
Approximate Inference via Sampling 

CS772A: Probabilistic Machine Learning

Piyush Rai



CS772A: PML

Sampling for Approximate Inference

▪ Some typical tasks that we have to solve in probabilistic/fully-Bayesian inference

▪ Sampling methods provide a general way to (approximately) solve these problems

▪ More general than VI methods which only approximate the posterior distribution
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Approximating a Prob. Distribution using Samples

▪ Can approximate any distribution using a set of randomly drawn samples from it

▪ The samples can also be used for computing expectations (Monte-Carlo averaging)

▪ Usually straightforward to generate samples if  it is a simple/standard distribution

▪ The interesting bit: Even if  the distribution is “difficult” (e.g., an intractable posterior), it 
is often possible to generate random samples from such a distribution, as we will see.
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The Empirical Distribution

▪ Sampling based approx. can be formally represented using an empirical distribution

▪ Given 𝐿 points/samples 𝒛(1), 𝒛(2), … , 𝒛(𝐿), empirical distr. defined by these is
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Sampling: Some Basic Methods

▪ Most of these basic methods are based on the idea of transformation
▪ Generate a random sample 𝑥 from a distribution 𝑞(𝑥) which is easy to sample from

▪ Apply a transformation on 𝑥 to make it random sample 𝑧 from a complex distr 𝑝(𝑧)

▪ Some popular examples of transformation methods
▪ Inverse CDF method

▪ Reparametrization method

▪ Box-Mueller method: Given (𝑥1, 𝑥2) from Unif(−1,+1), generate (𝑧1, 𝑧2) from 𝒩(0, 𝐈2)

𝑧1 = −2 ln 𝑥1cos 2𝜋𝑥2 , 𝑧1 = −2 ln 𝑥1sin(2𝜋𝑥2)

▪ Transformation Methods are simple but have limitations
▪ Mostly limited to standard distributions and/or distributions with very few variables
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Rejection Sampling

▪ Goal: Generate a random sample from a distribution of the form 𝑝 𝑧 =
𝑝(𝑧)

𝑍𝑝
, assuming

▪ We can only evaluate the value of numerator 𝑝(𝑧) for any 𝑧

▪ The denominator (normalization constant) 𝑍𝑝 is intractable and we don’t know its value

▪ Assume a proposal distribution 𝑞(𝑧) we can generate samples from, and

▪ Rejection Sampling then works as follows
▪ Sample an random variable 𝑧∗ from 𝑞(𝑧)

▪ Sampling a uniform r.v. 𝑢 ∼ Unif 0,𝑀𝑞 𝑧∗
▪ If  𝑢 ≤ 𝑝(𝑧∗) then accept 𝑧∗, otherwise reject it

▪ All accepted 𝑧∗’s will be random samples from 𝑝 𝑧 . Proof on next slide
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Rejection Sampling

▪ Why 𝑧 ∼ 𝑞(𝑧) + accept/reject rule is equivalent to 𝑧 ∼ 𝑝(𝑧)?

▪ Let’s look at the pdf of the  𝑧’s that were accepted, i.e., 𝑝(𝑧|accept)
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Computing Expectations via Monte Carlo Sampling

▪ Often we are interested in computing expectations of the form

where 𝑓(𝑧) is some function of the random variable 𝑧 ∼ 𝑝(𝑧)

▪ A simple approx. scheme to compute the above expectation: Monte Carlo integration

▪ Generate 𝐿 independent samples from 𝑝(𝑧): 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑝(𝑧)

▪ Approximate the expectation by the following empirical average

▪ Since the samples are independent of each other, we can show the following (exercise)
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Computing Expectations via Importance Sampling

▪ How to compute Monte Carlo expec. if  we don’t know how to sample from 𝑝(𝑧)?

▪ One way is to use transformation methods or rejection sampling

▪ Another way is to use Importance Sampling (assuming 𝑝(𝑧) can be evaluated at least)

▪ Generate 𝐿 indep samples from a proposal 𝑞(𝑧) we know how sample from: 𝑧(ℓ)
ℓ=1

𝐿
∼ 𝑞(𝑧)

▪ Now approximate the expectation as follows

▪ This is basically “weighted” Monte Carlo integration

▪ 𝑤(ℓ) =
𝑝 𝑧(ℓ)

𝑞 𝑧(ℓ)
denotes the importance weight of each sample 𝑧(ℓ)

▪ IS works even when we can only evaluate 𝑝 𝑧 =
𝑝(𝑧)

𝑍𝑝
up to a prop. constant

▪ Note: Monte Carlo and Importance Sampling are NOT sampling methods!
▪ These are only uses for computing expectations (approximately)
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𝔼 𝑓 = න𝑓 𝑧 𝑝 𝑧 𝑑𝑧 = න𝑓 𝑧
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See PRML 11.1.4
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Limitations of the Basic Methods

▪ Transformation based methods: Usually limited to drawing from standard distributions

▪ Rejection Sampling and Importance Sampling: Require good proposal distributions

▪ In general, difficult to find good prop. distr. especially when 𝑧 is high-dim

▪ More sophisticated sampling methods like MCMC work well in such high-dim spaces
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Markov Chain Monte Carlo (MCMC)

▪ Goal: Generate samples from some target distribution 𝑝 𝒛 =
𝑝(𝒛)

𝑍𝑝

▪ Assume we can evaluate 𝑝(𝒛) at least up to a proportionality constant

▪ MCMC uses a Markov Chain which, when converged, starts giving samples from 𝑝(𝑧)

▪ Given current sample 𝒛(ℓ) from the chain, MCMC generates the next sample 𝒛(ℓ+1) as

▪ Use a proposal distribution 𝑞(𝒛|𝒛(ℓ)) to generate a candidate sample 𝒛∗
▪ Accept/reject 𝒛∗ as the next sample based on an acceptance criterion (will see later)

▪ If  accepted, set 𝒛(ℓ+1) = 𝒛∗. If  rejected, set 𝒛(ℓ+1) = 𝒛(ℓ)

▪ Important: The proposal distribution 𝑞(𝒛|𝒛(ℓ)) depends on the previous sample 𝒛(ℓ)
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Means we can at least 

evaluate 𝑝(𝒛)
𝒛 usually is high-dim

If the target is a posterior, it will be 

conditioned on data, i.e., 𝑝(𝒛|𝒙)
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MCMC: The Basic Scheme

▪ The chain run infinitely long (i.e., upon convergence) will give ONE sample from 𝑝 𝒛

▪ But we usually require several samples to approximate 𝑝 𝒛

▪ This is done as follows

▪ Start the chain at an initial 𝒛(0)

▪ Using the proposal 𝑞(𝒛|𝒛(ℓ)), run the chain long enough, say 𝑇1 steps

▪ Discard the first 𝑇1 − 1 samples (called “burn-in” samples) and take last sample 𝒛(𝑇1)

▪ Continue from 𝒛(𝑇1) up to 𝑇2 steps, discard intermediate samples, take last sample 𝒛(𝑇2)

▪ This discarding (called “thinning”) helps ensure that 𝒛(𝑇1) and 𝒛(𝑇2) are uncorrelated

▪ Repeat the same for a total of 𝑆 times

▪ In the end, we now have 𝑆 approximately independent samples from 𝑝 𝒛

▪ Note: Good choices for 𝑇1 and 𝑇𝑖 − 𝑇𝑖−1(thinning gap) are usually based on heuristics
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MCMC: Some Basic Theory

▪ A first order Markov Chain assumes 𝑝 𝒛(ℓ+1)|𝒛 1 , … , 𝒛(ℓ) = 𝑝(𝒛 ℓ+1 |𝒛(ℓ))

▪ A 1st order Markov Chain 𝒛(0), 𝒛(1), … , 𝒛(𝐿) is a sequence of r.v.’s and is defined by

▪ An initial state distribution 𝑝(𝒛 0 )

▪ A Transition Function (TF): 𝑇ℓ 𝒛 ℓ → 𝒛 ℓ+1 = 𝑝(𝒛 ℓ+1 |𝒛(ℓ))

▪ TF is a distribution over the values of next state given the value of the current state

▪ Assuming a 𝐾-dim discrete state-space, TF will be 𝐾 × 𝐾 probability table

▪ Homogeneous Markov Chain: The TF is the same for all ℓ , i.e., 𝑇ℓ = 𝑇
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MCMC: Some Basic Theory

▪ Consider the following Markov Chain with a 𝐾 = 3 discrete state-space

▪ 𝑝(𝒛) being Stationary means no matter what 𝑝 𝒛 0 is, we will reach 𝑝(𝒛)

▪ A Markov Chain has a stationary distribution if  𝑇 has the following properties
▪ Irreducibility: T’s graph is connected (ensures reachability from anywhere to anywhere)

▪ Aperiodicity: T’s graph has no cycles (ensures that the chain isn’t trapped in cycles)
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𝑝 𝒛 0 = 𝑝 𝑧1
0
, 𝑧2

0
, 𝑧3

0

= [0.5,0.2,0.3]

𝑝 𝒛 1 = 𝑝 𝒛 0 × 𝑇 = [0.2,0.6,0.2]

𝑝 𝒛 0 × 𝑇𝑚 = [0.2,0.4,0.4]

(rounded to single digit after decimal)

(rounded to single digit after decimal)

After doing it a few more 

(say some 𝑚) times 
Stationary/Invariant Distribution

𝑝(𝒛) of this Markov Chain
𝑝(𝒛) is multinoulli with 𝜋 = [0.2,0.4,0.4]
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MCMC: Some Basic Theory

▪ A Markov Chain with transition function 𝑇 has stationary distribution 𝑝(𝒛) if  𝑇 satisfies

▪ Integrating out (or summing over) detailed balanced condition on both sides w.r.t. 𝒛′

▪ Thus a Markov Chain with detailed balance always converges to a stationary distribution

▪ Detailed Balance ensures reversibility

▪ Detailed balance is sufficient but not necessary condition for having a stationary distr.
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𝑝 𝒛 𝑇 𝒛′|𝒛 = 𝑝 𝒛′ 𝑇(𝒛|𝒛′)
Known as the Detailed 

Balance condition

𝑝 𝒛 = න𝑝 𝒛′ 𝑇 𝒛 𝒛′ 𝑑𝒛′
Thus 𝑝(𝑧) is the 

stationary distribution of 

this Markov Chain

Here 𝑇 𝑏 𝑎 denotes the 

transition probability of going 

from state 𝑎 to state 𝑏
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Coming Up Next

▪ MCMC algorithms

▪ Metropolis Hastings (MH)

▪ Gibbs sampling (special case of MH)
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Some MCMC Algorithms

17
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Metropolis-Hastings (MH) Sampling (1960)

▪ Suppose we wish to generate samples from a target distribution 𝑝 𝒛 =
𝑝(𝒛)

𝑍𝑝

▪ Assume a suitable proposal distribution 𝑞(𝒛|𝒛(𝜏)), e.g., 𝒩(𝒛|𝒛 𝜏 , 𝜎2𝑰)

▪ In each step, draw 𝒛∗ from 𝑞(𝒛|𝒛(𝜏)) and accept 𝒛∗ with probability

▪ Transition function of this Markov Chain: 𝑇 𝒛∗|𝒛(𝜏) = 𝐴(𝒛∗, 𝒛 𝜏 )𝑞(𝒛∗|𝒛(𝜏))

▪ Exercise: Show that 𝑇 𝒛∗|𝒛(𝜏) satisfies the detailed balance property
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Favors acceptance of 𝒛∗ if  it is more 

probable than 𝒛(𝜏) (under 𝑝(𝒛))
Favor acceptance of 𝒛∗ if  it had very 

low chance of being generated by the 

proposal but it does have high 

probability 𝑝(𝒛∗) under the target

𝑝 𝒛 𝑇 𝒛(𝜏)|𝒛 = 𝑝 𝒛(𝜏) 𝑇(𝒛|𝒛(𝜏))

Also “unfavor” 𝒛∗ if  its generation was 

favored too much by the proposal distribution
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The MH Sampling Algorithm

▪ Initialize 𝒛(1) randomly

▪ For ℓ = 1,2,… , 𝐿
▪ Sample 𝒛∗ ∼ 𝑞(𝒛∗|𝒛(ℓ)) and 𝑢 ∼ Unif(0,1)

▪ Compute acceptance probability

▪ If  𝐴 𝒛∗, 𝒛(ℓ) > 𝑢

▪ Else
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𝒛(ℓ+1) = 𝒛∗

𝒛(ℓ+1) = 𝒛(ℓ)

Meaning accepting 𝒛∗ with 

probability 𝐴 𝒛∗, 𝒛(ℓ)
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MH Sampling in Action: A Toy Example..

▪ Target distribution

▪ Proposal distribution
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MH Sampling: Some Comments

▪ If  prop. distrib. is symmetric, we get Metropolis Sampling algo (Metropolis, 1953) with

▪ Some limitations of MH sampling

▪ Can sometimes have very slow convergence (also known as slow “mixing”)

▪ Computing acceptance probability can be expensive*, e.g., if  𝑝 𝒛 =
𝑝(𝒛)

𝑍𝑝
is some target 

posterior then 𝑝(𝒛) would require computing likelihood on all the data points (expensive)
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𝑄 𝒛 𝒛 𝜏 = 𝒩(𝒛|𝒛 𝜏 , 𝜎2𝑰)

𝜎 large ⇒ many rejections

𝜎 small ⇒ slow diffusion

*Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget (Korattikara et al, 2014), Firefly Monte Carlo: Exact MCMC with Subsets of Data {(Maclaurin and Adams, 2015)

∼
𝐿

𝜎

2

iterations required for convergence
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Gibbs Sampling (Geman & Geman, 1984)

▪ Goal: Sample from a joint distribution 𝑝(𝒛)where 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]

▪ Suppose we can’t sample from 𝑝(𝒛) but can sample from each conditional 𝑝(𝑧𝑖|𝒛−𝑖)
▪ In Bayesian models, can be done easily if  we have a locally conjugate model

▪ For Gibbs sampling, the proposal is the conditional distribution 𝑝(𝑧𝑖|𝒛−𝑖)

▪ Gibbs sampling samples from these conditionals in a cyclic order

▪ Gibbs sampling is equivalent to MH sampling with acceptance prob. = 1
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Since only one component 

is changed at a time

Hence no need 

to compute it 



CS772A: PML

Gibbs Sampling: Sketch of the Algorithm

▪𝑀: Total number of variables, 𝑇: number of Gibbs sampling iterations

▪ Note: Order of updating the variables usually doesn’t matter (but see “Scan Order in Gibbs 
Sampling: Models in Which it Matters and Bounds on How Much” from NIPS 2016)
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CP of each component of 𝑧 uses 

the most recent values (from this 

or the previous iteration) of all 

the other components

Assuming 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]

Each iteration will give us one 

sample 𝒛(𝜏) of 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑀]
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Gibbs Sampling: A Simple Example

▪ Can sample from a 2-D Gaussian using 1-D Gaussians
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Contours of a 

2-D Gaussian

Conditional distribution of 

𝑧1 given 𝑧2 is Gaussian

Conditional distribution of 

𝑧2 given 𝑧1 is Gaussian Gibbs sampling looks like doing  

a co-ordinate-wise update to 

generate each successive 

sample of 𝑧 = [𝑧1, 𝑧2]
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Gibbs Sampling: Some Comments

▪ One of the most popular MCMC algorithms

▪ Very easy to derive and implement for locally conjugate models

▪ Many variations exist, e.g.,
▪ Blocked Gibbs: sample more than one component jointly (sometimes possible)

▪ Rao-Blackwellized Gibbs: Can collapse (i.e., integrate out) the unneeded components while 
sampling. Also called “collapsed” Gibbs sampling

▪ MH within Gibbs: If  CPs are not easy to sample distributions

▪ Instead of sampling from CPs, an alternative is to use the mode of the CPs
▪ Called the “Iterative Conditional Mode” (ICM) algorithm

▪ ICM doesn’t give the posterior though – it’s more like ALT-OPT to get (approx) MAP estimate
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Coming Up Next

▪ Using posterior’s gradient info in sampling algorithms

▪ Online MCMC algorithms

▪ Recent advances in MCMC

▪ Some other practical issues (convergence etc)
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