
Approximate Inference via Sampling

CS772A: Probabilistic Machine Learning

Piyush Rai

CS772A: PML

Sampling for Approximate Inference

▪ Some typical tasks that we have to solve in probabilistic/fully-Bayesian inference

▪ Sampling methods provide a general way to (approximately) solve these problems

▪ More general than VI methods which only approximate the posterior distribution

2

]

Posterior

distribution

Posterior

predictive

distribution

Marginal

likelihood

Expected

complete data

log-likelihood

Evidence lower

bound (ELBO)Needed in VI

Needed in EM

Needed for model

selection (and in

computing

posterior too)

CS772A: PML

Approximating a Prob. Distribution using Samples

▪ Can approximate any distribution using a set of randomly drawn samples from it

▪ The samples can also be used for computing expectations (Monte-Carlo averaging)

▪ Usually straightforward to generate samples if it is a simple/standard distribution

▪ The interesting bit: Even if the distribution is “difficult” (e.g., an intractable posterior), it
is often possible to generate random samples from such a distribution, as we will see.

3

Samples can thought

of as a histogram-

based approximation

of a distribution
Height of each bar

denotes how many

times that location

was sampled

Given large-enough

samples, it is proportional to

the probability density at

that location

𝑝(𝑧)

CS772A: PML

The Empirical Distribution

▪ Sampling based approx. can be formally represented using an empirical distribution

▪ Given 𝐿 points/samples 𝒛(1), 𝒛(2), … , 𝒛(𝐿), empirical distr. defined by these is

4

Weight of point 𝑧(ℓ)
Weights sum to 1

Dirac Distribution

Dirac Distribution with

finite support at

𝒛(1), 𝒛(2), … , 𝒛(𝐿)

Can think of 𝐴 as being the

area over which we want to

evaluate the distribution

CS772A: PML

Sampling: Some Basic Methods

▪ Most of these basic methods are based on the idea of transformation
▪ Generate a random sample 𝑥 from a distribution 𝑞(𝑥) which is easy to sample from

▪ Apply a transformation on 𝑥 to make it random sample 𝑧 from a complex distr 𝑝(𝑧)

▪ Some popular examples of transformation methods
▪ Inverse CDF method

▪ Reparametrization method

▪ Box-Mueller method: Given (𝑥1, 𝑥2) from Unif(−1,+1), generate (𝑧1, 𝑧2) from 𝒩(0, 𝐈2)

𝑧1 = −2 ln 𝑥1cos 2𝜋𝑥2 , 𝑧1 = −2 ln 𝑥1sin(2𝜋𝑥2)

▪ Transformation Methods are simple but have limitations
▪ Mostly limited to standard distributions and/or distributions with very few variables

5

𝑥

𝑧 = 𝐹−1(𝑥)

𝐹(𝑧): CDF of 𝑝(𝑧)

𝑝 𝑧 = 𝑞(𝑥)
𝜕𝑥

𝜕𝑧
Determinant

of Jacobian

CS772A: PML

Rejection Sampling

▪ Goal: Generate a random sample from a distribution of the form 𝑝 𝑧 =
𝑝(𝑧)

𝑍𝑝
, assuming

▪ We can only evaluate the value of numerator 𝑝(𝑧) for any 𝑧

▪ The denominator (normalization constant) 𝑍𝑝 is intractable and we don’t know its value

▪ Assume a proposal distribution 𝑞(𝑧) we can generate samples from, and

▪ Rejection Sampling then works as follows
▪ Sample an random variable 𝑧∗ from 𝑞(𝑧)

▪ Sampling a uniform r.v. 𝑢 ∼ Unif 0,𝑀𝑞 𝑧∗
▪ If 𝑢 ≤ 𝑝(𝑧∗) then accept 𝑧∗, otherwise reject it

▪ All accepted 𝑧∗’s will be random samples from 𝑝 𝑧 . Proof on next slide

6

Should have the same

support as 𝑝(𝑧)

CS772A: PML

Rejection Sampling

▪ Why 𝑧 ∼ 𝑞(𝑧) + accept/reject rule is equivalent to 𝑧 ∼ 𝑝(𝑧)?

▪ Let’s look at the pdf of the 𝑧’s that were accepted, i.e., 𝑝(𝑧|accept)

7

CS772A: PML

Computing Expectations via Monte Carlo Sampling

▪ Often we are interested in computing expectations of the form

where 𝑓(𝑧) is some function of the random variable 𝑧 ∼ 𝑝(𝑧)

▪ A simple approx. scheme to compute the above expectation: Monte Carlo integration

▪ Generate 𝐿 independent samples from 𝑝(𝑧): 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑝(𝑧)

▪ Approximate the expectation by the following empirical average

▪ Since the samples are independent of each other, we can show the following (exercise)

8

𝔼 𝑓 = න𝑓 𝑧 𝑝 𝑧 𝑑𝑧

Unbiased

expectation

Variance in our

estimate decreases

as 𝐿 increases

𝔼 𝑓 ≈ መ𝑓 =
1

𝐿
σℓ=1
𝐿 𝑓(𝑧(ℓ))

Assuming we know how

to sample from 𝑝(𝑧)

CS772A: PML

Computing Expectations via Importance Sampling

▪ How to compute Monte Carlo expec. if we don’t know how to sample from 𝑝(𝑧)?

▪ One way is to use transformation methods or rejection sampling

▪ Another way is to use Importance Sampling (assuming 𝑝(𝑧) can be evaluated at least)

▪ Generate 𝐿 indep samples from a proposal 𝑞(𝑧) we know how sample from: 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑞(𝑧)

▪ Now approximate the expectation as follows

▪ This is basically “weighted” Monte Carlo integration

▪ 𝑤(ℓ) =
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)
denotes the importance weight of each sample 𝑧(ℓ)

▪ IS works even when we can only evaluate 𝑝 𝑧 =
𝑝(𝑧)

𝑍𝑝
up to a prop. constant

▪ Note: Monte Carlo and Importance Sampling are NOT sampling methods!
▪ These are only uses for computing expectations (approximately)

9

𝔼 𝑓 = න𝑓 𝑧 𝑝 𝑧 𝑑𝑧 = න𝑓 𝑧
𝑝 𝑧

𝑞 𝑧
𝑞 𝑧 𝑑𝑧 ≈

1

𝐿

ℓ=1

𝐿

𝑓(𝑧(ℓ))
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)

See PRML 11.1.4

CS772A: PML

Limitations of the Basic Methods

▪ Transformation based methods: Usually limited to drawing from standard distributions

▪ Rejection Sampling and Importance Sampling: Require good proposal distributions

▪ In general, difficult to find good prop. distr. especially when 𝑧 is high-dim

▪ More sophisticated sampling methods like MCMC work well in such high-dim spaces

10

𝔼 𝑓 ≈
1

𝐿

ℓ=1

𝐿

𝑓(𝑧(ℓ))
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)

Ideally, would like 𝑞(𝑧) to

give samples from where 𝑝(𝑧)
is large or 𝑓(𝑧)𝑝(𝑧) is large

Difficult to guarantee so if 𝑧 is

high-dimensional

𝑞(𝑧) should be such that

𝑀𝑞(𝑧) envelopes 𝑝(𝑧)
everywhere

CS772A: PML

Markov Chain Monte Carlo (MCMC)

▪ Goal: Generate samples from some target distribution 𝑝 𝒛 =
𝑝(𝒛)

𝑍𝑝

▪ Assume we can evaluate 𝑝(𝒛) at least up to a proportionality constant

▪ MCMC uses a Markov Chain which, when converged, starts giving samples from 𝑝(𝑧)

▪ Given current sample 𝒛(ℓ) from the chain, MCMC generates the next sample 𝒛(ℓ+1) as

▪ Use a proposal distribution 𝑞(𝒛|𝒛(ℓ)) to generate a candidate sample 𝒛∗
▪ Accept/reject 𝒛∗ as the next sample based on an acceptance criterion (will see later)

▪ If accepted, set 𝒛(ℓ+1) = 𝒛∗. If rejected, set 𝒛(ℓ+1) = 𝒛(ℓ)

▪ Important: The proposal distribution 𝑞(𝒛|𝒛(ℓ)) depends on the previous sample 𝒛(ℓ)

11

Means we can at least

evaluate 𝑝(𝒛)
𝒛 usually is high-dim

If the target is a posterior, it will be

conditioned on data, i.e., 𝑝(𝒛|𝒙)

Should also have the

same support as 𝑝(𝒛)

CS772A: PML

MCMC: The Basic Scheme

▪ The chain run infinitely long (i.e., upon convergence) will give ONE sample from 𝑝 𝒛

▪ But we usually require several samples to approximate 𝑝 𝒛

▪ This is done as follows

▪ Start the chain at an initial 𝒛(0)

▪ Using the proposal 𝑞(𝒛|𝒛(ℓ)), run the chain long enough, say 𝑇1 steps

▪ Discard the first 𝑇1 − 1 samples (called “burn-in” samples) and take last sample 𝒛(𝑇1)

▪ Continue from 𝒛(𝑇1) up to 𝑇2 steps, discard intermediate samples, take last sample 𝒛(𝑇2)

▪ This discarding (called “thinning”) helps ensure that 𝒛(𝑇1) and 𝒛(𝑇2) are uncorrelated

▪ Repeat the same for a total of 𝑆 times

▪ In the end, we now have 𝑆 approximately independent samples from 𝑝 𝒛

▪ Note: Good choices for 𝑇1 and 𝑇𝑖 − 𝑇𝑖−1(thinning gap) are usually based on heuristics

12

MCMC is exact in theory but

approximate in practice since

we can’t run the chain for

infinitely long in practiceThus we say that the

samples are approximately

from the target distribution

Will treat it as our first

sample from 𝑝(𝒛)

Requirement for Monte

Carlo approximation

CS772A: PML

MCMC: Some Basic Theory

▪ A first order Markov Chain assumes 𝑝 𝒛(ℓ+1)|𝒛 1 , … , 𝒛(ℓ) = 𝑝(𝒛 ℓ+1 |𝒛(ℓ))

▪ A 1st order Markov Chain 𝒛(0), 𝒛(1), … , 𝒛(𝐿) is a sequence of r.v.’s and is defined by

▪ An initial state distribution 𝑝(𝒛 0)

▪ A Transition Function (TF): 𝑇ℓ 𝒛 ℓ → 𝒛 ℓ+1 = 𝑝(𝒛 ℓ+1 |𝒛(ℓ))

▪ TF is a distribution over the values of next state given the value of the current state

▪ Assuming a 𝐾-dim discrete state-space, TF will be 𝐾 × 𝐾 probability table

▪ Homogeneous Markov Chain: The TF is the same for all ℓ , i.e., 𝑇ℓ = 𝑇

13

CS772A: PML

MCMC: Some Basic Theory

▪ Consider the following Markov Chain with a 𝐾 = 3 discrete state-space

▪ 𝑝(𝒛) being Stationary means no matter what 𝑝 𝒛 0 is, we will reach 𝑝(𝒛)

▪ A Markov Chain has a stationary distribution if 𝑇 has the following properties
▪ Irreducibility: T’s graph is connected (ensures reachability from anywhere to anywhere)

▪ Aperiodicity: T’s graph has no cycles (ensures that the chain isn’t trapped in cycles)

14

𝑝 𝒛 0 = 𝑝 𝑧1
0
, 𝑧2

0
, 𝑧3

0

= [0.5,0.2,0.3]

𝑝 𝒛 1 = 𝑝 𝒛 0 × 𝑇 = [0.2,0.6,0.2]

𝑝 𝒛 0 × 𝑇𝑚 = [0.2,0.4,0.4]

(rounded to single digit after decimal)

(rounded to single digit after decimal)

After doing it a few more

(say some 𝑚) times
Stationary/Invariant Distribution

𝑝(𝒛) of this Markov Chain
𝑝(𝒛) is multinoulli with 𝜋 = [0.2,0.4,0.4]

CS772A: PML

MCMC: Some Basic Theory

▪ A Markov Chain with transition function 𝑇 has stationary distribution 𝑝(𝒛) if 𝑇 satisfies

▪ Integrating out (or summing over) detailed balanced condition on both sides w.r.t. 𝒛′

▪ Thus a Markov Chain with detailed balance always converges to a stationary distribution

▪ Detailed Balance ensures reversibility

▪ Detailed balance is sufficient but not necessary condition for having a stationary distr.

15

𝑝 𝒛 𝑇 𝒛′|𝒛 = 𝑝 𝒛′ 𝑇(𝒛|𝒛′)
Known as the Detailed

Balance condition

𝑝 𝒛 = න𝑝 𝒛′ 𝑇 𝒛 𝒛′ 𝑑𝒛′
Thus 𝑝(𝑧) is the

stationary distribution of

this Markov Chain

Here 𝑇 𝑏 𝑎 denotes the

transition probability of going

from state 𝑎 to state 𝑏

CS772A: PML

Coming Up Next

▪ MCMC algorithms

▪ Metropolis Hastings (MH)

▪ Gibbs sampling (special case of MH)

16

CS772A: PML

Some MCMC Algorithms

17

CS772A: PML

Metropolis-Hastings (MH) Sampling (1960)

▪ Suppose we wish to generate samples from a target distribution 𝑝 𝒛 =
𝑝(𝒛)

𝑍𝑝

▪ Assume a suitable proposal distribution 𝑞(𝒛|𝒛(𝜏)), e.g., 𝒩(𝒛|𝒛 𝜏 , 𝜎2𝑰)

▪ In each step, draw 𝒛∗ from 𝑞(𝒛|𝒛(𝜏)) and accept 𝒛∗ with probability

▪ Transition function of this Markov Chain: 𝑇 𝒛∗|𝒛(𝜏) = 𝐴(𝒛∗, 𝒛 𝜏)𝑞(𝒛∗|𝒛(𝜏))

▪ Exercise: Show that 𝑇 𝒛∗|𝒛(𝜏) satisfies the detailed balance property

18

Favors acceptance of 𝒛∗ if it is more

probable than 𝒛(𝜏) (under 𝑝(𝒛))
Favor acceptance of 𝒛∗ if it had very

low chance of being generated by the

proposal but it does have high

probability 𝑝(𝒛∗) under the target

𝑝 𝒛 𝑇 𝒛(𝜏)|𝒛 = 𝑝 𝒛(𝜏) 𝑇(𝒛|𝒛(𝜏))

Also “unfavor” 𝒛∗ if its generation was

favored too much by the proposal distribution

CS772A: PML

The MH Sampling Algorithm

▪ Initialize 𝒛(1) randomly

▪ For ℓ = 1,2,… , 𝐿
▪ Sample 𝒛∗ ∼ 𝑞(𝒛∗|𝒛(ℓ)) and 𝑢 ∼ Unif(0,1)

▪ Compute acceptance probability

▪ If 𝐴 𝒛∗, 𝒛(ℓ) > 𝑢

▪ Else

19

𝒛(ℓ+1) = 𝒛∗

𝒛(ℓ+1) = 𝒛(ℓ)

Meaning accepting 𝒛∗ with

probability 𝐴 𝒛∗, 𝒛(ℓ)

CS772A: PML

MH Sampling in Action: A Toy Example..

▪ Target distribution

▪ Proposal distribution

20

CS772A: PML

MH Sampling: Some Comments

▪ If prop. distrib. is symmetric, we get Metropolis Sampling algo (Metropolis, 1953) with

▪ Some limitations of MH sampling

▪ Can sometimes have very slow convergence (also known as slow “mixing”)

▪ Computing acceptance probability can be expensive*, e.g., if 𝑝 𝒛 =
𝑝(𝒛)

𝑍𝑝
is some target

posterior then 𝑝(𝒛) would require computing likelihood on all the data points (expensive)

21

𝑄 𝒛 𝒛 𝜏 = 𝒩(𝒛|𝒛 𝜏 , 𝜎2𝑰)

𝜎 large ⇒ many rejections

𝜎 small ⇒ slow diffusion

*Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014), Firefly Monte Carlo: Exact MCMC with Subsets of Data {(Maclaurin and Adams, 2015)

∼
𝐿

𝜎

2

iterations required for convergence

CS772A: PML

Gibbs Sampling (Geman & Geman, 1984)

▪ Goal: Sample from a joint distribution 𝑝(𝒛)where 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]

▪ Suppose we can’t sample from 𝑝(𝒛) but can sample from each conditional 𝑝(𝑧𝑖|𝒛−𝑖)
▪ In Bayesian models, can be done easily if we have a locally conjugate model

▪ For Gibbs sampling, the proposal is the conditional distribution 𝑝(𝑧𝑖|𝒛−𝑖)

▪ Gibbs sampling samples from these conditionals in a cyclic order

▪ Gibbs sampling is equivalent to MH sampling with acceptance prob. = 1

22

Since only one component

is changed at a time

Hence no need

to compute it

CS772A: PML

Gibbs Sampling: Sketch of the Algorithm

▪𝑀: Total number of variables, 𝑇: number of Gibbs sampling iterations

▪ Note: Order of updating the variables usually doesn’t matter (but see “Scan Order in Gibbs
Sampling: Models in Which it Matters and Bounds on How Much” from NIPS 2016)

23

CP of each component of 𝑧 uses

the most recent values (from this

or the previous iteration) of all

the other components

Assuming 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]

Each iteration will give us one

sample 𝒛(𝜏) of 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]

CS772A: PML

Gibbs Sampling: A Simple Example

▪ Can sample from a 2-D Gaussian using 1-D Gaussians

24

Contours of a

2-D Gaussian

Conditional distribution of

𝑧1 given 𝑧2 is Gaussian

Conditional distribution of

𝑧2 given 𝑧1 is Gaussian Gibbs sampling looks like doing

a co-ordinate-wise update to

generate each successive

sample of 𝑧 = [𝑧1, 𝑧2]

CS772A: PML

Gibbs Sampling: Some Comments

▪ One of the most popular MCMC algorithms

▪ Very easy to derive and implement for locally conjugate models

▪ Many variations exist, e.g.,
▪ Blocked Gibbs: sample more than one component jointly (sometimes possible)

▪ Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded components while
sampling. Also called “collapsed” Gibbs sampling

▪ MH within Gibbs: If CPs are not easy to sample distributions

▪ Instead of sampling from CPs, an alternative is to use the mode of the CPs
▪ Called the “Iterative Conditional Mode” (ICM) algorithm

▪ ICM doesn’t give the posterior though – it’s more like ALT-OPT to get (approx) MAP estimate

25

CS772A: PML

Coming Up Next

▪ Using posterior’s gradient info in sampling algorithms

▪ Online MCMC algorithms

▪ Recent advances in MCMC

▪ Some other practical issues (convergence etc)

26

