int \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} \prod_{n=1}^{N} \theta^{y_{n}(1-\theta)^{1-y_{n} d \theta}}}
$$

- Here, even without computing the denominator (marg lik), we can identify the posterior
- It is Beta distribution since $p(\theta \mid \boldsymbol{y}) \propto \theta^{\alpha+N_{1}-1}(1-\theta)^{\beta+N_{0}-1}$

> Exercise: Show that the

- Thus $p(\theta \mid \boldsymbol{y})=\operatorname{Beta}\left(\theta \mid \alpha+N_{1}, \beta+N_{0}\right)$

- Here, finding the posterior boiled down to simply "multiply, add stuff, and identify"
- Here, posterior has the same form as prior (both Beta): property of conjugate pridersa: PML

Conjugacy and Conjugate Priors

- Many pairs of distributions are conjugate to each other
- Bernoulli (likelihood) + Beta (prior) \Rightarrow Beta posterior
- Binomial (likelihood) + Beta (prior) \Rightarrow Beta posterior
- Multinomial (likelihood) + Dirichlet (prior) \Rightarrow Dirichlet posterior
- Poisson (likelihood) + Gamma (prior) \Rightarrow Gamma posterior

Not true in general, but in some cases (e.g., the variance of the Gaussian likelihood is fixed)

- Gaussian (likelihood) + Gaussian (prior) \Rightarrow Gaussian posterior
- and many other such pairs ..
- Tip: If two distr are conjugate to each other, their functional forms are similar
- Example: Bernoulli and Beta have the forms

$$
\begin{aligned}
\text { Bernoulli }(y \mid \theta) & =\theta^{y}(1-\theta)^{1-y} \\
\operatorname{Beta}(\theta \mid \alpha, \beta) & =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}
\end{aligned}
$$

This is why, when we multiply them while computing the posterior, the exponents get added and we get the same form for the posterior as the prior but with just updated hyperparameter. Also, we can identify the posterior and its
hyperparameters simply by inspection

- More on conjugate priors when we look at exponential family distributions

Making Predictions

- Suppose we want to compute the prob that the next outcome x_{N+1} will be head (=1)
- The plug-in predictive distribution using a point estimate $\hat{\theta}$ (e.g., using MLE/MAP)

$$
p\left(\boldsymbol{x}_{N+1}=1 \mid \mathbf{X}\right) \approx p\left(\boldsymbol{x}_{N+1}=1 \mid \hat{\theta}\right)=\hat{\theta} \quad \text { or equivalently } \quad p\left(x_{N+1} \mid \mathbf{X}\right) \approx \operatorname{Bernoulli}\left(\boldsymbol{x}_{N+1} \mid \hat{\theta}\right)
$$

- The posterior predictive distribution (averaging over all θ 's weighted by their respective posterior probabilities)

$$
\begin{aligned}
p\left(\boldsymbol{x}_{N+1}=1 \mid \mathbf{X}\right) & =\int_{0}^{1} P\left(\boldsymbol{x}_{N+1}=1 \mid \theta\right) p(\theta \mid \mathbf{X}) d \theta \\
& =\int_{0}^{1} \theta \times \operatorname{Beta}\left(\theta \mid \alpha+N_{1}, \beta+N_{0}\right) d \theta \\
& =\mathbb{E}[\theta \mid \mathbf{X}] \sqrt{\text { Expectation of } \theta \text { wr.r.t. the Beta }} \text { posterior distribution } \\
& =\frac{\alpha+N_{1}}{\alpha+\beta+N}
\end{aligned}
$$

- Therefore the PPD is $p\left(\boldsymbol{x}_{N+1} \mid \mathbf{X}\right)=\operatorname{Bernoulli}\left(\boldsymbol{x}_{N+1} \mid \mathbb{E}[\theta \mid \mathbf{X}]\right)$

