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MCMC with Gradients, Recent Advances
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Plan for today

" Some other aspects of MCMC

= MCMC with gradient
= Some other recent advances

CS772A: PML



Sampling Methods: Label Switching Issue

= Suppose we are given samples Z(D, 2(2) ., 25 from the posterior p(Z|X)

" We can't always simply "average” them to get the “posterior mean” Z
» Why: Non-identifiability of latent vars in models with multiple equival. posterior modes

* Example: In clustering via GMM, the likelihood is invariant to how we label clusters

» What we call cluster 1 in one sample may be cluster 2 in the next sample  [6re sample may be
from near one of the

= Say, in GMM, z,gl) = [1,0] and z,(P = [0,1], both may imply the same odes and the ofher

= Averaging will give z,, = [0.5,0.5], which is incorrect may be frgm near the
other mode

» Quantities not affected by permutations of dims of Z can be safely averaged

= [.g., probability that two points belong to the same cluster (e.qg., in GMM) | Changes i order of entries i

T these K X 1 vectors across
different samples doesn’t affect

S u(S) v(S) P

s=1 4% j

the inner product

- . . 1
= Predicting the mean of an entry r;; in matrix factorization S
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MCMC: Some Practical Aspects

» Choice of proposal distribution is important

* For MH sampling, Gaussian proposal is popular when z is continuous, e.g.,
Hessian at the MAP of

q(Z‘Z(f_l)) = N(le(f_l)’ H) the target distribution
Change at each iter
= Other options: Mixture of proposal distributions, data-driven or adaptive proposals

= Autocorrelation. Can show that when approximating f* = E[f] using {Z9}5_,

Basically measures what fractions of
Monte Carlo assumes

1 ~—S ' the total samples are uncorrelated.
f= §z £, uncorrelated samples Value of f using st* MCMC sample Want it to be close to 1
s=1 _ ~ 1 . . . , : varpc|f|
varpemc|[f] = varpc[f] + o Z E[(f. = f")(f — )] FEffective Sample Size (ESS) = varmemc|[f]
s7t . ZS t( _)( _) Lower is
, . T3 sk fs—f)(fste—F better
= Autocorrelation function (ACF) at lag t: pr = = = =5 (7.7
-1 s=1\"S

= Multiple Chains: Run multiple chains, take union of generated samples
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Coming Up Next

= Avoiding the random-walk behavior of MCMC
= Using gradient information of the posterior

= Scalable MCMC methods
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Using Gradients in MCMC: Langevin Dynamics

» MCMC uses a random-walk based proposal to generate the next sample, e.g.,

Will use 6 to denote

And th t/reiect (MH (t) _ (t—1) Can use automatic

nd then accept/reject (IH) 0 N(H ’ Tlt) all the unknowns differentiation methods for this

" | angevin dynamics: Use (unnormalized) posterior's gradient info in the proposal as
Likelihood Prior Move towards the mode of the
* (t—1) Nt posterior (like finding MAP est)

0" = 607 "+ 5 Vollog p(D|0) + log p(9)]| 51y
And then accept/reject (MH) (t) * Same as doing a gradient ascent step Using gradient info in the
et aopares | 0~ N (07116} o v ey 4 popcat s s mo st

rate is around 0.6 e arerf’t stuck at tthé MAP <olution towards high-prob regions

. : ,
NOte that the above 1S equwalent to Helps also incorporate the I gradient is pre-multiplied by a preconditioner
curvature info of the posterior || matrix M(8;): Simplified Manifold MALA

H(t) _ Q(t_l) + %V@[bg P(D|9) + Iog P(e)]|9(t_1) 02 6:‘ One option to use for M (6;)

Known as Metropolis-Adjusted is the second derivative of
Langevin Algorithm (MALA) the unnorm. posterior

To+S
tiT0+1 are MCMC samples from p(6|D)

And then accept/reject (MH)

= After some waiting period Ty, iterates {H(t)}

“Bayesian Learning via Stochastic Gradient Langevin Dynamics” by Welling and Teh (2011) CS772A: PML



Langevin Dynamics: A Closer Look

" |s generating MCMC samples really as easy as computing MAP?
» Recall the form of Langevin Dynamics updates

And th ject (MH
nd then accept/reject (MH) o) — 1) 4 %VQ[Iog p(D|0) + log P(e)”g(t—l) Al

Same as our
target posterior

» Equivalent to discretization of an SDE with equilibrium distribution &« exp(log p(D, 0))

Above update is Note that this is

its discretiization continuous time dgt — _VL(Ht)dt + \/EdBt

where L(8;) = —log p(D, 0;) and (B;)¢sq is Brownian motion s.t. AB; are i.i.d. Gaussian r.v.s

" Discretization introduces some error which is corrected by MH accept/reject step

* Note: As learning rate n, decreases, discretization error also decreases and rejection

rate tends to zero
» Note: Gradient computations require all the data (thus slow)

= Solution: Use stochastic gradients - Stochastic Gradient Langevin Dynamics (SGLD)
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Stochastic Gradient Langevin Dynamics (SGLD)

" An “online” MCMC method: Langevin Dynamics with minibatches to compute gradients

= Given minibatch Dy = {x¢1, X¢2, ...,xtNt} the (stochastic) Langevin dynamics update:

Almost as fast as

g = @t + L V Z log p(x:n|0) + log P(Q)] doing SGD updates ©

| D

H(t) ~ N(H*, nt)

= Choice of the learning rate is important. For convergence, n, = a(b +t)™F
= Switching to constant learning rates (after a few iterations) often helps convergence

And then accept/reject (MH)

No need for

" As n, becomes very very small, acceptance prob. becomes close to 1 — accept/reject (MH)

" Recent flurry of work on this topic (see "Bayesian Learning via Stochastic Gradient
Langevin Dynamics” by Welling and Teh (2011) and follow-up works)

CS772A: PML



Improvements to SGLD

" The basic SGLD, although fairly simple, has many limitations, e.g.
= Exhibits slow convergence and mixing. Uses same learning rate n; in all dimensions of 6

= Doesn't apply to models where 8 is constrained (e.g., non-neg or prob. vector)
= Needs to the model to be differentiable (since it needs Vglog n(D, 0))

= A lot of recent work on improving the basic SGLD to handle such limitations

" Introducing the curvature information in the gradients, e.g.,

» Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring (Ahn et al, 2012), and
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016)

" These methods use a preconditioner matrix in the learning rate to improve convergence

" This also allows different amounts of updates in different dimensions
Based on reparametrizing the constrained

* 5L.GD in Riemannian space to handle constrained variables variables to make them unconstrainted
= Stoch. Grad. Riemannian Langevin Dynamics on the Probability Simplex (Patterson and Teh, 201 3)
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Applications of SGLD

* Popular for Bayesian neural networks and other complex Bayesian models
" Reason: SGLD = backprop based updates + Gaussian noise

Feedforward Neural Net on MNIST Convolutional Neural Net on MNIST
24 i 1.6 M : .
——-SGD ----SGD
- ----SGLD = --=-SGLD
Soof ——RMSprop| | 1.2 ——RMSprop| -
S —pSGLD S |—pSGLD
L LL] Ve
2 Bos
RTR W b 112 s | E— ﬂ.’
1.2 ~ . 0.4 | | —
9 S0 100 5 10 15 20
Epochs

(Figure: Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks (Li et al, 2016))
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Other Recent “SGD-inspired” Sampling Algorithms

» Run SGD and use SGD iterates 04, 65, ..

., 81 to construct a Gaussian approximation

» Recently Maddox et al (2019) proposed an idea using stochastic weight avging (SWA)

L
Oswa = 7;&

Approach known as 6°

SWA-Gaussian (SWAG)
p(0|D)

~
~J

t

1 T

= D 07, Taiag = diag(6” — O5pa)
t=1

N(HSWAa Zdiag)

" |f we want full cov., we can use a low-rank approx. of X (see Maddox et al for details)

" Reason it works: SGD is asymptotically Normal under certain conditions

" For a more detailed theory of SGD and MCMC, may also refer to this very nice paper:
Stochastic Gradient Descent as Approximate Bayesian Inference (Mandt et al, 2017)

" Such algos can give not too accurate but very fast posterior approx for complex models

A Simple Baseline for Bayesian Uncertainty in Deep Learning, Maddox et al (2019)
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Hamiltonian/Hybrid Monte Carlo (HMC)

* HMC (Neal, 1996) is an “auxiliary variable sampler” and incorporates gradient info
» Uses the idea of simulating a Hamiltonian Dynamics of a physical system

» Consider the target posterior p(6|D) x exp(—U(6))

» Think of 8 as “position” then U(0) = —log p(D|0)p(0) is like “potential energy”
" | et's introduce an auxiliary variable - the momentum 7 of the system

» Can now define a joint distribution over the position and momentum as

p(6.1) ox exp (~U(0) — 57" M1 ) = p(OID)p(1)

" The total energy (potential + kinetic) or the Hamiltonian of the system
onstant wir.t. time _ | S —1 -
ettt N H(@,r) = U(0) + 5r ' M~ r = U(0) + K(r)
* Given a sample (6, 1) from p(8, 1), ignoring r, 8 will be a sample from p(6|D)
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Generating Samples in HMC

" Given an initial (8, r), Hamiltonian Dynamics defines how (8, 1) changes wirt. time t

0  9H 9K
8t - 8" N or I |
H(O,r) =U(@)+5r M~ r=U(0)+ K
or _ 9H _ 0U CH(O0,r) = U(0) + 3r r=U(0)+K(r))
ot 98 00 . | -
» \We can use these equations to update (8,r) — (6%, r*) by discretizing time
" ors = 1: S, Sam p|€ as follows Reason: Getting analytical
= |nitiali (s—1) p U solutions for the above
nitialize 6y = 6 , rx ~N(0,1) and rg = r. — 5 %l@o requires integrals which is
* Do L “leapfrog” steps with learning rates p, = p for £ < L and p;, = p/2 | In general intractable
" Forf =1:L 9K
93 = 9£—1 + pﬁ |J,-F__1 L usually set to 5 and learning rate tuned

oU to make acceptance rate around 90%
ffsz—l—m‘mbg |
‘ (s) A single sample generated
= Perform MH accept/reject test on (QL, rL). If accepted 0%/ = 01— by taking L steps

" The momentum forces exploring different regions instead of getting driven to regions

where the MAP solution is CS7T72A: PML



HMC Iin Practice

= HMC typically has very low rejection rate (that too, primarily due to discretization error)
" Performance can be sensitive to L (no. of leapfrog steps) and step-sizes, tuning hard

= A lot of renewed interest in HMC (you may check out NUTS - No U-turn Sampler —
doesn't require setting L)

* Prob. Prog. packages e.g., Tensorflow Prob., Stan, etc, contain implementations of HMC
" Can also do HMC on minibatches (Stochastic Gradient HMC - Chen et al, 2014)
" An illustration: SGHMC vs other methods on MNIST classification (Bayesian neural net)

Feedforward Neural Net on MNIST
0.05

SGD
0.045F . —— SGD with momentum |4
—=— SGLD

0.04 - SGHMC

S 0.035

€ oo03} 1|
L
b ]

0.025 ¥

002}

0.015 e .
(Figure: Stochastic Gradient Hamiltonian Monte Carlo (Chen et al, 2014)) 0 200 nezrlg?on 600 800 CS772A: PML
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Parallel/Distributed MCMC

" Suppose our goal is to compute the posterior of H € RP (assuming N is very large)
p(61X) o p(8)p(X|6) = p(0 Hp x,6)

= Suppose we have | machines with data part|t|oned as X = {X(j)}f=1

" | et's assume that the posterior p(6|X) factorizes as
J

p(01X) = [ [ P (6]X1)

=1
" Here pU)(0|XU)) oc p(0)'/7 T1,,exv P(Xnl0) is known as the “subset posterior”
= Assume the j" machine generates T MCMC samples {6} ¢}{=1

= We need a way to combine these subset posteriors using a “consensus”
01,...,07 = CONSENSUSSAMPLES({0; 1,...,0;,7}7-1)
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Parallel/Distributed MCMC

= Many ways to compute the consensus samples. Let's look at two of them

= Approach 1: Weighted Average: 0, = Z§=1 W;0; + where W; can be learned as follows

= Assuming Gaussian likelihood and Gaussian prior
s These approaches can

Y; = sample covariance of {0j1,...,60; 1} 2156 be used to make V] A
J s
. arallel/distributed v 4
¥ = [+ Z Zj_l)_l (X, is the prior's covariance) g y . I /
= ev
W, = X(% ' /J+57)

= Approach 2. Fit J Gaussians, one for each {H]-,t}leand take their product

fij = sample mean of {6;1,...,0; 1}, ¥;= sample covariance of {0;1,...,0; 1}
J J
>, = (Z . = iJ(Z ij_lﬁj) (cov and mean of prod. of Gaussians)

j=1 j=1

0. ~ N(fs,%)),t=1,...,T (the final consensus samples)

" For detailed proofs and other approaches, may refer to the reference below

Patterns of Scalable Bayesian Inference (Angelino et al, 2016) CS772A: PML



Approximate Inference: VI vs Sampling

= VI approximates a posterior distribution p(Z|X) by another distribution g(Z|¢®)
= Sampling uses S samples Z(1), Z2(2) .., Z(5) to approximate p(Z|X)
= Sampling can be used within VI (ELBO approx using Monte-Carlo)

" |n terms of "‘comparison” between VI and sampling, a few things to be noted
= Convergence: VI only has local convergence, sampling (in theory) can give exact posterior
= Storage: Sampling based approx needs to storage all samples, VI only needs var. params ¢

= Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with
VI, sometimes we can get closed form posterior predictive

1S
PPD if using sampling: p(x,|X) = [ p(x.|Z2)p(Z|1X)dZ ~ Ez p(x* Z(S)) Compressing the S samples
- s=1 into something more
PPD if using VI: p(x.|X) = [ p(e|Dp(Z1X)dZ ~ [ p(x.|1Z)q(Z|$)dZ | compact

" There is some work on “compressing” sampling-based approximations*

CS772A: PML
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Inference Methods: Summary

= MLE/MAP: Straightforward for differentiable models (can even use automatic diff.)
» Conjugate models with one "main” parameter: Straightforward posterior updates
= MLE-I[/MAP-II: Often useful for estimating the hyperparameters

" EM: It we want to do MLE/MAP for models with latent variables
= \ery general algorithm, can also be made online
» Used when we want point estimates for some unknowns and posterior over others
= Can use it for hyperparameter estimation as well
= Often better than using direct gradient methods

= VI and sampling methods can be used to get full posterior for complex models
= Quite easy if we have local conjugacy (VI has closed form updates, Gibbs sampler is easy to derive)

= |n other cases, we have general VI with Monte-Carlo gradients, MH sampling
= MCMC can also make use of gradient info (LD/SGLD)

* [For large-scale problems, online/distributed VI/MCMC, or SGD based posterior approx
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