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▪ VI for non-conjugate models
▪ Black-box VI (BBVI) for general purpose VI

▪ Reparametrization Trick for general purpose VI

▪ Some model-specific tricks

▪ Some other recent advances in VI

▪ Amortized VI

▪ Structured VI

▪ Automatic Differentiation VI (ADVI)
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VI for Non-conjugate Models
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(1) Black-Box VI
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Black-Box Variational Inference (BBVI)

▪ Black-box Var. Inference* (BBVI) approximates ELBO derivatives using Monte-Carlo

▪ Uses the following identity for the ELBO’s derivative

▪ Thus ELBO gradient can be written solely in terms of expec. of gradient of log 𝑞(𝒁|𝜙)

▪ Required gradients don’t depend on the model; only on chosen var. distribution (hence “black-box”)

▪ Given 𝑆 samples 𝑍𝑠 𝑠=1
𝑆 from 𝑞(𝒁|𝜙), we can get (noisy) gradient as follows 

▪ Above is also called the “score function” based gradient (also REINFORCE method)
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∗Black Box Variational Inference - Ranganath et al (2014)

Gradient of a log-likelihood or log-probability function w.r.t.

its params is called score function; hence the name
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Proof of BBVI Identity

▪ The ELBO gradient can be written as

▪ Note that

▪ Also note that                                            , using which

▪ Therefore  
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Benefits of BBVI

▪ Recall that BBVI approximates the ELBO gradients by the Monte Carlo expectations

▪ Enables applying VI for a wide variety of probabilistic models

▪ Can also work with small minibatches of data rather than full data

▪ BBVI has very few requirements
▪ Should be able to sample from 𝑞(𝒁|𝜙) (usually sampling routines exists!)

▪ Should be able to compute ∇𝜙 log 𝑞(𝒁|𝜙) (automatic differentiation methods exist!)

▪ Should be able to evaluate 𝑝(𝑿, 𝒁) and log 𝑞(𝒁|𝜙) for any value of 𝒁

▪ Some tricks needed to control the variance in the Monte Carlo estimate of the ELBO 
gradient (if  interested in the details, please refer to the BBVI paper)
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(2) VI using Reparametrization Trick
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Reparametrization Trick

▪ Another Monte-Carlo approx. of ELBO grad (with often lower var than BBVI gradient)

▪ Suppose we want to compute ELBO’s gradient

▪ Assume a deterministic transformation 𝑔

▪ With this reparametrization, and using LOTUS rule, the ELBO’s gradient would be

▪ Given 𝑆 i.i.d. random samples 𝜖𝑠 𝑠=1
𝑆 from 𝑝(𝜖), we can get a Monte-Carlo approx.

▪ Such gradients are called pathwise gradients* (since we took a “path” from 𝜖 to 𝒁)
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𝒁 = 𝑔(𝜖, 𝜙) 𝜖 ∼ 𝑝(𝜖)where
Assumed to not 

depend on 𝜙

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)
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Reparametrization Trick: An Example

▪ Suppose our variational distribution is 𝑞 𝒘|𝜙 = 𝒩(𝒘|𝝁, 𝚺), so 𝜙 = {𝝁, 𝚺}

▪ Suppose our ELBO has a difficult expectation term 𝔼𝑞[𝑓 𝒘 ]

▪ However, note that we need ELBO gradient, not ELBO itself. Let’s use the trick

▪ Reparametrize 𝒘 as 𝒘 = 𝝁 + 𝐋𝐯 where 𝐯 ~𝒩(𝟎, 𝑰)

▪ The above is now straightforward

▪ Easily take derivatives of 𝑓(𝒘) w.r.t. variational params 𝝁, 𝐋

▪ Replace exp. by Monte-Carlo averaging using samples of 𝐯 from 𝒩(𝟎, 𝑰)

▪ Std. reparam. trick assumes differentiability (recent work on removing this req). 
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Or 𝜙 = {𝝁, 𝐋}
where 𝐋 = chol(Σ)

Note that we will still have 

𝑞 𝒘|𝜙 = 𝒩(𝒘|𝝁, 𝚺)

Often even one (or very 

few) samples suffice

𝜕𝑓

𝜕𝒘

𝜕𝒘

𝜕𝝁

𝜕𝑓

𝜕𝒘

𝜕𝒘

𝜕𝐋

Chain Rule

*Autoencoding Variational Bayes - Kingma and Welling (2013), Stochastic Backpropagation and Approximate Inference in Deep Generative Models- Rezende et al (2014)
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Reparametrization Trick: Some Comments

▪ Standard Reparametrization Trick assumes the model to be differentiable

▪ In contrast, BBVI (score function gradients) only required 𝑞(𝒁) to be differentiable

▪ Thus rep. trick often isn’t applicable, e.g., when 𝒁 is discrete (e.g., binary /categorical)

▪ Recent work on continuous relaxation† of discrete variables†(e.g., Gumbel Softmax for categorical)

▪ The transformation function 𝑔 may be difficult to find for general distributions

▪ Recent work on generalized reparametrizations*

▪ Also, the transformation function 𝑔 needs to be invertible (difficult/expensive)
▪ Recent work on implicit reparametrized gradients#

▪ Assumes that we can directly draw samples from 𝑝(𝜖). If  not, then rep. trick isn’t valid@
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†Categorical Reparameterization with Gumbel-Softmax (Jang et al, 2017), ∗ The Generalized Reparameterization Gradient (Ruiz et al, 2016), # Implicit Reparameterization Gradients (Figurnov et al, 
2018), @ Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms (Naesseth et al, 2016)
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(3) Some Model-Specific Tricks
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Some Model-Specific Tricks for Difficult Cases

▪ In some cases, we can use tricks specific to the model to simplify ELBO/its derivatives

▪ A common approach is to replace each difficult term by a tight lower bound, e.g.

▪ Assuming 𝑞 𝑎, 𝑏 = ς𝑖 𝑞 𝑎𝑖 𝑞(𝑏𝑖) the expec. below can be replaced by a lower bound

where 𝑝𝑖 is an auxiliary variable (depends on 𝑎𝑖 and 𝑏𝑖) that we also need to optimize

▪ For models with logistic lik., can use the following trick by Jaakkola and Jordan (2000)
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Now easy to compute expectations

𝑞 is typically a 

Gaussian but the exp. 

still not tractable

𝜉𝑛 is an auxiliary variable that 

also needs to be optimized
Now easy to compute 

expectations
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Some Other Recent Advances in VI
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Amortized Variational Inference

▪ Many latent variable models have a local latent variable 𝒛𝑛 for each data point 𝒙𝑛

▪ VI has to find the optimal 𝜙𝑛 for each 𝑞(𝒛𝑛 𝜙𝑛

▪ Expensive for large datasets (a similar issue which motivated SVI)

▪ Also slow at test time: Given a new 𝒙∗, finding 𝜙∗ requires iterative updates

▪ Update local 𝜙∗ , update global 𝜆, and repeat until convergence

▪ Amortized VI: Learn a function to directly get 𝜙𝑛 for any given 𝒙𝑛

▪ This function is usually called “inference network” or “recognition model”

▪ Its parameters 𝜙 are learned along with the other global vars of the model

▪ Popular in deep probabilistic models such as variational autoencoders (more later)
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In addition to 

global variables

Since global variational 

params 𝜆 depend on all 

local var params 𝜙𝑛’s

A neural network with parameters 𝜙
(same network used for all data points)

Amortization: We are shifting 

the cost of finding 𝜙𝑛 for 

each data point to finding the 

network params 𝜙 which are 

shared by all data points
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Structured Variational Inference

▪ Here “structured” may refer to anything that makes VI approx. more expressive, e.g.,
▪ Removing the independence assumption of mean-field VI

▪ In general, learning more complex forms for the variational approximation family 𝑞 𝒁 𝜙

▪ To remove the mean-field assumption in VI, various approaches exist
▪ Structured mean-field (Saul et al, 1996)

▪ Hierarchical VI (Ranganath et al, 2016): Variational params 𝜙1, 𝜙2, … , 𝜙𝑀 “tied” via a shared prior

▪ Recent work on learning more expressive variational approx. for general VI

▪ Boosting or mixture of simpler distributions, e.g., 𝑞 𝒁 = σ𝑐=1
𝐶 𝜌𝑐𝑞𝑐(𝒁)

▪ Normalizing flows*: Turn a simple var. distr. into a complex one via series of invertible transfor.
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A simple unimodal variational 

distribution (e.g.. 𝒩(0, 𝐼)
A much more complex(e.g., 

multimodal) variational distribution 

obtained via the flow idea

∗Variational Inference with Normalizing Flows (Rezende and Mohamed, 2015)

Even simple unimodal components 

will give a multimodal 𝑞 𝒁
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Automatic Differentiation Variational Inference

▪ Auto. Diff. (AD): A way to automate diff. of functions with unconstrained variables

▪ These derivatives is all what we need to optimize the function (in our case, ELBO)

▪ VI is also optimization. However, often the variables are constrained, e.g.,
▪ Gamma’s shape and scale can only be non-negative

▪ Beta’s parameters can only be non-negative

▪ Dirichlet’s probability parameter sums to one

▪ If  we could transform our distributions to unconstrained ones, AD can be used for VI
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𝐱 is data, 𝜃 is constrained param, 𝜁
is unconst. param with a suitable 

distribution (e.g., Gaussian)

∗Automatic Differentiation Variational Inference (Kucukelbir et al, 2017)
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Other Divergence Measures

▪ VI minimizes 𝐾𝐿(𝑞||𝑝) but other divergences can be minimized as well

▪ Recall that VI with minimization of 𝐾𝐿(𝑞||𝑝) leads to underestimated variances

▪ A general form of divergence is Renyi’s 𝛼-divergence defined as

▪ 𝐾𝐿(𝑝||𝑞) is a special case with 𝛼 → 1 (can verify using L’Hopital rule of taking limits)

▪ An even more general form of divergence is 𝑓-Divergence

▪ Many recent variational inference algorithms are based on minimizing such divergences
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𝐷𝛼
𝑅(𝑝(𝒁)| 𝑞 𝒁 =

1

𝛼 − 1
log න𝑝 𝒁 𝛼𝑞 𝒁 1−𝛼𝑑𝒁

𝐷𝑓(𝑝(𝒁)| 𝑞 𝒁 = න𝑞 𝒁 𝑓
𝑝(𝒁)

𝑞(𝒁)
𝑑𝒁
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Variational Inference: Some Comments

▪ Many probabilistic models nowadays rely on VI to do approx. inference

▪ Even mean-field with locally-conjugacy used in lots of models
▪ This + SVI gives excellent scalability as well on large datasets

▪ Progress in various areas has made VI very popular and widely applicable
▪ Stochastic Optimization (e.g., SGD)

▪ Automatic Differentiation

▪ Monte-Carlo gradient of ELBO

▪ Note: Most of these ideas apply also to Variational EM

▪ Many VI and advanced VI algos are implemented in probabilistic prog. packages (e.g., 
Tensorflow Probability, PyTorch, etc), making VI easy even for complex models

▪ Still a very active area of research, especially for doing VI in complex models
▪ Models with discrete latent variables

▪ Reducing the variance in Monte-Carlo estimate of ELBO gradients

▪ More expressive variational distribution for better approximation
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We covered many of the threads 

being explored in recent work but 

a lot of work still being done in 

this area


