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Plan

= V| for non-conjugate models
= Black-box VI (BBVI) for general purpose VI
= Reparametrization Trick for general purpose VI
= Some model-specific tricks

= Some other recent advances in VI
= Amortized VI
= Structured VI
= Automatic Differentiation VI (ADVI)
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V| for Non-conjugate Models
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(1) Black-Box VI
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Black-Box Variational Inference (BBVI)

" Black-box Var. Inference* (BBVI) approximates ELBO derivatives using Monte-Carlo
» Uses the following identity for the ELBO's derivative
VsLl(q) = VyuEg[logp(X,Z)— logq(Z|o)]
= [E,[V,logq(Z|o)(log p(X,Z) — log q(Z|#))] (proof on next slide)
= Thus ELBO gradient can be written solely in terms of expec. of gradient of log q(Z|¢)
* Required gradients don't depend on the model; only on chosen var. distribution (hence “black-box”)

= Given S samples {Z,}5_, from q(Z|¢), we can get (noisy) gradient as follows

S
VsL(q) = % > Vs log q(Zs|¢)(log p(X, Zs) — log q(Zs|¢))

s=1

= Above is also called the "score function” based gradient (also REINFORCE method)

Gradient of a log-likelihood or log-probability function wir.t,

its params is called score function; hence the name
*Black Box Variational Inference - Ranganath et al (2014) CS772A: PML



Proof of BBVI ldentity

* The ELBO gradient can be written as
Vol(a) = Vo [(logp(X.2) - loga(Z|¢)a(Z|¢)dz
— / V., [(log p(X, Z) — log a(Z|$))a(Z|$)]dZ (W and / nterchanpeable: Soniinat Sofammene thadei)
= [ Vel(ogp(X.2) ~ log a(2I$))1a(ZI¢) + ¥ 5a(ZI6)[(Iog p(X. Z)  log a(Z|¢))]dZ

— B[V, loga(Zo)) + [ Vsa(2|)l(log p(X, 2) ~ log a(Z|¢))]dZ

" Note that Eq[V, log a(Z|0)] = Eq | Y35 | = [ V6a(Z16)dZ = Vs [ 4(Z|#)dZ = V41 =0

= Also note that V4q(Z|¢) = V[log q(Z|#)]q(Z|¢). using which
/Wq(zlqb)[(logp(xs Z) — log q(Z[9))]dZ = /W: log q(Z|9)[(log p(X, Z) — log q(Z|¢))]a(Z|¢)dZ
= Eg[Vy log q(Z[9)(log p(X, Z) — log q(Z|4))]
" Therefore V4L£(q) = Eq[V log q(Z|¢)(log p(X, Z) — log q(Z|¢))]
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Benefits of BBV

» Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

S
VoL(q) = % )V, log q(Zs|¢)(log p(X, Z;) — log q(Zs|9))

s=1

" Enables applying VI for a wide variety of probabilistic models

= Can also work with small minibatches of data rather than full data

* BBVI has very few requirements
= Should be able to sample from q(Z|¢) (usually sampling routines exists!)
= Should be able to compute V4 log q(Z|¢) (automatic differentiation methods exist!)

= Should be able to evaluate p(X, Z) and log q(Z|¢) for any value of Z

= Some tricks needed to control the variance in the Monte Carlo estimate of the ELLBO

gradient (if interested in the details, please refer to the BBVI paper)
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(2) VI using Reparametrization Trick
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Reparametrization Trick

* Another Monte-Carlo approx. of ELBO grad (with often lower var than BBVI gradient)
= Suppose we want to compute ELBO's gradient V,Eq, z)[log p(X, Z) — log g4 (Z)]

= Assume a deterministic transformation g
Assumed to not

7 = g(E, ¢) where € ~ p(€) depend on ¢
= With this reparametrization, and using LOTUS rule, the ELBO’s gradient would be

VsEy)[log p(X, g(€, ¢)) — log gs(g(€, #))] = Epe)Vs[log p(X, g(e, ¢)) — log qs(g (€, #))]

= Given S i.i.d. random samples {€,}5_, from p(€), we can get a Monte-Carlo approx.

VEq,z)llog p(X,Z) — log q4(Z)]~ % > [Vslogp(X,g(es, ¢)) — Vi log gs(g(es, ¢))]

* Such gradients are called pathwise gradients® (since we took a "path” from € to Z)
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*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)



Reparametrization Trick: An Example

» Suppose our variational distribution is g(w|¢) = N (w|u, X), so ¢ = {u, X}

= Suppose our ELBO has a difficult expectation term [, [ f (w)] SVL;’:L{Z’ 3101(2)

* However, note that we need ELBO gradient, not ELBO itself. Let's use the trick

= Reparametrize w as w = u + Lv where v ~ N (0, I) ssﬁlg‘;tzwm&ﬂ'gve

VH,LEN(Wlﬂ,Z)[f(w)] — VILJ-EJ'\/‘(VIO,I)[f(:u 03 LV)] & ]EN(v|o,|)[vu,Lf(# £3 LV)]

" The above is now straightforward Often even one (or very
» Fasily take derivatives of f(w) wirt. variational params u, L few) samples suffice
= Replace exp. by Monte-Carlo averaging using samples of v from N (0, I) of ow

dw du
VEn s fW)] = EnquionVuf(e+ L] ATuf(+Lv)D ot
VLENwiws)[f(W)] = Enx(on[Vif(p+ Lv)] ""’ off .

. . L . ow 9
" Std. reparam. trick assumes differentiability (recent work on removing th?swre]“q).
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*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)



Reparametrization Trick: Some Comments

» Standard Reparametrization Trick assumes the model to be differentiable
VEq,z)llog p(X,Z) —log gs(Z)] = Ep(¢)[Vs log p(X, g€, 0)) — Vg log go(g(€, ¢))]

= |n contrast, BBVI (score function gradients) only required q(Z) to be differentiable
" Thus rep. trick often isn't applicable, e.g., when Z is discrete (e.g., binary /categorical)

= Recent work on continuous relaxation’ of discrete variables'(e.g., Gumbel Softmax for categorical)

" The transformation function g may be difficult to find for general distributions

= Recent work on generalized reparametrizations™

" Also, the transformation function g needs to be invertible (difficult/expensive)
» Recent work on implicit reparametrized gradients”

= Assumes that we can directly draw samples from p(€). If not, then rep. trick isn't valid®

tCategorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), * The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurefglf?i,A_ PML
2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016) :
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(3) Some Model-Specific Tricks
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Some Model-Specific Tricks for Difficult Cases

" |[n some cases, we can use tricks specific to the model to simplify ELBO/its derivatives

= A common approach is to replace each difficult term by a tight lower bound, e.g.
= Assuming q(a, b) = [1; q(a;)q(b;) the expec. below can be replaced by a lower bound

ZEq{ZPbg—] Zp, q[loga,—|—logb]—2p;|ogpf

N e
-

via Jensen's inequality Now easy to compute expectations

|0gz_pfa"7£:"

where p; is an auxiliary variable (depends on a; and b;) that we also need to optimize

* For models with logistic lik., can use the following trick by Jaakkola and Jordan (2000)

—E,[log(1 + exp(—yaw ' x,))] > log o (&) + Eq [1 (yaW ' xn— &) — M) (W' Xxnx, w — &)

q is typically a &, is an auxiliary variable that
Gaussian but the exp. also needs to be optimized

still not tractable A&n) = %[o‘(gn) — 0.5]

Now easy to compute
expectations
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Some Other Recent Advances in VI
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Amortized Variational Inference rnadiont

global variables
»* Many latent variable models have a local latent variable z,, for each data point x,,

= \/| has to find the optimal ¢,, for each q(z,|®,) i;;fn zlibjlegzgzti;?a;”
r

" Expensive for large datasets (a similar issue which motivated SVI)=—— local var params ¢y's

" Also slow at test time: Given a new x,, finding ¢, requires iterative updates

Amortization: We are shifting

the cost of finding ¢,, for

= Amortized VI: Learn a function to directly get ¢,, for any given x,, ivaboﬂfZaﬁZ'erst; ndng the
= shared by all data points

q(zn|¢n) ~ q(anqgn) where an — NN¢(Xn) A neural network with parameters ¢

(same network used for all data points)

» Update local ¢, , update global A, and repeat until convergence

= This function is usually called “inference network™ or “recognition model”
" |ts parameters ¢ are learned along with the other global vars of the model

" Popular in deep probabilistic models such as variational autoencoders (more later)
CS772A: PML



Structured Variational Inference

" Here “structured” may refer to anything that makes VI approx. more expressive, e.g.,
* Removing the independence assumption of mean-field VI
" |n general, learning more complex forms for the variational approximation family q(Z|¢)

" Jo remove the mean-field assumption in VI, various approaches exist
= Structured mean-field (Saul et al, 1996)
* Hierarchical VI (Ranganath et al, 2016): Variational params ¢+, ¢, ..., ¢ “tied” via a shared prior

(21, ..., zm|0) = /[H Q(Zm|¢m] (¢]60)do

" Recent work on learning more expressive variational approx. for general VI

, , , C , . C Even simple unimodal components
= Boosting or mixture of simpler distributions, e.g., q(Z) = Y¢c=1Ppcqc(Z)< give a multimodal q(2)

= Normalizing flows™*: Turn a simple var. distr. into a complex one via series of invertible transfor.

A mgch more cc')m.plex(e'.g.,. | 2 = fx o0 fi(20), Zo~ qo(2), A.Sm.mple? unimodal variational
multimodal) variational distribution distribution (e.g.. N (0, 1)

obtained via the flow idea = Of. | °

Zrx ~ qx(2K) = qo(2 det
( ) 0 0 n E)zk :

*Variational Inference with Normalizing Flows (Rezende and Mohamed, 2015) CS772A: PML




Automatic Differentiation Variational Inference

= Auto. Diff. (AD): A way to automate diff. of functions with unconstrained variables
* These derivatives is all what we need to optimize the function (in our case, ELBO)

= V| is also optimization. However, often the variables are constrained, €.g.,
* Gamma's shape and scale can only be non-negative
" Beta's parameters can only be non-negative
= Dirichlet’s probability parameter sums to one

= |f we could transform our distributions to unconstrained ones, AD can be used for VI

T pp eme  Trsum((®) 5 RE X srms
Z — oo ion ¢ = T(6) St (9. Gavson)
= p(x,€) =p (x,T7'(C)) || det Jp-1(C)]|
0 1 2 3 6 10 1 2¢ Transformed  Original Jacobian of
(a) Latent variable space (b) Real coordinate space density density inverse of T

*Automatic Differentiation Variational Inference (Kucukelbir et al, 2017) CS772A: PML



Other Divergence Measures

" \/| minimizes KL(q||p) but other divergences can be minimized as well
» Recall that VI with minimization of KL(q||p) leads to underestimated variances

= A general form of divergence is Renyi's a-divergence defined as

log f p(2)%q(2)'-dZ

DE(p@D)|a(@®) = —

* KL(p||q) is a special case with & — 1 (can verify using L'Hopital rule of taking limits)

" An even more general form of divergence is f-Divergence

Z
Dr(p(2)||q(2)) = fq(Z)f (%> “

= Many recent variational inference algorithms are based on minimizing such divergences
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Variational Inference: Some Comments

» Many probabilistic models nowadays rely on VI to do approx. inference

" Fven mean-field with locally-conjugacy used in lots of models
= This + SVI gives excellent scalability as well on large datasets

" Progress in various areas has made VI very popular and widely applicable
= Stochastic Optimization (e.g., SGD)

We covered many of the threads A
s Automatic Differentiation being explored in recent work but ™ /
. a lot of work still being done in
= Monte-Carlo gradient of ELBO this aren ° e»

= Note: Most of these ideas apply also to Variational EM

* Many VI and advanced VI algos are implemented in probabilistic prog. packages (e.g.,
Tensorflow Probability, Pylorch, etc), making VI easy even for complex models

= Still a very active area of research, especially for doing VI in complex models
= Models with discrete latent variables
* Reducing the variance in Monte-Carlo estimate of ELBO gradients
= More expressive variational distribution for better approximation C5772A: PML



