Approx. Inference via Sampling (wrap-up),
Bayesian Deep Learning

CS772A: Probabilistic Machine Learning
Piyush Rai

Hamiltonian/Hybrid Monte Carlo (HMC)

* HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info
» Uses the idea of simulating a Hamiltonian Dynamics of a physical system

» Consider the target posterior p(6|D) x exp(—U(6))

» Think of 8 as “position” then U(0) = —log p(D|0)p(0) is like “potential energy”
" | et's introduce an auxiliary variable - the momentum 7 of the system

» Can now define a joint distribution over the position and momentum as

p(6.1) ox exp (~U(0) — 57" M1) = p(OID)p(1)

" The total energy (potential + kinetic) or the Hamiltonian of the system
onstant wir.t. time _ | S —1 -
ettt N H(@,r) = U(0) + 5r ' M~ r = U(0) + K(r)
* Given a sample (6, 1) from p(8, 1), ignoring r, 8 will be a sample from p(6|D)

CS772A: PML

Generating Samples in HMC

" Given an initial (8, r), Hamiltonian Dynamics defines how (8, 1) changes wirt. time t

0 9H 9K
8t - 8" N or I |
H(O,r) =U(@)+5r M~ r=U(0)+ K
or _ 9H _ 0U CH(O0,r) = U(0) + 3r r=U(0)+K(r))
ot 98 00 . | -
» \We can use these equations to update (8,r) — (6%, r*) by discretizing time
" ors = 1: S, Sam p|€ as follows Reason: Getting analytical
= |nitiali (s—1) p U solutions for the above
nitialize 6y = 6 , rx ~N(0,1) and rg = r. — 5 %l@o requires integrals which is
* Do L “leapfrog” steps with learning rates p, = p for £ < L and p;, = p/2 | In general intractable
" Forf =1:L 9K
93 = 9£—1 + pﬁ |J,-F__1 L usually set to 5 and learning rate tuned

oU to make acceptance rate around 90%
ffsz—l—m‘mbg |
‘ (s) A single sample generated
= Perform MH accept/reject test on (QL, rL). If accepted 0%/ = 01— by taking L steps

" The momentum forces exploring different regions instead of getting driven to regions

where the MAP solution is CS7T72A: PML

HMC Iin Practice

= HMC typically has very low rejection rate (that too, primarily due to discretization error)
" Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, tuning hard

= A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler —
doesn't require setting L)

* Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC
" Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)
" An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)

Feedforward Neural Net on MNIST
0.05

SGD
0.045F . —— SGD with momentum |4
—=— SGLD

0.04 - SGHMC

S 0.035

€ oo03} 1|
L
b]

0.025 ¥

002}

0.015 e .
(Figure: Stochastic Gradient Hamiltonian Monte Carlo (Chen et al, 2014)) 0 200 nezrlg?on 600 800 CS772A: PML
N

Parallel/Distributed MCMC

" Suppose our goal is to compute the posterior of H € RP (assuming N is very large)
p(61X) o p(8)p(X|6) = p(0 Hp x,6)

= Suppose we have | machines with data part|t|oned as X = {X(j)}f=1

" | et's assume that the posterior p(6|X) factorizes as
J

p(01X) = [[P (6]X1)

=1
" Here pU)(0|XU)) oc p(0)'/7 T1,,exv P(Xnl0) is known as the “subset posterior”
= Assume the j" machine generates T MCMC samples {6} ¢}{=1

= We need a way to combine these subset posteriors using a “consensus”
01,...,07 = CONSENSUSSAMPLES({0; 1,...,0;,7}7-1)

CS772A: PML

Parallel/Distributed MCMC

= Many ways to compute the consensus samples. Let's look at two of them

= Approach 1: Weighted Average: 0, = Z§=1 W;0; + where W; can be learned as follows

= Assuming Gaussian likelihood and Gaussian prior
s These approaches can

Y; = sample covariance of {0j1,...,60; 1} 2156 be used to make V] A
J s
. arallel/distributed v 4
¥ = [+ Z Zj_l)_l (X, is the prior's covariance) g y . I /
= ev
W, = X(% ' /J+57)

= Approach 2. Fit J Gaussians, one for each {H]-,t}leand take their product

fij = sample mean of {6;1,...,0; 1}, ¥;= sample covariance of {0;1,...,0; 1}
J J
>, = (Z . = iJ(Z ij_lﬁj) (cov and mean of prod. of Gaussians)

j=1 j=1

0. ~ N(fs,%)),t=1,...,T (the final consensus samples)

" For detailed proofs and other approaches, may refer to the reference below

Patterns of Scalable Bayesian Inference (Angelino et al, 2016) CS772A: PML

Approximate Inference: VI vs Sampling

= VI approximates a posterior distribution p(Z|X) by another distribution g(Z|¢®)
= Sampling uses S samples Z(1), Z2(2) .., Z(5) to approximate p(Z|X)
= Sampling can be used within VI (ELBO approx using Monte-Carlo)

" |n terms of "‘comparison” between VI and sampling, a few things to be noted
= Convergence: VI only has local convergence, sampling (in theory) can give exact posterior
= Storage: Sampling based approx needs to storage all samples, VI only needs var. params ¢

= Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with
VI, sometimes we can get closed form posterior predictive

1S
PPD if using sampling: p(x,|X) = [p(x.|Z2)p(Z|1X)dZ ~ Ez p(x* Z(S)) Compressing the S samples
- s=1 into something more
PPD if using VI: p(x.|X) = [p(e|Dp(Z1X)dZ ~ [p(x.|1Z)q(Z|$)dZ | compact

" There is some work on “compressing” sampling-based approximations*

CS772A: PML

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015

Inference Methods: Summary

= MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)
» Conjugate models with one "main” parameter: Straightforward posterior updates
= MLE-I[/MAP-II: Often useful for estimating the hyperparameters

" EM: It we want to do MLE/MAP for models with latent variables
= \ery general algorithm, can also be made online
» Used when we want point estimates for some unknowns and posterior over others
= Can use it for hyperparameter estimation as well
= Often better than using direct gradient methods

= VI and sampling methods can be used to get full posterior for complex models
= Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

= |n other cases, we have general VI with Monte-Carlo gradients, MH sampling
= MCMC can also make use of gradient info (LD/SGLD)

* [For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx

CS772A: PML

(Deep) Neural Networks

" These are nonlinear function approximators

= Consists of an input layer, one or more hidden layers, and an output layer

Can think of the last hidden
layer's node values being
used as features in a GLM
(linear/logistic/softmax, etc)
modeled by the output layer

EW(@ S Ko XK, tl\)letll\)/voLk vve|ghts‘ typ|cball>{ Ielelarned
((=1,....Lnd K, = D) y backpropagation (basically,

S : E et gradient descent + chain rule)
Hidden layers act as éhﬁf‘) :g(wwﬁhu))é R (N (LN K5 hidden units

W% is K, x K,

CS772A: PML

Bayesian Neural Networks

" Backprop for neural nets only gives us point estimates for the weights
= Another alternative is to be Bayesian and learn the posterior distribution over weights

Bayesian neural net: Each
weight has a posterior
distribution inferred by some
Bayesian inference algo
(VI/MCMC/Laplace approx., etc)

Standard neural net:
Each weight has a
fixed value, learned
by backprop

Note: Just having a
likelihood and prior will
still give us a standard
neural net if we choose
to do MLE/MAP only

Also, test time will require

computing PPD, not just
a plug-in prediction
VI for Bayesian Using reparametrization

= arg 1'121‘1 KL [g(w|@) || P(W)] — Eg(w|o) [log P(D|w)]

e ME T T T T T T TT T T T T T T neural net =, trick (known as "Bayes

W e

| 1 10" = argmin KL[q(w/|0)|| P(w|D)] by Backprop™ in this

| _ i e 11 0 context), BBVl etc

| = arg max Z log P(yi|xi. W)

| v - ugmin/q(wlﬁ) log 2w\ dw I
11 =ar |

0 P(w)P(D

: w AP — arg maxlog P(w|D) : : (w)F(PIw) :

' 11 |

, |

= arg max log P(D|w) + log P(w)
W
s T T T T T T CS772A: PML

Pic from: *Weight Uncertainty in Neural Networks (Blundell et al, 2015)

A Hybrid Bayesian Neural Net s

p(.lx., D) ~ < p(y.|x., 06))

s=1

" | earning the posterior for all weights can be expensive where 8©) ~ p(8]|D)

* PPD computation is also slow if using Monte Carlo approximation for PPD

= A cheaper practical alternative is

= Do point estimation for hidden layer weights (W _
p y ghts (W) @

= Infer the full posterior for output layer weights (V)

, Faster because the posterior of
" The PPD will then be V is much lower dimensional

1 S -
p(yl|x,, D) = 3 E 1p(y*|x*,V(S),W) where V) ~ p(V|D)
S=

Approximation since in the hybrid approach,

= A rough approximation of the above is the following | we stil learn W and V together, urlike this
» Use a pretrained neural net to extract feature approach where it is a two-step process

* Train Bayesian linear model (e.g., Bayesian linear/logistic/softmax/GLM reg.) on these features
CS772A: PML

Bayesian Neural Networks: The Priors

" /ero-mean isotropic Gaussian priors are common and convenient
= Corresponds to weight-decay or €, regularizer

= Another alternative is to use sparsity-inducing priors, €.g.,

p(w) = H?TN(’LUJ"O,O'%) + (1 —mN(w;|0,05) 01> 02 and 02 < 1
J

" (Gaussian priors have been found somewhat problematic in recent work

= Cold-posterior effect T = 1 is the standard

T is like temperature
Bayesian inference

1 1 _
ng P{ U‘|I. _l,-"] I = T llﬂg P{y w,T)+ lﬂg ,U{ "'11}. + Z{T] Recent work has shown that BNNs
» with standard Gaussian priors work
= | o — e . poorlyfor T =1butT <1
5 0% AN l\/lgybe Gaussian improves performance
< oo " priors aren't really
090 —e— SG-MCMC ,
. Baseline: SGD \ ideal??
0.88
107¢ 10-3 1072 107! 10°
Temperature T
CS772A: PML

Pic from: *How Good is the Bayes Posterior in Deep Neural Networks Really? (Wenzel et al, 2020)

Other Inference Methods for Bayesian Neural Nets

= L aplace approximation is very common: p(W|D) = N (Wyap, H™1)

" However, can be slow since the number of parameters is very large
= One option is to use a simpler covariance matrix (e.g,, diagonal or block-diag)

» Another option is to use the hybrid Bayesian neural net Extension: A mixture of Gaussian
= Use MAP estimates for the hidden layer weights approximation: Multi-SWAG — Run
. _ _ SGD M times and use a mixture of
= Use Laplace approximation only for the output layer weights M such Gaussians

SWA based Gaussian

» Using SGD iterates obtained from backprop approximation: SWAG

Stochastic weight p(Wlﬂ) ~ CI(W|D) — N(lf_’b’? K)

averaging (SWA)

wr v‘v:lZw,, K:l<;Z(W,—w)(w,—w) —I——Zdzag(w,—w)

T—1

Learning Rate

Approximate

Pretraining
o - -
with Gaussian

Training Epocl
i s s Pic from: *A Simple Baseline for Bayesian Uncertainty in Deep Learning (Maddox et al, 2019)
CS772A: PML

* Monte Carlo Dropout is another popular and efficient way

= Standard Dropout FOUO"
* Drop some weights randomly (with some “drop” probability) during training
= At test time, multiply each weight by the "keep” probability
Can be seen as learning a

= Note: Dropout applied only at training time variational approximation of
the weights (see paper for
details, if interested)

* Monte Carlo Dropout®
1 S

1 S * x*;D ~ = * x*,Q(s)

p(y.lx.D) = < E 1p(y*|x*,9(s)) | p(y:|x., D) 464)
S=

where 6) = e O

Vector of Bernoulli Point estimate

or Gaussian noise Elementwise
product

where 865 ~ p(0|D)

*Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning (Gal and Ghahramani, 2016) CS772A: PML

Other Inference Methods for Bayesian Neural Nets

» SGMCMC methods like SGLD and SGHMC are also used nowadays (very efficient)

0 = 00~V LVs[log p(D6) + log p(8)] |y + ¢

" Recently, SGMCMC with cyclic step sizes (cSGLD) was proposed (Zhang et al, 2020)

--- Exploration Stage

= Use big steps to explore different modes

—— Sampling Stage

—— Decay Stepsize

' : 0.10 .
" Use small steps later to sample once a mode is localized \
0.08 s
Slep size in v m mod(k — 1, [K/M) \
|terat|0ﬂ k (Yk — 7 COS I—I/'/A[] + 1 (-% 0.04
A
0.02
22222 7 \
»
- e @ K is the total number of R
LA AR R iterations and M is the I—
e v number of CydeS SGD 5.29i0?15 23.61i6.09
T b) SGLD SGLD
(a) Target (b) (c)c SGDM 5.1740.09 22.98+027
Snapshot-SGD | 4.46+0.04 20.83=£0.01
A Complex mixture of Snapshot-SGDM | 4.39+0.01 20.81+0.10
. o SGLD 5202006 23.23L0.01
(Gaussian distributions ¢SGLD 4294006 20.55+0.06
SGHMC 493501 22.60L0.17
¢SGHMC 4274003 20.50-0.11

CS772A: PML

Pic from: *Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning (Zhang et al, 2020)

Deep Ensembles

Both VI and Sampling
may be prone to
capturing only a single
"Basin of attraction”

= Most inference methods tend to produce local approximations only
= V| methods typically learn an approximation around one of the modes

= Sampling methods may give most samples near one of the modes (though in principle they may
explore other modes as well)

" Thus the uncertainties may be underestimated in general

" Deep Ensembles™ is a method that tries to address this issue
* Train the network M times with different seeds and permutations of training data
* Denote the learned weights by 84, 85, ..., 8y, (assuming these are M modes)

= Approximate the posterior by the following

1 M Akin to Bayesian Model
@|D) = — do. (O Averaging using M models
P M y om
m=

* This approach is considered non-Bayesian but often performs better (in terms of more diversity in
the set of parameters learned) than other inference methods

*Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles (Lakshminarayanan, 2017) CS772A: PML

