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Quick Recap: Variational Inference (VI)

▪ Approximate the true posterior 𝑝(𝒁|𝑿) by an approx. distribution 𝑞(𝒁|𝜙) or 𝑞𝜙(𝒁)

▪ Due to the below identity, minimizing the KL is equivalent to maximizing the ELBO

▪ The ELBO is defined as ℒ 𝑞 = 𝑞׬ 𝒁 log
𝑝(𝑿,𝒁)

𝑞(𝒁)
𝑑𝒁

▪ VI optimizes (maximizes) the above w.r.t. 𝑞, i.e., w.r.t. its variational parameters 𝜙
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𝜙∗ = argmin𝜙 KL[𝑞𝜙(𝒁)||𝑝(𝒁|𝑿)]

Defines a class of distributions 

parametrized by 𝜙

Often, we will simply write 

it as argmin𝑞 KL[𝑞| 𝑝𝑧

log 𝑝 𝑿 𝑚 = ℒ 𝑞 + KL(𝑞||𝑝𝑧)
Log-evidence of model 𝑚 Evidence lower bound (ELBO) Non-negative

ℒ 𝑞 = ℒ 𝜙 = 𝔼𝑞 log 𝑝(𝑿, 𝒁) − 𝔼𝑞 log 𝑞(𝒁)

= 𝔼𝑞 log 𝑝(𝑿|𝒁) − KL 𝑞(𝒁)||𝑝(𝒁)Find 𝑞 such that 𝒁
explains data well

Find 𝑞 that is “simple”, 

i.e., is close to the prior
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Quick Recap: Mean-Field VI

▪ Assume 𝑞 𝒁 𝜙 = ς𝑖=1
𝑀 𝑞(𝒁𝑖|𝜙𝑖). Simplifies ELBO expression/its maximization 

▪ Learning the optimal 𝑞 then reduces to learning the optimal 𝑞1, 𝑞2, … , 𝑞𝑀

▪ For mean-field VI, each optimal factor 𝑞𝑗 is given by

▪ Updates of optimal 𝑞1, 𝑞2, … , 𝑞𝑀 depend on each other because of the expectations

▪ Therefore, MFVI works by updating the 𝑞𝑗’s in a cyclic fashion

▪ Leads to the coordinate ascent VI (CAVI) algorithm
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𝑞𝑗
∗ =

exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) )

׬ exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) 𝑑𝒁𝑗

For locally conjugate 
models, 𝑞𝑗

∗ 𝒁𝑗 will have the 

same form as prior 𝑝(𝑍𝑗)

𝔼𝑖≠𝑗 denotes the 

expectation w.r.t. the 

distribution ς𝑖≠𝑗 𝑞𝑖

This general expression 

holds even if  there is no 

local conjugacy
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Mean-Field VI: A Closer Look

▪ Since log 𝑞𝑗
∗ 𝒁𝑗 = 𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) + const = 𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁𝑗 , 𝒁−𝑗) + const

▪ Thus opt variational distr 𝑞𝑗
∗ 𝒁𝑗 basically requires expectations of CP 𝑝 𝒁𝑗 𝑿, 𝒁−𝑗

▪ For locally conjugate models, CP can be easily found and is an exp-fam distr of the form

▪ Using the above, we can rewrite the optimal variational distribution as follows

▪ Thus, with local conj, we just require expectation of nat. params. of CP of 𝒁𝑗
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For any model 

Gibbs sampling samples from 

each CP. MFVI uses each CP to 

compute the corresponding 𝑞𝑗
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VI by Computing ELBO Gradients

▪ Can also do VI by computing ELBO’s gradient and doing gradient based optimization

▪ Gradient based approach is broadly applicable, not just for mean-field VI

1. Assume 𝑞(𝒁) to be from some family of distributions with variational parameters 𝜙

2. Write down the full ELBO expression (will give us a function of var. parameters 𝜙)

3. Compute ELBO gradients, i.e., ∇𝜙 ℒ(𝜙) and use gradient methods to find optimal 𝜙

▪ Step 2 may be simplified due to the problem structure or the form of 𝑞(𝒁)
▪ i.i.d. observations simplify log 𝑝(𝑿|𝒁); conditionally independent priors simplify log 𝑝(𝒁)

▪ Locally-conjugate models

▪ The mean-field assumption simplifies 𝑞(𝒁) as 𝑞 = ς𝑖=1
𝑀 𝑞𝑖

▪ Moreover, the last term reduces to sum of entropies of 𝑞𝑖’s (which usually has known forms)
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Mean-Field VI by Taking ELBO’s Gradients

▪ Mean-field assumption 𝑞 𝒁 𝜙 = ς𝑖=1
𝑀 𝑞(𝒁𝑖|𝜙𝑖) results in following optimal distribution

▪ Alternatively, we can take ELBO’s partial deriv w.r.t. 𝜙1, 𝜙2, … , 𝜙𝑀 to find their optimal values

▪ Consider a Bayesian linear regression model

▪ Now doing VI amounts to maximizing ELBO to find the optimal variational params 𝑎′, 𝑏′, 𝜇′, Σ′
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𝑞𝑗
∗ 𝒁𝑗 =

exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) )

׬ exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) 𝑑𝒁𝑗

Prior on 𝑤

Likelihood

Prior on variance of 

Gaussian likelihood𝜆 assumed fixed

Joint distribution on 

data and unknowns

Assumed variational 

posterior with mean-field 

assumption

This approach is applicable 

even if we don’t have 

mean-field assumption

Note that in this approach, we 

have to assume a form for each 

variational distribution. It is 

common to assume them to 

have the same form as the 

respective priors

Note that here we do not have to 

assume the form of this variational 

distribution. We simply compute the RHS 

and find what it is (in the locally-

conjugate case, it will be the same 

distribution as the prior)

Needed 

in ELBO
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Mean-Field VI by Taking ELBO’s Gradients

▪ The ELBO is

▪ Thus the ELBO in the Bayesian linear regression model will be (assuming i.i.d. obs)

▪ Substituting the priors, likelihoods, and variational distributions

▪ Can now maximize the above ELBO w.r.t. 𝑎′, 𝑏′, 𝜇′, Σ′ in an alternating fashion

▪ For most models, ELBO or its gradients won’t have a simple form (methods like “black-box” 
variational inference, reparametrization trick etc will be needed in those cases)
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ℒ 𝑞 = ℒ 𝜙 = 𝔼𝑞 log 𝑝(𝑿, 𝒁) − 𝔼𝑞 log 𝑞 𝒁 = 𝔼𝑞 log 𝑝 𝒁 + 𝔼𝑞 log 𝑝(𝑿|𝒁) − 𝔼𝑞 log 𝑞(𝒁)

= න𝑞(𝒁) log 𝑝 𝒁 𝒅𝒁 + න𝑞(𝒁) log 𝑝 𝑿|𝒁 𝒅𝒁 +න𝑞(𝒁) log 𝑞 𝒁 𝒅𝒁

For the Bayesian linear regression model, instead 

of 𝑝(𝑿, 𝒁), it will be of the form 𝑝(𝒚, 𝒁|𝑿)

Expectations of the 

log of the prior

Expectations of the 

log of the likelihood

Expectations of the log of the var. 

distributions (= their entropies)

Digamma function (log of 

gamma function)
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MFVI for LVMs with Local and Global Unknowns

▪ Many LVMs have local and global unknowns

▪ Examples: Gaussian Mixture Model, Prob. PCA, Variational Autoencoder (VAE), etc

▪ Denote all local unknowns {𝒛1, 𝒛2, … , 𝒛𝑁} as 𝒁 and global unknown as 𝜷 = (𝜃, 𝜙)

▪ The goal is to infer the posterior 𝑝(𝒁, 𝜷|𝑿) which is intractable in general

▪ Mean-field VI will approximating this posterior as 𝑝 𝒁, 𝜷 𝑿 ≈ 𝑞 𝒁, 𝜷 ≈ 𝑞 𝒁 𝑞(𝜷)

8

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁Local

Global

Global
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MFVI for LVMs with Local and Global Unknowns

▪ Assuming independence, the joint distribution of data 𝑿 and unknowns 𝜷 = (𝜃, 𝜙)

▪ Assume the joint dist. of 𝒙𝑛 and 𝒛𝑛 to be an exp-fam dist with natural params 𝜷

▪ Assume a prior on 𝜷, that is conjugate to the above exp-fam dist

where 𝛼 = 𝛼1, 𝛼2
⊤ are the the hyperparamers of the prior 𝑝 𝛽 and [𝛽, −𝐴 𝛽 ] is the 

sufficient statistics vector for this exp-family distribution
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Sufficient statistics
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MFVI for LVMs with Local and Global Vars

▪ Recall that mean-field VB can be obtained using CP of each unknown

▪ Optimal var. distribution for each unknown requires expec. of nat. params of its CP

▪ Due to conj, CP of global vars 𝛽 = (𝜃, 𝜙), will have the same form as prior 𝑝(𝜷|𝜶)

▪ Likewise, CP of each local variable 𝒛𝑛

▪ Having these CPs, we can compute the mean-field updates for 𝑞 𝜷 and 𝑞(𝒛𝑛)
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Due to the 

independence 

structure

Assuming CP is an exp-fam distribution (will be the 

case if  the prior 𝑝 𝑧𝑛|𝜙 and likelihood 𝑝(𝑥𝑛|𝑧𝑛, 𝜃)
are exp-family and conjugate to each other)

Updates to the natural parameters  requires a 

summing suff-stats over all data and local variables

Nat. params depends on 

data 𝑥𝑛 and global var 𝛽
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MFVI for LVMs with Local and Global Vars

▪ Let’s assume our mean-field approximation to be of the form

▪ CPs are exp-fam, so optimal 𝑞’s depend on expected suff-stats of CP’s nat. params

▪ The optimal variational dist. for local vars 𝒛𝑛 will be 𝑞 𝒛𝑛 𝜙𝑛 with

▪ The optimal variational dist. for global vars 𝛽 will be 𝑞(𝛽|𝜆) with

▪ Mean-Field updates alternate between estimating 𝜙𝑛’s and 𝜆 until convergence 

▪ Potential bottleneck: Updating 𝜆 requires waiting for all 𝜙𝑛’s to be updated (thus slow)
▪ Can be handled using online VI (stochastic VI)
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Basically requires expectation 

over the 𝑞 𝛽 𝜆 distribution

Basically requires expectation 

over the 𝑞 𝑧𝑛 𝜙𝑛 distribution
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Stochastic Variational Inference (SVI)

▪ An “online” algorithm† to speed-up VI for LVMs with local and global variables

▪ Recall the mean-field VI updates                                             for such models

▪ SVI uses minibatches to make the global param 𝜆 updates more efficient

1. Initialize 𝜆 randomly as 𝜆(0) and set current iteration number as 𝑖 = 1

2. Set the learning rate (decaying as) as 𝜖𝑖 = 𝑖 + 1 −𝜅 where 𝜅 ∈ (0.5,1]

3. Choose a data point 𝑛 uniformly randomly, i.e., 𝑛 ∼ Uniform(1,2, … , 𝑁)

4. Compute local var. param 𝜙𝑛 for data point 𝒙𝑛 as

5. Update 𝜆 as                                          where

6. Set 𝑖 = 𝑖 + 1. If  ELBO not converged, go to Step 2
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Nat. param of CP of 𝒛𝑛 Nat. param of CP of 𝜷
Slow; requires all local var params 

𝝓𝒏’s to be computed already
Local var. 

params

Global var. 

params

Assuming 

minibatch size = 1

†Stochastic Variational Inference (Hoffman et al, 2013)
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What is SVI Doing?

▪ SVI updates the global var params 𝜆 using stochastic optimization† of the ELBO

▪ However, instead of usual gradient of ELBO w.r.t. 𝜆, SVI uses the natural gradient

▪ Denoting the double derivative of the log-partition function of CP of 𝛽 as 𝐴′′

▪ Using the natural gradient has some nice advantages

▪ Nat. grad. based updates of λ have simple form + easy to compute (no need to compute 𝐴′′)

▪ Natural grad. are more intuitive/meaningful: Euclidean distance isn’t often meaningful when used to 
compute distance between parameters of probability distributions, e.g., 𝑞(𝛽|𝜆) and 𝑞(𝛽|𝜆′)
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†Stochastic Variational Inference (Hoffman et al, 2013)

If  interested in the proof, can see 

the derivation in the SVI paper
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SVI: Some Comments

▪ Often operates on minibatches: For iteration 𝑖 minibatch ℬ𝑖 , update 𝜆 as follows

▪ Decaying learning rate 𝜖𝑖 is necessary for convergence (need                                  )

▪ SVI successfully used on many large-scale problems (topic modeling, citation network 
analysis, etc). Much faster convergence (and better results) compared to batch VI
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†Stochastic Variational Inference (Hoffman et al, 2013)

Global var. param computed 

on this minibatch

Now blending with the older 

estimate of 𝜆 from iteration 𝑖 − 1
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Coming Up Next

▪ VI for non-conjugate models
▪ Black-box VI (BBVI) for general purpose VI

▪ Reparametrization Trick for general purpose VI

▪ Some model-specific tricks

▪ Other recent advances in VI

▪ Amortized VI

▪ Structured VI
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