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QUiCk Recap: Va riational |nference (\/l) Defines a class of distributions

parametrized by ¢

= Approximate the true posterior p(Z]X) by an approx. distribution q(Z|¢) or q4(Z)
¢" = argming KL[qg (D) |IP(Z|X)] — vgming iglin)

= Due to the below identity, minimizing the KL is equivalent to maximizing the ELBO

Log-evidence of model m Evidence lower bound (ELBO) Non-negative

log p(X|m) = L(q) + KL(q||pz)
. . _ p(X,Z)
= The ELBO is defined as £(q) = [ q(Z)log [ ]dz

q(Z)
L(q) = L(¢) = Eqllog p(X,Z)| — Eqllog q(Z)]
Find g such that Z — ]Eq [lOg p (XlZ)] — KL[C[ (Z) | |p(Z)] iEier.],disqctlgzteitsouikiwrgiﬁ;r

explains data well

= V| optimizes (maximizes) the above wirt. g, i.e., wrt. its variational parameters ¢
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Quick Recap: Mean-Field VI

= Assume q(Z|¢) =

Ii\il q(Z;|p;). Simplifies ELBO expression/its maximization

» | earning the optimal q then reduces to learning the optimal q4, g5, ---, qu

" For mean-field VI, each optimal factor q; is given by

For locally conjugate
models, ¢;(Z;) will have the

same form as prior p(Z;)

exp(E;x;[logp(X,Z)])

q. —
T [ exp(Eix;[log p(X,2)] dZ;

This general expression
holds even if there is no
local conjugacy

[E;; denotes the
expectation wirt. the
distribution [1;.; q;

» Updates of optimal q4, g5, ..., @y depend on each other because of the expectations

= Therefore, MFVI works by updating the g;'s in a cyclic fashion
" | eads to the coordinate ascent VI (CAVI) algorithm
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Mean-Field VI: A Closer Look

" Since log q}'-‘(Zj) = E;;[log p(X,Z)] + const = E.[log p(X, Z;, Z_;)] + const
log g (£;) = Eiyj[log p(Z;|X, Z_;)] + const or any model

= Thus opt variational distr q; (Zj) basically requires expectations of CP p(Zj|X, Z_j)

* For |ocally conjugate models, CP can be easily found and is an exp-fam distr of the form

Gibbs sampling samples from

p(Z;|X,Z_;) = h(Z;)exp [n(x, Z_j)TZj — A(n(X, Z—j))] each CP. MFVI uses each CP to

compute the corresponding q;

= Using the above, we can rewrite the optimal variational distribution as follows
0g(Z) = Eiy [log (h(Z;)exp [n(X,Z-))7Z; = A(n(X, Z,))| )| + const o/

= ¢/(Z) o« h(Z)exp [Eig[n(X,Z-)]7Z;|  (verify)

= Thus, with local conj, we just require expectation of nat. params. of CP of Z;
CS772A: PML



VI by Computing ELBO Gradients

» Can also do VI by computing ELBO's gradient and doing gradient based optimization

* Gradient based approach is broadly applicable, not just for mean-field VI

1. Assume q(Z) to be from some family of distributions with variational parameters ¢
2. Write down the full ELBO expression (will give us a function of var. parameters ¢)

L(q) = L(¢) = Eq[logp(X,Z)]—Eqllogq(Z)]

~ [ a@ogp(X2)dz + [ a(2)logp(2)dz ~ [ a(2)loga(2)dz
3. Compute ELBO gradients, i.e, V4 L(¢) and use gradient methods to find optimal ¢

= Step 2 may be simplified due to the problem structure or the form of q(Z)
= i.i.d. observations simplify log p(X|Z); conditionally independent priors simplify log p(Z)
" | ocally-conjugate models
= The mean-field assumption simplifies q(Z) as q = [1}%, q;
= Moreover, the last term reduces to sum of entropies of g;'s (which usually has known forms)
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Mean-Field VI by Taking ELBO’s Gradients

= Mean-field assumption q(Z|¢) = T1:%, q(Z;|¢;) results in following optimal distribution

Note that here we do not have to

exp (Eiij [log p (X’ Z)]) a.ssu_me_the form .of this variational

distribution. We simply compute the RHS

is approach is applicable (Z;) = . N
In P " . pplicabl q] ( ]) f eXp([Eiij [lOg p(X; Z)] dZ] andlfmd what it is (|'n the locally-

even if we don't have conjugate case, it will be the same

mean-field assumption distribution as the prior)
= Alternatively, we can take ELBO's partial deriv wirt. ¢4, @,, ..., @ to find their optimal values
= Consider a Bayesian linear regression model Brior on variance of
Prior on w A assumed fixed Gaussian likelihood

Likeihood /. ~, Normal(z] w, o). u'wNonnal(O A7), o~ Gamma(a,b)

Needed Joint distribution on Note that in this approach, we
N ELBO data and unknowns 1)( l/. ll'. a ‘lt) ]) l[ ]) l/l | l ‘o llv ha\{e .tO assgmg a form fOF each
‘ I I variational distribution. It is

Assumed variational s—] common to assume them to

posterior. with mean-field ([( W O) - ([((1 )([( ll‘) dema l(l b’)Nonna] ll I:“ ) have the same form as the
assumption respective priors

* Now doing VI amounts to maximizing ELBO to find the optimal variational params a’, b’, u', Z’
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Mean-Field VI by Taking ELBO’s Gradients

For the Bayesian linear regression model, instead

= The ELBO is of p(X, Z), it will be of the form p(y, Z|X)
L(q) = L(¢) = Eqllogp(X,Z)] — E4llogq(Z2)] = E,4llogp(Z)] + E4llog p(X|Z)] — E4llog q(Z)]

- [a@10gp@dz + | a@ 1ogpxiDdz + [ a2 logatz)az
" Thus the ELBO in the Bayesian linear regression model will be (assuming i.i.d. obs)

r 3 / / ‘ g ) ) Expectations of the EXpeCtatiOﬂS of the |Og of the var.
L(a b, p.Y) = /’1(“ ) In p(a)da + /’1(” ) In p(w)du Iogpof the likelihood distributions (= their entropies)

N
Expectations of the 4. Z//q(u )q(w) In p(y;| i, w. a)dwda  — /q(u)hl q(a)da — /q(u') In g(w)dw
i=1

log of the prior
= Substituting the priors, likelihoods, and variational distributions

a’ A N i 2 RE .
Ld b, p.Y) = (a—1)(a")—Inb") — b— + constant —/—)(;J'T,u’ +tr(Y)) + constant +5-(¢(d') = Inb') — Z 3%((;/, — T ') +z7 S’.r,) + constant
) 2 2 —t 20
Digamma function (log of i=1
+a' —Inb +InT(a") + (1 =d)(d) +5In IX'| + constant

gamma function)

= Can now maximize the above ELBO wirt. a’, b’, u’, 2" in an alternating fashion

» For most models, ELBO or its gradients won't have a simple form (methods like "black-box”
variational inference, reparametrization trick etc will be needed in those cases) CS772A: PML



MFVI for LVMs with Local and Global Unknowns

= Many LVMs have local and global unknowns
Global
Global @ @

Local N

" Examples: Gaussian Mixture Model, Prob. PCA, Variational Autoencoder (VAE), etc

* Denote all local unknowns {z4, z,, ..., Zy} as Z and global unknown as B = (0, @)
* The goal is to infer the posterior p(Z, B|X) which is intractable in general

» Mean-field VI will approximating this posterior as p(Z, B|1X) = q(Z,B) = q(Z)q(B)
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MFVI for LVMs with Local and Global Unknowns

» Assuming independence, the joint distribution of data X and unknowns B = (8, ¢)

N ) Global
p(X,Z,B8) = p(B) | | p(xulzn, B)p(2418) = p(B) | | P(xn,24I8) _,

Local N

» Assume the joint dist. of x,, and z,, to be an exp-fam dist with natural params B8

Sufficient statistics

p(xn, ZalB) = h(xn, 2a) exp |8 t(xn, 2,) — A(B)]
» Assume a prior on f, that is conjugate to the above exp-fam dist
p(Bla) = h(B)exp [aT[B,~A(B)] — A(a)]

where a = [aq, a,]T are the the hyperparamers of the prior p(8) and [B, —A(B)] is the
sufficient statistics vector for this exp-tfamily distribution
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MFVI for LVMs with Local and Global Vars

» Recall that mean-field VB can be obtained using CP of each unknown

= Optimal var. distribution for each unknown requires expec. of nat. params of its CP
p(Bla) = h(B) M (8, —A(B)] — A(r)]
* Due to conj, CP of global vars f = (8, ¢), will have the same form as prior p(f|a)

Updates to the natural parameters requires a

N summing suff-stats over all data and local variables | (g e
p(BIX,Z) = p(Bl&) where & = a1+ » t(xn 2n), 00 + NJ ORI §
n=1 P > N
. . : Due to the Assuming CP is an exp-fam distribution (will be the
" |—|keW|Se, CP of each local variable Z,, | independence case if the prior p(z,|¢) and likelihood p(xy, |2, 6)
structure are exp-family and conjugate to each other)

p(zn|Z_n, X, B) = p(zs|x,, B) = h(z,)exp [U(Xn-ﬁ)Tzn - A(U("mﬁm

Nat. params depends on
data x, and global var

* Having these CPs, we can compute the mean-field updates for () and q(z,,)
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MFVI for LVMs with Local and Global Vars

" | et's assume our mean-field approximation to be of the form

q(8,2) = q(B17) ] [ a(zal2»)
= CPs are exp-fam, so optimal q's depend on expected suff-stats of CP's nat. params

» The optimal variational dist. for local vars z,, will be q(z,|¢®,) with

Basically requires expectation [
over the q(B|A) distribution Pn = E/\ [”(x”‘ ﬁ)] Vn

" The optimal variational dist. for global vars f will be q(f|4) with

Basically requires expectation

over the q(z,|¢,,) distribution )\ — o1 + i Eon [t(xn, Zn)]- o + N
n=1

* Mean-Field updates alternate between estimating ¢,,'s and A until convergence

» Potential bottleneck: Updating A requires waiting for all ¢,,'s to be updated (thus slow)

* Can be handled using online VI (stochastic VI)
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tStochastic Variational Inference (Hoffman et al, 2013)

Stochastic Variational Inference (SVI)

= An “online” algorithm? to speed-up VI for LVMs with local and global variables
= Recall the mean-field VI updates (q(8, Z) = q(8|)\) [T\, q(za|¢,)) for such models

Local var. Nat. param of CP of z Global var. Slow; requires all local var params |
params ? L params N | ¢,'s to be computed already Nat. param of CP of ﬁ
¢n = Ex ['n(x,,_.ﬁ)] Vn and A = [Ql +chm|.t(xn-zn)]-ﬂ2 + NJ = E@[CA!(X.Z)]
n=1

= SVI uses minibatches to make the global param A updates more efficient

1. Initialize A randomly as A(%) and set current iteration number as i = 1
Set the learning rate (decaying as) as €; = (i + 1)7" where k € (0.5,1]

Assuming
Choose a data point n uniformly randomly, i.e., n ~ Uniform(1,2, ..., N) < minibatch size = 1

Compute local var. param ¢,, for data point x,, as @n = E, -1 [7(xn, B)]

ok W N

Update A as )\ — (1-— (f-))\(" D e\, where \, = [aq + Eg,[t(xn, 20)], a2 + 1] T = Egy, [&(xn, 2,)]

6. Seti = i + 1.If ELBO not converged, go to Step 2
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What is SVI Doing?

= SV| updates the global var params A using stochastic optimization of the ELBO
" However, instead of usual gradient of ELBO wirt. A, SVI uses the natural gradient
» Denoting the double derivative of the log-partition function of CP of § as A"

If interested in the proof, can see

Usual gradient: V)\ ELBO = A”(}\)(Eci, [&(X, Z)] — }\) the derivation in the SVI paper
Natural gradient: g(\) = A”(\) " x VAELBO = E4[&(X,Z)] — X
Note: A”(\) is cov. of suff-stats of CP of 3 and A”(\) ' is the Fisher information matrix

= Using the natural gradient has some nice advantages
= Nat. grad. based updates of A have simple form + easy to compute (no need to compute A")

AD = XD Lag(N)] oy = (1 — )N + ¢Eg[@(X,Z)]  (assuming full batch)

* Natural grad. are more intuitive/meaningful: Euclidean distance isn’t often meaningful when used to
compute distance between parameters of probability distributions, e.g., g(8|A) and q(B|1")
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SVI: Some Comments

= Often operates on minibatches: For iteration i minibatch B;, update A as follows

Global var. param computed A = 1 by
on this minibatch B ;_ !
Now blending with the older ; (i A
X AN = (=)D 4R

estimate of A from iterationi — 1

» Decaying learning rate €; is necessary for convergence (need ;e =oc and ), e < o0)

= 5V| successtully used on many large-scale problems (topic modeling, citation network
analysis, etc). Much faster convergence (and better results) compared to batch VI

= nature | m | wiki
8
D .72+
oe_ Algorithm
-76- HOP
O HDP _batch
8 80
(+
8 | ] | L | ) |} | ) ] ] ] ]
- 5 10 20 30 5 10 20 30 5 10 20 30
Hours
SVI vs Batch VI on a nonparametric Bayesian Topic Model
(Hierarchical Dirichlet Process) CS772A: PML
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Coming Up Next

= V| for non-conjugate models
= Black-box VI (BBVI) for general purpose VI
= Reparametrization Trick for general purpose VI
= Some model-specific tricks

= Other recent advances in VI
= Amortized VI
= Structured VI
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