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Plan for today

▪ MCMC algorithms

▪ Metropolis Hastings (MH)

▪ Gibbs sampling (special case of MH)

▪ Some examples of Gibbs sampling
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The MH Sampling Algorithm

▪ Initialize 𝒛(1) randomly

▪ For ℓ = 1,2,… , 𝐿
▪ Sample 𝒛∗ ∼ 𝑞(𝒛∗|𝒛(ℓ)) and 𝑢 ∼ Unif(0,1)

▪ Compute acceptance probability

▪ If  𝐴 𝒛∗, 𝒛(ℓ) > 𝑢

▪ Else
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𝒛(ℓ+1) = 𝒛∗

𝒛(ℓ+1) = 𝒛(ℓ)

Meaning accepting 𝒛∗ with 

probability 𝐴 𝒛∗, 𝒛(ℓ)
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MH Sampling in Action: A Toy Example..

▪ Target distribution

▪ Proposal distribution
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MH Sampling: Some Comments

▪ If  prop. distrib. is symmetric, we get Metropolis Sampling algo (Metropolis, 1953) with

▪ Some limitations of MH sampling

▪ Can sometimes have very slow convergence (also known as slow “mixing”)

▪ Computing acceptance probability can be expensive*, e.g., if  𝑝 𝒛 =
෤𝑝(𝒛)

𝑍𝑝
is some target 

posterior then ෤𝑝(𝒛) would require computing likelihood on all the data points (expensive)
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𝑄 𝒛 𝒛 𝜏 = 𝒩(𝒛|𝒛 𝜏 , 𝜎2𝑰)

𝜎 large ⇒ many rejections

𝜎 small ⇒ slow diffusion

*Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014), Firefly Monte Carlo: Exact MCMC with Subsets of Data {(Maclaurin and Adams, 2015)

∼
𝐿

𝜎

2

iterations required for convergence
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Gibbs Sampling (Geman & Geman, 1984)

▪ Goal: Sample from a joint distribution 𝑝(𝒛)where 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]

▪ Suppose we can’t sample from 𝑝(𝒛) but can sample from each conditional 𝑝(𝑧𝑖|𝒛−𝑖)
▪ In Bayesian models, can be done easily if  we have a locally conjugate model

▪ For Gibbs sampling, the proposal is the conditional distribution 𝑝(𝑧𝑖|𝒛−𝑖)

▪ Gibbs sampling samples from these conditionals in a cyclic order

▪ Gibbs sampling is equivalent to MH sampling with acceptance prob. = 1
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Since only one component 

is changed at a time

Hence no need 

to compute it 
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Gibbs Sampling: Sketch of the Algorithm

▪𝑀: Total number of variables, 𝑇: number of Gibbs sampling iterations

▪ Note: Order of updating the variables usually doesn’t matter (but see “Scan Order in Gibbs 
Sampling: Models in Which it Matters and Bounds on How Much” from NIPS 2016)
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CP of each component of 𝑧 uses 

the most recent values (from this 

or the previous iteration) of all 

the other components

Assuming 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]

Each iteration will give us one 

sample 𝒛(𝜏) of 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]
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Gibbs Sampling: A Simple Example

▪ Can sample from a 2-D Gaussian using 1-D Gaussians
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Contours of a 

2-D Gaussian

Conditional distribution of 

𝑧1 given 𝑧2 is Gaussian

Conditional distribution of 

𝑧2 given 𝑧1 is Gaussian Gibbs sampling looks like doing  

a co-ordinate-wise update to 

generate each successive 

sample of 𝑧 = [𝑧1, 𝑧2]



CS772A: PML

Gibbs Sampling: Some Comments

▪ One of the most popular MCMC algorithms

▪ Very easy to derive and implement for locally conjugate models

▪ Many variations exist, e.g.,
▪ Blocked Gibbs: sample more than one component jointly (sometimes possible)

▪ Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded components while 
sampling. Also called “collapsed” Gibbs sampling

▪ MH within Gibbs: If  CPs are not easy to sample distributions

▪ Instead of sampling from CPs, an alternative is to use the mode of the CPs
▪ Called the “Iterative Conditional Mode” (ICM) algorithm

▪ ICM doesn’t give the posterior though – it’s more like ALT-OPT to get (approx) MAP estimate
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Recap: Gibbs Sampling

▪ An instance of MH sampling where the acceptance probability = 1

▪ Based on sampling 𝒛 one “component” at a time with proposal = conditional distr.

▪ Very easy to derive if  the conditional distributions are easy to obtain
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𝒛(ℓ)

In practice, we won’t use 

all the 𝐿 samples to 

approximate the target 

distribution 𝑝(𝒛) since 

there will be a burn-in 

phase and thinning as well

Denoting the collected samples 

by  𝒛(1), 𝒛(2), … , 𝒛(𝑆), the 

posterior approximation will be 

the empirical distribution defined 

by these samples 
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Deriving A Gibbs Sampler: The General Recipe

▪ Suppose the target is an intractable posterior 𝑝(𝒁|𝑿) where 𝒁 = [𝒛1, 𝒛2, … , 𝒛𝑀]

▪ Gibbs sampling requires the conditional posteriors 𝑝(𝒛𝑚|𝒁−𝑚, 𝑿)

▪ In general, 𝑝 𝒛𝑚 𝒁−𝑚, 𝑿 ∝ 𝑝 𝒛𝑚 𝑝(𝑿|𝒛𝑚, 𝒁−𝑚) where 𝒁−𝑚 is assumed “known”

▪ If  𝑝 𝒛𝑚 and 𝑝(𝑿|𝒛𝑚, 𝒁−𝑚) are conjugate, the above CP is straightforward to obtain

▪ Another way to get each CP 𝑝 𝒛𝑚 𝒁−𝑚𝑿 is by following this

▪ Write down the expression of 𝑝(𝑿, 𝒁)

▪ Only terms that contain 𝒛𝑚 needed to get CP of 𝒛𝑚 (up to a prop const)

▪ In 𝑝 𝒛𝑚 𝒁−𝑚, 𝑿 , we only need to condition on terms in Markov Blanket of 𝒛𝑚
▪ Markov Blanket of a variable: Its parents, children, and other parents of its children

▪ Very useful in deriving CP
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Markov Blanket
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Gibbs Sampling: An Example

▪ The CPs for the Gibbs sampler for a GMM are as shown in green rectangles below
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Joint distribution 

of data and 

unknowns

Can verify that 

Markov Blanket 

property holds 

for each CP
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Gibbs Sampling: Another Example
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𝑝 𝒀, 𝒘𝑗 𝑗=1

𝐽
𝝁𝑤, 𝚺𝑤 , 𝜎

2 𝑿

𝑝 𝝁𝑤 𝑝 𝚺𝑤 𝑝 𝜎2

= ෑ
𝑗=1

𝐽

ෑ
𝑖=1

𝑁𝑗

𝒩(𝑦𝑖𝑗|𝒘𝒋
⊤𝒙𝑖𝑗 , 𝜎

2)𝒩(𝒘𝑗|𝝁𝑤 , 𝚺𝑤)

𝒩(𝝁𝑤|𝝁0, 𝐕0)IW(𝚺𝑤|𝜼0, 𝐒0
−1) IG(𝜎2|𝜈0/2, 𝜈0𝜎0

2/2)

= ෑ
𝑗=1

𝐽

ෑ
𝑖=1

𝑁𝑗

𝑝 𝑦𝑖𝑗 𝒙𝑖𝑗 , 𝒘𝑗 , 𝜎
2 𝑝(𝒘𝑗|𝝁𝑤, 𝚺𝑤)

Joint distribution of data 

and unknowns

Can verify that 

Markov Blanket 

property holds 

for each CP
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Gibbs Sampling: One More Example
14

𝑝(𝑹, 𝒖𝑖 𝑖=1
𝑁 , 𝒗𝑗 𝑗=1

𝑀
, 𝜆𝑢, 𝜆𝑣, 𝛽)

=ෑ
(𝑖,𝑗)∈Ω

𝑝 𝑟𝑖𝑗 𝒖𝑖 , 𝒗𝑗 , 𝛽 ෑ
𝑖
𝑝 𝒖𝑖 𝜆𝑢 ෑ

𝑗
𝑝 𝒗𝑗 𝜆𝑣 𝑝 𝜆𝑢 𝑝 𝜆𝑣 𝑝(𝛽)

Joint distribution of data 

and unknowns

=ෑ
(𝑖,𝑗)∈Ω

𝒩 𝑟𝑖𝑗 𝒖𝑖
⊤𝒗𝑗, 𝛽 ෑ

𝑖
𝒩 𝒖𝑖 0, 𝜆𝑢

−1𝐈 ෑ
𝑗
𝒩 𝒗𝑗 0, 𝜆𝑣

−1𝐈

Gamma(𝜆𝑢|𝑎, 𝑏)Gamma(𝜆𝑣|𝑐, 𝑑)Gamma(𝛽|𝑒, 𝑓)

𝑟𝑖𝑗

𝒖𝑖

𝒗𝑖

𝑀

𝑁 𝜆𝑢

𝜆𝑣𝛽

Assuming even the 

hyperparams to be 

unknown

𝑝 𝜆𝑢 𝐔 = Gamma(𝜆𝑢|𝑎 + 0.5 ∗ 𝑁𝐾, 𝑏 + 0.5 ∗෍
𝑖=1

𝑁

𝒖𝑖
⊤𝒖𝑖)

Can also use non-zero mean and full cov matrix for 

𝑢𝑖 , 𝑣𝑗 , with Gaussian and Wishart priors respectively*

*Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo (Salakhutdinov and Mnih, 2008)

𝑝 𝜆𝑣 𝐕 = Gamma(𝜆𝑣|𝑐 + 0.5 ∗ 𝑀𝐾, 𝑑 + 0.5 ∗෍
𝑗=1

𝑀

𝒗𝑗
⊤𝒗𝑗)

𝑝 𝛽 𝐑, 𝐔, 𝐕 = Gamma(𝛽|𝑒 + 0.5 ∗ |Ω|,

𝑓 + 0.5 ∗ σ𝑖,𝑗∈Ω 𝑟𝑖𝑗 − 𝒖𝑖
⊤𝒗𝑗

2
)

Can verify that 

Markov Blanket 

property holds 

for each CP

Bayesian Matrix Factorization

Ω denotes the 

indices that are 

observed in the 

ratings matrix
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MCMC: Some Other Aspects
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Using the Samples to make Predictions

▪ Using the 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆), our approx. 𝑝 𝒁 ≈
1

𝑆
σ𝑠=1
𝑆 𝛿𝒁(𝑠)(𝒁)

▪ Any expectation that depends on 𝑝(𝒁) be approximated as

▪ For Bayesian lin. reg., assuming 𝒘, 𝛽, 𝜆 to be unknown, the PPD approx. will be

▪ Sampling based approx. for PPD of other models can also be obtained likewise
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𝔼 𝑓 𝒁 = ∫ 𝑓 𝒁 𝑝 𝒁 𝑑𝒁 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑓(𝒁(𝑠))

∫ 𝑝 𝑦∗ 𝒙∗, 𝒘, 𝛽 𝑝 𝒘, 𝛽, 𝜆 𝑿, 𝒚 𝑑𝒘𝑑𝛽𝑑𝜆 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝 𝑦∗ 𝒙∗, 𝒘
𝑠 , 𝛽(𝑠)

Thus, in this case, the PPD 

is a sum of 𝑆 Gaussians

Mean and variance of 𝑦∗
can be computed using 

sum of Gaussian properties

Mean: 𝔼[𝑦∗] =
1

𝑆
σ𝑠=1
𝑆 𝒘 𝑠 ⊤

𝒙∗

Variance: Exercise! Use definition 

of variance and use Monte-Carlo 

approximation 

Joint posterior over all 

unknowns

Sampling based 

approximation of PPD
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Sampling Methods: Label Switching Issue

▪ Suppose we are given samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆) from the posterior 𝑝(𝒁|𝑿)

▪ We can’t always simply “average” them to get the “posterior mean” ഥ𝒁

▪ Why: Non-identifiability of latent vars in models with multiple equival. posterior modes

▪ Example: In clustering via GMM, the likelihood is invariant to how we label clusters

▪ What we call cluster 1 in one sample may be cluster 2 in the next sample

▪ Say, in GMM, 𝑧𝑛
(1)

= 1,0 and 𝑧𝑛
(2)

= 0,1 , both samples imply the same 

▪ Averaging will give ҧ𝑧𝑛 = [0.5,0.5], which is incorrect

▪ Quantities not affected by permutations of dims of 𝒁 can be safely averaged

▪ E.g., probability that two points belong to the same cluster (e.g., in GMM)

▪ Predicting the mean of an entry 𝑟𝑖𝑗 in matrix factorization 
1

𝑆
σ𝑠=1
𝑆 𝒖𝑖

𝑠 ⊤
𝒗𝑗

𝑠
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One sample may be 

from near one of the 

modes and the other 

may be from near the 

other mode

Changes in order of entries in 

these 𝐾 × 1 vectors across 

different samples doesn’t affect 

the inner product
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MCMC: Some Practical Aspects

▪ Choice of proposal distribution is important

▪ For MH sampling, Gaussian proposal is popular when 𝒛 is continuous, e.g.,

▪ Other options: Mixture of proposal distributions, data-driven or adaptive proposals

▪ Autocorrelation. Can show that when approximating 𝑓∗ = 𝔼 𝑓 using {𝒁 𝑠 }𝑠=1
𝑆

▪ Autocorrelation function (ACF) at lag 𝑡:

▪Multiple Chains: Run multiple chains, take union of generated samples
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𝑞 𝒛 𝒛 ℓ−1 = 𝒩(𝒛|𝒛 ℓ−1 , 𝐇)
Change at each iter

Hessian at the MAP of 

the target distribution

ҧ𝑓 =
1

𝑆
෍

𝑠=1

𝑆

𝑓𝑠

Monte Carlo assumes 

uncorrelated samples Value of 𝑓 using 𝑠𝑡ℎ MCMC sample

Basically measures what fractions of 

the total samples are uncorrelated. 

Want it to be close to 1

Lower is 

better
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Approximate Inference: VI vs Sampling

▪ VI approximates a posterior distribution 𝑝(𝒁|𝑿) by another distribution 𝑞(𝒁|𝜙)

▪ Sampling uses 𝑆 samples 𝒁(1), 𝒁(2), … , 𝒁(𝑆) to approximate 𝑝(𝒁|𝑿)

▪ Sampling can be used within VI (ELBO approx using Monte-Carlo)

▪ In terms of “comparison” between VI and sampling, a few things to be noted
▪ Convergence: VI only has local convergence, sampling (in theory) can give exact posterior

▪ Storage: Sampling based approx needs to storage all samples, VI only needs var. params 𝜙

▪ Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with 
VI, sometimes we can get closed form posterior predictive

▪ There is some work on “compressing” sampling-based approximations*
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𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈
1

𝑆
෍

𝑠=1

𝑆

𝑝 𝑥∗ 𝑍
𝑠

𝑝 𝑥∗ 𝑋 = ∫ 𝑝 𝑥∗ 𝑍 𝑝 𝑍 𝑋 𝑑𝑍 ≈ ∫ 𝑝 𝑥∗ 𝑍 𝑞 𝑍 𝜙 𝑑𝑍

PPD if using sampling:

PPD if using VI:

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015

Compressing the 𝑆 samples 

into something more 

compact
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Coming Up Next

▪ Avoiding the random-walk behavior of MCMC

▪ Using gradient information of the posterior

▪ Scalable MCMC methods

20


