Approx. Inference via Sampling (Contd): Metropolis Hastings and Gibbs Sampling

CS772A: Probabilistic Machine Learning

Piyush Rai

Plan for today

- MCMC algorithms
 - Metropolis Hastings (MH)
 - Gibbs sampling (special case of MH)
 - Some examples of Gibbs sampling

The MH Sampling Algorithm

- Initialize $\boldsymbol{z^{(1)}}$ randomly
- For $\ell = 1, 2, \dots, L$
 - Sample $\mathbf{z}^* \sim q(\mathbf{z}^* | \mathbf{z}^{(\ell)})$ and $u \sim \text{Unif}(0,1)$
 - Compute acceptance probability

$$A(z^*, z^{(\ell)}) = \min\left(1, \frac{\tilde{p}(z^*)q(z^{(\ell)}|z^*)}{\tilde{p}(z^{(\ell)})q(z^*|z^{(\ell)})}\right)$$

If $A(z^*, z^{(\ell)}) > u$
$$z^{(\ell+1)} = z^*$$

Meaning accepting z^* with
probability $A(z^*, z^{(\ell)})$

Else

$$\mathbf{z}^{(\ell+1)} = \mathbf{z}^{(\ell)}$$

MH Sampling in Action: A Toy Example..

- Target distribution $p(z) = \mathcal{N}\left(\begin{bmatrix}4\\4\end{bmatrix}, \begin{bmatrix}1 & 0.8\\0.8 & 1\end{bmatrix}\right)$
- Proposal distribution $q(z^{(t)}|z^{(t-1)}) = \mathcal{N}\left(z^{(t-1)}, \begin{bmatrix} 0.01 & 0\\ 0 & 0.01 \end{bmatrix}\right)$

MH Sampling: Some Comments

If prop. distrib. is symmetric, we get Metropolis Sampling algo (Metropolis, 1953) with

$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(au)}) = \min\left(1, rac{\widetilde{p}(\boldsymbol{z}^*)}{\widetilde{p}(\boldsymbol{z}^{(au)})}
ight)$$

- Some limitations of MH sampling
 - Can sometimes have very slow convergence (also known as slow "mixing")

 $Q(\mathbf{z}|\mathbf{z}^{(\tau)}) = \mathcal{N}(\mathbf{z}|\mathbf{z}^{(\tau)}, \sigma^2 \mathbf{I})$ $\sigma \text{ large } \Rightarrow \text{ many rejections}$ $\sigma \text{ small } \Rightarrow \text{ slow diffusion}$ $\sim \left(\frac{L}{\sigma}\right)^2 \text{ iterations required for convergence}$

• Computing acceptance probability can be expensive*, e.g., if $p(z) = \frac{\tilde{p}(z)}{Z_p}$ is some target posterior then $\tilde{p}(z)$ would require computing likelihood on all the data points (expensive)

Gibbs Sampling (Geman & Geman, 1984)

- Goal: Sample from a joint distribution p(z) where $z = [z_1, z_2, ..., z_M]$
- Suppose we can't sample from p(z) but can sample from each conditional p(z_i|z_{-i})
 In Bayesian models, can be done easily if we have a locally conjugate model
- For Gibbs sampling, the proposal is the conditional distribution $p(z_i | \mathbf{z}_{-i})$
- Gibbs sampling samples from these conditionals in a cyclic order
- Gibbs sampling is equivalent to MH sampling with acceptance prob. = 1

$$A(z^*, z) = \frac{p(z^*)q(z|z^*)}{p(z)q(z^*|z)} = \frac{p(z_i^*|z_{-i}^*)p(z_{-i})p(z_i|z_{-i}^*)}{p(z_i|z_{-i})p(z_{-i})p(z_i^*|z_{-i})} = 1$$

where we use the fact that $z_{-i}^* = z_{-i} \checkmark$ Since only one component
is changed at a time

Hence no need

to compute it

Gibbs Sampling: Sketch of the Algorithm

• M: Total number of variables, T: number of Gibbs sampling iterations

1. Initialize
$$\{z_i : i = 1, ..., M\}$$
 Assuming $\mathbf{z} = [z_1, z_2, ..., z_M]$
2. For $\tau = 1, ..., T$:
- Sample $z_1^{(\tau+1)} \sim p(z_1 | z_2^{(\tau)}, z_3^{(\tau)}, ..., z_M^{(\tau)})$.
- Sample $z_2^{(\tau+1)} \sim p(z_2 | z_1^{(\tau+1)}, z_3^{(\tau)}, ..., z_M^{(\tau)})$.
:
- Sample $z_j^{(\tau+1)} \sim p(z_j | z_1^{(\tau+1)}, ..., z_{j-1}^{(\tau+1)}, z_{j+1}^{(\tau)}, ..., z_M^{(\tau)})$.
:
- Sample $z_M^{(\tau+1)} \sim p(z_M | z_1^{(\tau+1)}, z_2^{(\tau+1)}, ..., z_{M-1}^{(\tau+1)})$.
Each iteration will give us one sample $\mathbf{z}_M^{(\tau)}$ of $\mathbf{z} = [z_1, z_2, ..., z_M]$

CS772A: PML

 Note: Order of updating the variables usually doesn't matter (but see "Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much" from NIPS 2016)

Gibbs Sampling: A Simple Example

Can sample from a 2-D Gaussian using 1-D Gaussians

Gibbs Sampling: Some Comments

- One of the most popular MCMC algorithms
- Very easy to derive and implement for locally conjugate models
- Many variations exist, e.g.,
 - Blocked Gibbs: sample more than one component jointly (sometimes possible)
 - Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded components while sampling. Also called "collapsed" Gibbs sampling
 - MH within Gibbs: If CPs are not easy to sample distributions
- Instead of sampling from CPs, an alternative is to use the mode of the CPs
 - Called the "Iterative Conditional Mode" (ICM) algorithm
 - ICM doesn't give the posterior though it's more like ALT-OPT to get (approx) MAP estimate

Recap: Gibbs Sampling

- An instance of MH sampling where the acceptance probability = 1
- Based on sampling z one "component" at a time with proposal = conditional distr.

```
Gibbs Sampling

Initialize \mathbf{z}^{(0)} = [z_1^{(0)}, z_2^{(0)}, \dots, z_M^{(0)}] randomly

For \ell = 1, \dots, L

• Sample \mathbf{z}^{(\ell)} by sampling one component at a time (usually cyclic manner)

\mathbf{z}^{(\ell)} \sim p(z_1|z_2^{(\ell-1)}, z_3^{(\ell-1)}, \dots, z_M^{(\ell-1)})

z_2^{(\ell)} \sim p(z_2|z_1^{(\ell)}, z_3^{(\ell-1)}, \dots, z_M^{(\ell-1)})

\vdots

z_{M-1}^{(\ell)} \sim p(z_{M-1}|z_1^{(\ell)}, \dots, z_{M-2}^{(\ell)}, z_M^{(\ell-1)})

z_M^{(\ell)} \sim p(z_M|z_1^{(\ell)}, z_2^{(\ell)}, \dots, z_{M-1}^{(\ell)})
```

In practice, we won't use all the L samples to approximate the target distribution p(z) since there will be a burn-in phase and thinning as well

Denoting the <u>collected</u> samples by $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(S)}$, the posterior approximation will be the empirical distribution defined by these samples

Very easy to derive if the conditional distributions are easy to obtain

Deriving A Gibbs Sampler: The General Recipe

- Suppose the target is an intractable posterior p(Z|X) where $Z = [z_1, z_2, ..., z_M]$
- Gibbs sampling requires the conditional posteriors $p(\mathbf{z}_m | \mathbf{Z}_{-m}, \mathbf{X})$
- In general, $p(\mathbf{z}_m | \mathbf{Z}_{-m}, \mathbf{X}) \propto p(\mathbf{z}_m) p(\mathbf{X} | \mathbf{z}_m, \mathbf{Z}_{-m})$ where \mathbf{Z}_{-m} is assumed "known"
- If $p(\mathbf{z}_m)$ and $p(\mathbf{X}|\mathbf{z}_m, \mathbf{Z}_{-m})$ are conjugate, the above CP is straightforward to obtain
- Another way to get each CP $p(\boldsymbol{z}_m | \boldsymbol{Z}_{-m} \boldsymbol{X})$ is by following this
 - Write down the expression of p(X, Z)
 - Only terms that contain z_m needed to get CP of z_m (up to a prop const)

Markov Blanket

- In $p(\mathbf{z}_m | \mathbf{Z}_{-m}, \mathbf{X})$, we only need to condition on terms in Markov Blanket of \mathbf{z}_m
 - Markov Blanket of a variable: Its parents, children, and other parents of its children
 - Very useful in deriving CP

Gibbs Sampling: An Example

The CPs for the Gibbs sampler for a GMM are as shown in green rectangles below

17

Gibbs Sampling: Another Example

13

Gibbs Sampling: One More Example

14

MCMC: Some Other Aspects

Using the Samples to make Predictions

• Using the S samples $Z^{(1)}, Z^{(2)}, \dots, Z^{(S)}$, our approx. $p(Z) \approx \frac{1}{S} \sum_{s=1}^{S} \delta_{Z^{(s)}}(Z)$

• Any expectation that depends on p(Z) be approximated as 1 - S

$$\mathbb{E}[f(\mathbf{Z})] = \int f(\mathbf{Z})p(\mathbf{Z})d\mathbf{Z} \approx \frac{1}{S} \sum_{s=1}^{S} f(\mathbf{Z}^{(s)})$$

• For Bayesian lin. reg., assuming w, β, λ to be unknown, the PPD approx. will be

16

Sampling Methods: Label Switching Issue

- Suppose we are given samples $Z^{(1)}, Z^{(2)}, \dots, Z^{(S)}$ from the posterior p(Z|X)
- We can't always simply "average" them to get the "posterior mean" \overline{Z}
- Why: Non-identifiability of latent vars in models with multiple equival. posterior modes
- Example: In clustering via GMM, the likelihood is invariant to how we label clusters
 - What we call cluster 1 in one sample may be cluster 2 in the next sample
 - Say, in GMM, $z_n^{(1)} = [1,0]$ and $z_n^{(2)} = [0,1]$, both samples imply the same
 - Averaging will give $\bar{z}_n = [0.5, 0.5]$, which is incorrect

One sample may be from near one of the modes and the other may be from near the other mode

Changes in order of entries in these $K \times 1$ vectors across

different samples doesn't affect

the inner product

- Quantities not affected by permutations of dims of old Z can be safely averaged
 - E.g., probability that two points belong to the same cluster (e.g., in GMM)
 - Predicting the mean of an entry r_{ij} in matrix factorization $\frac{1}{s} \sum_{s=1}^{s} u_i^{(s)} u_i^{(s)}$

MCMC: Some Practical Aspects

Choice of proposal distribution is important

- For MH sampling, Gaussian proposal is popular when $m{z}$ is continuous, e.g.,

$$q(z|z^{(\ell-1)}) = \mathcal{N}(z|z^{(\ell-1)}, \mathbf{H}) \xrightarrow{\text{Hessian at the MAP of}}_{\text{the target distribution}}$$

Other options: Mixture of proposal distributions, data-driven or adaptive proposals

• Autocorrelation. Can show that when approximating $f^* = \mathbb{E}[f]$ using $\{\mathbf{Z}^{(s)}\}_{s=1}^{S}$ Basically measures what fractions of

Multiple Chains: Run multiple chains, take union of generated samples

Approximate Inference: VI vs Sampling

- VI approximates a posterior distribution p(Z|X) by another distribution $q(Z|\phi)$
- Sampling uses S samples $Z^{(1)}, Z^{(2)}, \dots, Z^{(S)}$ to approximate p(Z|X)
- Sampling can be used within VI (ELBO approx using Monte-Carlo)
- In terms of "comparison" between VI and sampling, a few things to be noted
 - Convergence: VI only has local convergence, sampling (in theory) can give exact posterior
 - Storage: Sampling based approx needs to storage all samples, VI only needs var. params ϕ
 - Prediction Cost: Sampling <u>always</u> requires Monte-Carlo avging for posterior predictive; with VI, sometimes we can get closed form posterior predictive

PPD if using sampling: PPD if using VI:

 $p(x_*|X) = \int p(x_*|Z)p(Z|X)dZ \approx \frac{1}{S} \sum_{s=1}^{S} p(x_*|Z^{(s)})$ $p(x_*|X) = \int p(x_*|Z)p(Z|X)dZ \approx \int p(x_*|Z)q(Z|\phi)dZ$

Compressing the *S* samples into something more compact

- CS772A: PML
- There is some work on "compressing" sampling-based approximations*

Coming Up Next

- Avoiding the random-walk behavior of MCMC
 - Using gradient information of the posterior
- Scalable MCMC methods

