
Approx. Inference via Sampling (wrap-up),
Bayesian Deep Learning

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Hamiltonian/Hybrid Monte Carlo (HMC)

▪ HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info

▪ Uses the idea of simulating a Hamiltonian Dynamics of a physical system

▪ Consider the target posterior 𝑝 𝜃 𝒟 ∝ exp(−𝑈 𝜃)

▪ Think of 𝜃 as “position” then 𝑈 𝜃 = −log 𝑝 𝒟 𝜃 𝑝(𝜃) is like “potential energy”

▪ Let’s introduce an auxiliary variable - the momentum 𝒓 of the system

▪ Can now define a joint distribution over the position and momentum as

▪ The total energy (potential + kinetic) or the Hamiltonian of the system

▪ Given a sample (𝜃, 𝒓) from 𝑝(𝜃, 𝒓), ignoring 𝒓, 𝜃 will be a sample from 𝑝(𝜃|𝒟)

2

Constant w.r.t. time

CS772A: PML

Generating Samples in HMC

▪ Given an initial (𝜃, 𝒓), Hamiltonian Dynamics defines how (𝜃, 𝒓) changes w.r.t. time 𝑡

▪ We can use these equations to update 𝜃, 𝒓 → (𝜃∗, 𝒓∗) by discretizing time

▪ For 𝑠 = 1: 𝑆, sample as follows
▪ Initialize

▪ Do 𝐿 “leapfrog” steps with learning rates 𝜌ℓ = 𝜌 for ℓ < 𝐿 and 𝜌𝐿 = 𝜌/2
▪ For ℓ = 1: 𝐿

▪ Perform MH accept/reject test on 𝜃𝐿, 𝒓𝐿 . If accepted 𝜃(𝑠) = 𝜃𝐿

▪ The momentum forces exploring different regions instead of getting driven to regions
where the MAP solution is

3

A single sample generated

by taking 𝐿 steps

Reason: Getting analytical

solutions for the above

requires integrals which is

in general intractable

𝐿 usually set to 5 and learning rate tuned

to make acceptance rate around 90%

CS772A: PML

HMC in Practice

▪ HMC typically has very low rejection rate (that too, primarily due to discretization error)

▪ Performance can be sensitive to 𝐿 (no. of leapfrog steps) and step-sizes, tuning hard

▪ A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler –
doesn’t require setting 𝐿)

▪ Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC

▪ Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)

▪ An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)

4

CS772A: PML

Parallel/Distributed MCMC

▪ Suppose our goal is to compute the posterior of 𝜃 ∈ ℝ𝐷 (assuming 𝑁 is very large)

▪ Suppose we have 𝐽 machines with data partitioned as 𝐗 = {𝐗 𝑗 }𝑗=1
𝐽

▪ Let’s assume that the posterior 𝑝(𝜃|𝐗) factorizes as

▪ Here is known as the “subset posterior”

▪ Assume the 𝑗𝑡ℎ machine generates 𝑇 MCMC samples {𝜃𝑗,𝑡}𝑡=1
𝑇

▪ We need a way to combine these subset posteriors using a “consensus”

5

CS772A: PML

Parallel/Distributed MCMC

▪ Many ways to compute the consensus samples. Let’s look at two of them

▪ Approach 1: Weighted Average: መ𝜃𝑡 = σ𝑗=1
𝐽

𝑊𝑗𝜃𝑗,𝑡 where 𝑊𝑗 can be learned as follows

▪ Assuming Gaussian likelihood and Gaussian prior

▪ Approach 2: Fit 𝐽 Gaussians, one for each {𝜃𝑗,𝑡}𝑡=1
𝑇 and take their product

▪ For detailed proofs and other approaches, may refer to the reference below

6

Patterns of Scalable Bayesian Inference (Angelino et al, 2016)

These approaches can

also be used to make VI

parallel/distributed

CS772A: PML

Approximate Inference: VI vs Sampling

▪ VI approximates a posterior distribution 𝑝(𝒁|𝑿) by another distribution 𝑞(𝒁|𝜙)

▪ Sampling uses 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆) to approximate 𝑝(𝒁|𝑿)

▪ Sampling can be used within VI (ELBO approx using Monte-Carlo)

▪ In terms of “comparison” between VI and sampling, a few things to be noted
▪ Convergence: VI only has local convergence, sampling (in theory) can give exact posterior

▪ Storage: Sampling based approx needs to storage all samples, VI only needs var. params 𝜙

▪ Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with
VI, sometimes we can get closed form posterior predictive

▪ There is some work on “compressing” sampling-based approximations*

7

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝 𝑥∗ 𝑍
𝑠

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈ ∫ 𝑝 𝑥∗ 𝑍 𝑞 𝑍 𝜙 𝑑𝑍

PPD if using sampling:

PPD if using VI:

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015

Compressing the 𝑆 samples

into something more

compact

CS772A: PML

Inference Methods: Summary

▪ MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)

▪ Conjugate models with one “main” parameter: Straightforward posterior updates

▪ MLE-II/MAP-II: Often useful for estimating the hyperparameters

▪ EM: If we want to do MLE/MAP for models with latent variables
▪ Very general algorithm, can also be made online

▪ Used when we want point estimates for some unknowns and posterior over others

▪ Can use it for hyperparameter estimation as well

▪ Often better than using direct gradient methods

▪ VI and sampling methods can be used to get full posterior for complex models
▪ Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

▪ In other cases, we have general VI with Monte-Carlo gradients, MH sampling

▪ MCMC can also make use of gradient info (LD/SGLD)

▪ For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx

8

CS772A: PML

(Deep) Neural Networks

▪ These are nonlinear function approximators

▪ Consists of an input layer, one or more hidden layers, and an output layer

9

Hidden layers act as

feature extractors

Can think of the last hidden

layer’s node values being

used as features in a GLM

(linear/logistic/softmax, etc)

modeled by the output layer

Network weights typically learned

by backpropagation (basically,

gradient descent + chain rule)

CS772A: PML

Bayesian Neural Networks

▪ Backprop for neural nets only gives us point estimates for the weights

▪ Another alternative is to be Bayesian and learn the posterior distribution over weights

10

Standard neural net:

Each weight has a

fixed value, learned

by backprop

Bayesian neural net: Each

weight has a posterior

distribution inferred by some

Bayesian inference algo

(VI/MCMC/Laplace approx., etc)

Note: Just having a

likelihood and prior will

still give us a standard

neural net if we choose

to do MLE/MAP only

Also, test time will require

computing PPD, not just

a plug-in prediction

Pic from: *Weight Uncertainty in Neural Networks (Blundell et al, 2015)

VI for Bayesian

neural net

Using reparametrization

trick (known as “Bayes

by Backprop”* in this

context), BBVI etc

CS772A: PML

A Hybrid Bayesian Neural Net

▪ Learning the posterior for all weights can be expensive

▪ PPD computation is also slow if using Monte Carlo approximation for PPD

▪ A cheaper practical alternative is

▪ Do point estimation for hidden layer weights (𝐖)

▪ Infer the full posterior for output layer weights (𝐕)

▪ The PPD will then be

▪ A rough approximation of the above is the following
▪ Use a pretrained neural net to extract feature

▪ Train Bayesian linear model (e.g., Bayesian linear/logistic/softmax/GLM reg.) on these features

11

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝(𝑦∗|𝑥∗, 𝜃
𝑠)

where 𝜃(𝑠) ∼ 𝑝(𝜃|𝒟)

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝(𝑦∗|𝑥∗, 𝐕
𝑠 , ෡𝐖) where 𝐕(𝑠) ∼ 𝑝(𝐕|𝒟)

Faster because the posterior of

𝐕 is much lower dimensional

Approximation since in the hybrid approach,

we still learn 𝐖 and 𝐕 together, unlike this

approach where it is a two-step process

CS772A: PML

Bayesian Neural Networks: The Priors

▪ Zero-mean isotropic Gaussian priors are common and convenient

▪ Corresponds to weight-decay or ℓ2 regularizer

▪ Another alternative is to use sparsity-inducing priors, e.g.,

▪ Gaussian priors have been found somewhat problematic in recent work
▪ Cold-posterior effect

12

Pic from: *How Good is the Bayes Posterior in Deep Neural Networks Really? (Wenzel et al, 2020)

𝑇 = 1 is the standard

Bayesian inference

Recent work has shown that BNNs

with standard Gaussian priors work

poorly for 𝑇 = 1 but 𝑇 ≪ 1
improves performance Maybe Gaussian

priors aren’t really

ideal??

𝑇 is like temperature

CS772A: PML

Other Inference Methods for Bayesian Neural Nets

▪ Laplace approximation is very common: 𝑝 𝑊 𝒟 ≈ 𝒩(𝑊𝑀𝐴𝑃 , 𝐇
−1)

▪ However, can be slow since the number of parameters is very large

▪ One option is to use a simpler covariance matrix (e.g,, diagonal or block-diag)

▪ Another option is to use the hybrid Bayesian neural net

▪ Use MAP estimates for the hidden layer weights

▪ Use Laplace approximation only for the output layer weights

▪ Using SGD iterates obtained from backprop

13

𝑝 𝑤 𝒟 ≈

Pic from: *A Simple Baseline for Bayesian Uncertainty in Deep Learning (Maddox et al, 2019)

Stochastic weight

averaging (SWA)

SWA based Gaussian

approximation: SWAG

Extension: A mixture of Gaussian

approximation: Multi-SWAG – Run

SGD 𝑀 times and use a mixture of

M such Gaussians

CS772A: PML

Other Inference Methods for Bayesian Neural Nets

▪ Monte Carlo Dropout is another popular and efficient way

▪ Standard Dropout

▪ Drop some weights randomly (with some “drop” probability) during training

▪ At test time, multiply each weight by the “keep” probability

▪ Note: Dropout applied only at training time

▪Monte Carlo Dropout*

14

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝(𝑦∗|𝑥∗, 𝜃
𝑠)

where 𝜃(𝑠) ∼ 𝑝(𝜃|𝒟)

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝(𝑦∗|𝑥∗, 𝜃
𝑠)

where 𝜃(𝑠) = 𝜖(𝑠) ⊙ ෠𝜃
Vector of Bernoulli

or Gaussian noise
Point estimate

*Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning (Gal and Ghahramani, 2016)

Elementwise

product

Can be seen as learning a

variational approximation of

the weights (see paper for

details, if interested)

CS772A: PML

Other Inference Methods for Bayesian Neural Nets

▪ SGMCMC methods like SGLD and SGHMC are also used nowadays (very efficient)

▪ Recently, SGMCMC with cyclic step sizes (cSGLD) was proposed (Zhang et al, 2020)
▪ Use big steps to explore different modes

▪ Use small steps later to sample once a mode is localized

15

Step size in

iteration 𝑘

A complex mixture of

Gaussian distributions

Pic from: *Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning (Zhang et al, 2020)

𝐾 is the total number of

iterations and 𝑀 is the

number of cycles

CS772A: PML

Deep Ensembles

▪ Most inference methods tend to produce local approximations only
▪ VI methods typically learn an approximation around one of the modes

▪ Sampling methods may give most samples near one of the modes (though in principle they may
explore other modes as well)

▪ Thus the uncertainties may be underestimated in general

▪ Deep Ensembles* is a method that tries to address this issue
▪ Train the network 𝑀 times with different seeds and permutations of training data

▪ Denote the learned weights by 𝜃1, 𝜃2, … , 𝜃𝑀 (assuming these are 𝑀 modes)

▪ Approximate the posterior by the following

▪ This approach is considered non-Bayesian but often performs better (in terms of more diversity in
the set of parameters learned) than other inference methods

16

𝑝 𝜃 𝒟 =
1

𝑀
෍

𝑚=1

𝑀

𝛿𝜃𝑚(𝜃)

*Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles (Lakshminarayanan, 2017)

Akin to Bayesian Model

Averaging using 𝑀 models

Both VI and Sampling

may be prone to

capturing only a single

“Basin of attraction”

