Approx. Inference via Sampling (Contd):
Metropolis Hastings and Gibbs Sampling
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Plan for today

= MCMC algorithms
= Metropolis Hastings (MH)
" Gibbs sampling (special case of MH)
" Some examples of Gibbs sampling
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The MH Sampling Algorithm

» |nitialize z(D randomly

sfForf=1,2,...,L
= Sample z* ~ q(z*|z®)) and u ~ Unif(0,1)
= Compute acceptance probability

Az, 29) = min (1, Btz

) B5(200)q(z*|20)

m|f A(z*, Z(f)) > Uu Meaning accepting z* with

probability A(z*,z")
Z(f'l'l) = 7"

= Flse
Z(E+1) — 4 (O
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MH Sampling in Acti

= Target distribution p(z) = N (

= Proposal distribution g(z(®|z(t=1)) = & [ 2{t=1).
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MH Sampling: Some Comments

" |f prop. distrib. is symmetric, we get Metropolis Sampling algo (Metropolis, 1953) with

Al 20— i (1, 5’3((22(:))))

= Some limitations of MH sampling
= Can sometimes have very slow convergence (also known as slow "mixing”)

Q(z|z™®) = N (2|2, 62I) I
Q o large = many rejections ~ (E) iterations required for convergence
- o small = slow diffusion
» Computing acceptance probability can be expensive*, e.q., if p(z) = P s some target
p

posterior then p(z) would require computing likelihood on all the data points (expensive)

*Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014), Firefly Monte Carlo: Exact MCMC with Subsets of Data {(Maclaurin and Adams, 2015) CS772A: PML



Gibbs Sampling (Geman & Geman, 1984)

= Goal: Sample from a joint distribution p(z) where z = |24, Z5, ..., Z)]

= Suppose we can't sample from p(z) but can sample from each conditional p(z;|z_;)
" [n Bayesian models, can be done easily it we have a locally conjugate model

* For Gibbs sampling, the proposal is the conditional distribution p(z;|z_;)

" Gibbs sampling samples from these conditionals in a cyclic order Hence no need

to compute it

" Gibbs sampling is equivalent to MH sampling with acceptance prob. = 1

)p(zilz~ ;)

%

p(z*)q(z|z*) _ p(z|zZ;)p(zZ

Alz*, z) = = i
(2.2 = a= ) Pl ez eI
where we use the fact that z* ;. = z_; — +ociataime

CS772A: PML



Gibbs Sampling: Sketch of the Algorithm

* M. Total number of variables, T: number of Gibbs sampling iterations

. Initialize {z; :i =1..... M) = Assuming z = (24,23, ., Zu]
> N e,
2 Forr=1,..., & CP of each component of z uses
 (T41) (M (™M (T) the most recent values (from this
— Sample 2, ~ p(21 |""2 ) <8 9y 2 )- or the previous iteration) of all
‘ (T+1) (T+1) _(7) (7) the other components
— Sample 25 ~ p(2z2|2; 2 N Zrr )
S: | (T+1) ~ ‘,.l&(r-l—l») _ATEL)  AT) -‘(,~~))
= & t]l]]p e .-J- ’ [ --J —,..1 ..... -.J_l - -,,J‘_'_l ..... -v"\[ .

Each iteration will give us one

T+1)
LT+ sample z(P of z = [z, 2, ..., Zy]

: LT+ _(T+1) (T+1)
— Sample 2,," " ~ p(2pm|z; T2 2 ).

* Note: Order of updating the variables usually doesn't matter (but see "Scan Order in Gibbs
Sampling: Models in Which it Matters and Bounds on How Much” from NIPS 2016)
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Gibbs Sampling: A Simple Example

= Can sample from a 2-D Gaussian using 1-D Gaussians

2 Z
P(z)
Contours of a
2-D Gaussian
ial
Z1 lb'u
Z2 7

Conditional distribution of
Z, given zq is Gaussian

P(z,|z,")

B ST .. S

\C) A (l'i

Pz,

Conditional distribution of
Zq given z, is Gaussian

z®

Gibbs sampling looks like doing
a co-ordinate-wise update to
generate each successive
sample of z = [z4, 23]
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Gibbs Sampling: Some Comments

" One of the most popular MCMC algorithms
" Very easy to derive and implement for locally conjugate models

= Many variations exist, e.g.,
= Blocked Gibbs: sample more than one component jointly (sometimes possible)

» Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded components while
sampling. Also called “collapsed” Gibbs sampling

= MH within Gibbs: If CPs are not easy to sample distributions

" |nstead of sampling from CPs, an alternative is to use the mode of the CPs
» Called the “lterative Conditional Mode" (ICM) algorithm
= |CM doesn't give the posterior though — it's more like ALT-OPT to get (approx) MAP estimate
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Recap: Gibbs Sampling

" An instance of MH sampling where the acceptance probability = 1
* Based on sampling z one "component” at a time with proposal = conditional distr.

Gibbs Sampling In practice, we won't use n
o ) ©) _(0) 0) all the L samples to "f‘ /

Initialize 2\ = [z, 2,,. . ., z),’] randomly approximate the target »

Fori=1,...,L distribution p(z) since 4'7

there will be a burn-in

> Sample z(¥) by sampling one component at a time (usually cyclic manner) e
phase and thinning as well

[
| £l —1 £—1 —1
: z{ ): ~ p(21|z§ ),z§ ),...,z,(v, )) |
e I~ plolz?zt .z ) Denoting the collected samples

7(£) by 20,2®, ...,z the

I . . ' .
NOREEN p(zua2?. . 2O D) posteﬂorj gpprquatpn will be
! M(_E; ! (g)l EE) ’ M_(i) i the empirical distribution defined
2y~ Plamlz” 27 2 by these samples

" Very easy to derive if the conditional distributions are easy to obtain
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Deriving A Gibbs Sampler: The General Recipe

= Suppose the target is an intractable posterior p(Z|X) where Z = |24, Z,, ..., Zy]
= Gibbs sampling requires the conditional posteriors p(Z,|Z -, X)
= In general, p(z|Z_1, X) X p(z2,,,)p(X|2,,,, Z_,,,) where Z_,, is assumed “known"

" If p(z,,) and p(X|z,,, Z_,,,) are conjugate, the above CP is straightforward to obtain

» Another way to get each CP p(z,,|Z_,,,X) is by following this
= Write down the expression of p(X, Z)
= Only terms that contain z,,, needed to get CP of z,,, (up to a prop const)

Markov Blanket

" In p(z,,|Z_,,, X), we only need to condition on terms in Markov Blanket of z,,
= Markov Blanket of a variable: Its parents, children, and other parents of its children

= \ery useful in deriving CP
CS772A: PML
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Gibbs Sampling: An Example

" The CPs for the Gibbs sampler for a GMM are as shown in green rectangles below

g o oEEEEEEEEEEEEEEEEEEEEEEES grET==EEEEEEE= L
I\Gﬂ{:ll.tISSian ' ' L p(x.z,p.B.w) = p(x|z, p, X)p(z|7)p(w) Hp(yk )p(Xr) .
IXture - k=1 .
. Model ‘ k| | Joint distribution N K ) :
Caﬂ Verlfy that N\ 7 Of data and - (H H (FkAf(xill-tk' zk))-(lzk)> X :
Markov Blanket | | | unknowns gy e .
property holds T @ @ - K :
for each CP | | N ' Dir(7|cx) Hj\/’(ukimo.VO)I\\'(Zk|SO.//0) :
o k=1
O .- 2 N p—— 1
: '
)(z; = k|x 2w) o 73 Xilper. Xk ‘ |
|‘1( : by ) N (i oy "* p(w|z) = Dir(fax+ > Iz =k)}H_y)| |
I g —1 [
l p g Xk.2,x) = N(pp|mg, Vi) I
: Vi = Vo N > — IW(Z[S I
! m;. - VL‘(E}‘—-IA\.I\‘XL' +V0—11110) 1)( kluk-Z-X) = ( kl k~1/k) :
N
N
, - ' i=1 I
& r 1745 == Vo + \v}‘ I
[ ik é Z;:l H(.-'i =— l‘)xl I
| Nk cs7724 PML
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Gibbs Samplmg Another Example

__________________________ :
I p (Y, {w]} 1[,¢W, X 52|X) Joint distribution of data I
I B and unknowns i
f ~ I N]
ysetions 1= (1_[ [T pOulxgw o2 in, zw)) p(,)p(E,)p(0?) *
Regression o2 I J=1 =1 |
Problem O ! J N N , I
= 1_[]'—1 Hi_lN(Yijle Xij, 0 )N (Wi|wy, Zy) I
- B |
|
NV (wlBo, Vo) IW(Zy, |10, So 1) 1G(0?[vo/2,v00§ /2) |
L Jd o e e e e e e T - - |
Canverffy that | == == === =TT m e T nn e :
Markov Blanket p(w;|D;.6) N (wjlw;, ) p(py|Wi7,. Bw) = N(p|lpy.EN) :
property holds i B T ) »-1 vl gy! ;
for each CP %, = +Xj X,/0” . 20 (Vg iits+JE W) :
N = XN : W
' Hj 2(Z7 n+ Xjyj/0?) H‘\— = A Sy :
- W=y Zj W; :
: ]
1 9 /1 1 [ 2
o(Bw|py, W) IW((So + Su) Lm0 + J) || P(0°|D.wis) = IG( ”U + N1/2, [voog + SSR(W1.4)]/2) :
H 7 & ]
: S;l Z(W i uu')( “w) SSR(WI;J) = ZZ Yij — w X,))" :
: J j=1 i=1 :

13
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Bayesian Matrix Factorization

Can verify that

M
p(Rl {ul}{vzli {vj}]‘=1, Au; Av; B)

ijl|%i» Yj, iAu 'Av Au /11,
n(i,j)eﬂp("ﬂ“ v}, 8) ]_Lp<ul )| | p@12) pp@ e )1

Assuming even the
hyperparams to be
unknown

Joint distribution of data
and unknowns

Can also use non-zero mean and full cov matrix for
u;, vj, with Gaussian and Wishart priors respectively*

‘ ‘ |
- N(Tij|uiT”j»ﬁ)‘ ‘,N(uiIO,/lall)‘ ‘_N(vj|0,A;1l) :
(l,])E.Q. l Jj

Gamma(A,|a, b)Gamma(A,|c,d)Gamma(S]e, f) :

| p(u,|R,V) :N(uflu’u‘-azuf)

_ L Ty—1
Markov Blanket | Xy, = (Aul + B2 ;i heq Vivj )

property holds

for each CP I-l'u’- = Zuf(ﬁ Zj:(f,j)EQ Fij Vj) ""Vj — vj(ﬁ Zi:(;’,J)eQ Fgu,) !
N
p(1,|U) = Gamma(dy|a + 0.5 * NK, b + 0.5 * Z wTu,)
i=1

p(1,|V) = Gamma(l,|c + 0.5 * MK, d + 0.5 Z |

M

J=1

p(BIR,U,V) = Gamma(S|e + 0.5 * |Q],

Q) denotes the
indices that are
observed in the

T \24| ratings matrix
f4+05%Y; icq(ry—ujv)H|
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MCMC: Some Other Aspects
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Using the Samples to make Predictions

» Using the S samples ZW 7z ZO) our approx. p(Z) = i Yio=1 06, (Z)

» Any expectation that depends on p(Z) be approximated as

1 S
~ _ S
Elf(2)] = | f(@)p(2)dZ ~ f(Z®)
S Lwis=1
* For Bayesian lin. reg., assuming w, 8, A to be unknown, the PPD approx. will be
Joint posterior over all Thus, in this case, the PPD
unknowns 1 S is a sum of S Gaussians
~ S S
[ pGlx,w, B)p(w, B, A1X, y)dwdpdA ~ E p(v.|x., WS, )
Sampling based s=1 T
approximation of PPD Mean and variance of y, Mean: E[y,] = ZS w  x
can be computed using
. . Variance: Exercise! Use definition
sum of Gaussian properties _
of variance and use Monte-Carlo

approximation

» Sampling based approx. for PPD of other models can also be obtained likewise
CS772A: PML



Sampling Methods: Label Switching Issue

= Suppose we are given samples Z(D, 2(2) ., 25 from the posterior p(Z|X)

" We can't always simply "average” them to get the “posterior mean” Z
» Why: Non-identifiability of latent vars in models with multiple equival. posterior modes

* Example: In clustering via GMM, the likelihood is invariant to how we label clusters

» What we call cluster 1 in one sample may be cluster 2 in the next sample  [6re sample may be
from near one of the

= Say, in GMM, z,gl) = [1,0] and z,(f) = [0,1], both samples imply the same | . jos and the oher

= Averaging will give z,, = [0.5,0.5], which is incorrect may be frgm near the
other mode

» Quantities not affected by permutations of dims of Z can be safely averaged

= [.g., probability that two points belong to the same cluster (e.qg., in GMM) | Changes i order of entries i

T these K X 1 vectors across
different samples doesn’t affect

S u(S) v(S) P

s=1 4% j

the inner product

- . . 1
= Predicting the mean of an entry r;; in matrix factorization S
CS772A: PML



MCMC: Some Practical Aspects

» Choice of proposal distribution is important

* For MH sampling, Gaussian proposal is popular when z is continuous, e.g.,
Hessian at the MAP of

q(Z‘Z(f_l)) = N(le(f_l)’ H) the target distribution
Change at each iter
= Other options: Mixture of proposal distributions, data-driven or adaptive proposals

= Autocorrelation. Can show that when approximating f* = E[f] using {Z9}5_,

Basically measures what fractions of
Monte Carlo assumes

1 ~—S ' the total samples are uncorrelated.
f= §z £, uncorrelated samples Value of f using st* MCMC sample Want it to be close to 1
s=1 _ ~ 1 . . . , : varpc|f|
varpemc|[f] = varpc[f] + o Z E[(f. = f")(f — )] FEffective Sample Size (ESS) = varmemc|[f]
s7t . ZS t( _)( _) Lower is
, . T3 sk fs—f)(fste—F better
= Autocorrelation function (ACF) at lag t: pr = = = =5 (7.7
-1 s=1\"S

= Multiple Chains: Run multiple chains, take union of generated samples
CS772A: PML



Approximate Inference: VI vs Sampling

= VI approximates a posterior distribution p(Z|X) by another distribution g(Z|¢®)
= Sampling uses S samples Z(1), Z2(2) .., Z(5) to approximate p(Z|X)
= Sampling can be used within VI (ELBO approx using Monte-Carlo)

" |n terms of "‘comparison” between VI and sampling, a few things to be noted
= Convergence: VI only has local convergence, sampling (in theory) can give exact posterior
= Storage: Sampling based approx needs to storage all samples, VI only needs var. params ¢

= Prediction Cost: Sampling always requires Monte-Carlo avging for posterior predictive; with
VI, sometimes we can get closed form posterior predictive

1S
PPD if using sampling: p(x,|X) = [ p(x.|Z2)p(Z|1X)dZ ~ Ez p(x* Z(S)) Compressing the S samples
- s=1 into something more
PPD if using VI: p(x.|X) = [ p(e|Dp(Z1X)dZ ~ [ p(x.|1Z)q(Z|$)dZ | compact

" There is some work on “compressing” sampling-based approximations*

CS772A: PML

*”Compact approximations to Bayesian predictive distributions” by Snelson and Ghaharamani, 2005; and “Bayesian Dark Knowledge” by Korattikara et al, 2015



Coming Up Next

= Avoiding the random-walk behavior of MCMC
= Using gradient information of the posterior

= Scalable MCMC methods
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