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Variational Bayes (VB) or Variational Inference (VI)

= Consider a model with data X and unknowns Z. Goal: Compute the posterior p(Z|X)

» Z denotes all unknowns (params, latent vars, hyperparams of likelihood, prior, etc)

Defines a class of distributions
parametrized by ¢

= Assuming p(Z|X) is intractable, VB/VI approximates it by a distr q(Z|¢) or q4(Z)

Often called variational parameters

= We find the best approx. distr by finding ¢ s.t. its distance from p(Z|X) is minimized

But since we don't Other measures have also ] ] S
know p(Z]X), can been used such as reverse VI turns inference into optimization
we easily sol il si | KL (KL{pllq]), and
y solve Often, we will simply write . , -
various other divergence —

this optimization it as argming KL[q|lp] - -
p fL‘lﬂC’.[IOI’].S defined for KL[q (Z)”p(z/l/x’)}/ Approximation class\
: /

problem?? distributions /
¢* = argming KL[q4(2)||p(Z|X)] SISV ‘\/7 A /\ |

x: data |(1
\J\

Z: unknowns

* Note: The name “variational” comes from Physics
= Optimizing functions of distributions (KL is a func of distr)



Variational Bayes (VB) or Variational Inference (VI)

= VB/VI is based on following identity for the log marg-lik (log evidence) of a model m

Similar as the identify we had Also, unlike EM, here we don't have any

n case of EM. which was log p (le) — L(q) —|— KL(q | |pz) distinction b/w latent variables Z and

defined for log of the ILL parameters O (all unknowns will be denoted

by Z here, and we have L(q), not L(q, 9))
r(X,Z)
dZ

B p(Z|X)
<) KL(q|lp,) = — fq(Z)log{ 12 }dZ

L(q) = f q(Z)log{

= Since the log evidence log p(X|m) is constant wirt Z, we must have

argmin, KL[q||p,] = argmax, L(q)

= Also note that since KL[q]||p,] = 0, we must have log p(X|m) = L(q)

» Therefore, L(q) is also known as Evidence Lower Bound (ELBO)

= VB/VI finds the best q(Z) by maximizing the ELBO wirt. g
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VB/VI = Maximizing the ELBO

= Notation: q(£), q(Z|¢). q4(Z). all refer to the same thing (the approx. distr)
= VVB/VI finds an approximating distribution q(Z) that maximizes the ELBO
p(X,Z)
q(Z)
" Since q(£) depends on ¢, the ELBO is essentially a function of ¢
L(q) = L(¢) = E4llogp(X,Z)] — E4llog q(Z)]
= E4llog p(X1Z)] — KL[q(Z)||p(2)]

L(q) = j q(Z)log

|z

" Thus maximizing the ELBO will give an approximating distr. q(Z) which
= Explains the data X well, i.e., gives it large probability (large E,[log p(X|Z)])
= |s close to the prior p(Z), i.e. is simple/regularized (small KL[log q(Z)||p(Z)])
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Maximizing the ELBO

" The goal is to maximize the ELBO
L(q) = L(¢) = Eqllog p(X, Z)] — Eq[log q(Z)]
= Eqllog p(X|Z)] — KLl[log q(Z)|[p(Z)]

" This may still be hard because Cg, partof the ELE0
= £[ BO expression has expectations, computed which may be intractable are not differentiable

= Maximizing the ELBO will require computing gradients which may not always be easy

" Some of the ways to make this problem easier
= Restricting the form of our approximation gq(Z£), e.g., mean-field VI
= Using Monte-Carlo approximation of the expectation/gradient of the ELBO

= For locally conjugate models, ELBO maximization is easy
» Closed form updates for q(Z) CS772A: PML



Some Properties of VI

= Recall that VI approximates a posterior p by finding g that minimizes KL(q||p)

KL(qllp) = / 4(2Z) log [,,E’QTB( )]

* q(Z) will be small where p(Z]X) is small otherwise KL will blow up
* Thus q(Z) avoids low-probability regions of the true posterior

1
q (red) avoids regions ,.//7 q (red) concentrated on one \
of p (green) where the 22 of the modes of p (blue)
aterhas low values q! 7N/ For g to also capture the other
R mode, it will require crossing the | |
, low-probability region of p, \
; / thereby blowing up the KL ‘Kk' /
0l— . \ =

) v EP minimizes KL(p||q)
* Some methods, e.g., Expectation Propagation (EP), can avoid this behavior
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ELBO for Model Selection

» Recall that ELBO is a lower bound on log of model evidence log p(X|m)

= Can compute ELBO for each model m and choose the one with largest ELBO

Plot of the variational lower bound - - - - - T EFach value of K
L versus the number K of com- ! ]

ponents in the Gaussian mixture represents a
model, for the Old Faithful data, ‘

showing a distinct peak at K = different model
2 components. For each value
of K, the model is trained from -
100 different random starts, and -
the results shown as '+’ symbols DIK) I
plotted with small random hori- *
zontal perturbations so that they
can be distinguished. Note that
some solutions find suboptimal
local maxima, but that this hap-

pens infrequently.

+
+ i

%0
i

= Some criticism since we are using a lower-bound but often works well in practice
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VI and Convergence

» V] is guaranteed to converge to a local optima (just like EM)

» Therefore proper initialization is important (just like EM)

= Can sometimes run multiple times with different initializations and choose the best run
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Different initializations may lead to different optima

» £[ BO increases monotonically with iterations
= (Can thus monitor the ELBO to assess convergence

50
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Variational Inference and Expectation Maximization

= \/| can be seen as a generalization of the EM algorithm

" |n VI, there is no distinction between parameters © and latent variables Z
» Also recall that EM finds CP of Z and point estimate for ©
= V| treats all unknowns identically and infers posterior for all

= \/| can be used within an EM algorithm if the E step is intractable
" [ step is intractable it the CP of latent variables given params is intractable
" This version of EM is known as Variational EM (VEM)

" [ we only care about point estimates of the parameters, VEM is widely used if
the CP of latent variables is intractable
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The name "mean-field" comes

I\/l e a n - F i e | d \/ | from statistical physics literature

" One of the simplest ways for doing VB/VI

" Assumes unknowns Z can be partitioned into M groups Z4,Z5,...,Zy, St.,

As a shorthand, often written as ¢ = [['L, q;

M
q(Z|9p) = 1_[ 1q(Zl-lqbl-) where g; = q(Zily)
1=

" | earning the optimal g reduces to learning the optimal g4, q2, .-, qu

* Groups usually chosen based on model's structure, e.g., in Bayesian linear regression
p(w,B,AX,y) = q(Z|p)=qw, [, A|¢p) = Q(W|¢w)P(m¢ﬁ)P(A|¢A)

» Mean-field is a very restrictive assumption. Ignores the correlations among unknowns

" | ess restrictive versions also exist, such as structured mean-field (factorization is still there but only

among groups of unknowns)
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Deriving Mean-Field VI Updates

= With g = Il-vil qi. what's the optimal q; when we do argmax, L(q)?

» Note that under this mean-field assumption, the ELBO simplifies to

X, Z
L(q) = f q(Z)log [pc(,(z))] dZ = f 1_Lqi [logp(X,Z) —zilog Qi] dZ

= Suppose we wish to find the optimal q; given all other g;'s (i # j) as fixed, then

L(q) = jqj Jlogp(X,Z)l_[qi dz;|dZ; — jqjlogqdej+constw.r.t. q;

L#] .
_ o . exp(Egjllogp(X,2)))
= ) arloe PR Z) &% = | ajlogdiZ; U7 Texp(Eirllog p(X, )] dZ;
— —KL(qj”ﬁ) log ﬁ(X,Zj) = E;.jllogp(X,Z)] + const f
X,Z;)

" Thus g} = argmaxg; L(q) = argmmq KL(gjl|p) =
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Deriving Mean-Field VI Updates

" S50 we saw that the optimal g; when doing mean-field VI is

(Z;) = exp(E;x;[logp(X,Z)])
EANEAN J exp(E;;[log p(X, Z)] dZ;

* Note: Can often just compute the numerator and recognize denominator by inspection

= Important: For locally conjugate models, g;(Z;) will have the same form as prior p(Z;)
= Only the distribution parameters will be different

= Important: For estimating q; the required expectation depends on other {q;};x
* Thus we use an alternating update scheme for these (akin to ALT-OPT, Gibbs sampling, etc)

* Guaranteed to converge (to a local optima)
= We are basically solving a sequence of concave maximization problems

" Reason: L(q) = Jq;log p(X, Zj) Z; — [ q;log q;Z; is concave in g CS772A: PML



The Mean-Field VI Algorithm

" Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm

" [nput: Model in form of priors and likelihood, or joint p(X, Z), Data X
= Qutput: A variational distribution q(Z) = 9’4:1 q;(Z;)
= Initialize: Variational distributions q;(Z;), j = 1,2, ..M

= While the ELBO has not converged
" Foreachj =1,2,..M, set

q;(Z;) < exp(E;x[log p(X, Z)])

= Compute ELBO L(q) = Egllog p(X,Z)] — E,llog q(Z)]
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Mean-Field VI: A Simple Example

» Consider data X = {x4, x5, ..., Xy} from a one-dim Gaussian N(,u,r‘l)
= Assume the following normal-gamma prior on y and ©
p(ulT) = N(plpo, (Ao7)™")  p(7) = Gamma(7|ao, bo)
" Posterior is also hormal-gamma due to the jointly conjugate prior
" | et's anyway verify this by trying mean-field VI for this model
= With mean-field assumption on the variational posterior q(u, T) = q, (1) q.(T)

logqg,.(1r) = Eqg, [logp(X,p, )]+ const
logq: () = Eq,[logp(X,u, )]+ const
" |n this example, the log-joint log p(X, u, 7) = log p(X|x, 7) + log p(p2|7) + log p(7). Thus
log g, (1) = Eq, [logp(X|y, )+ log p(p|T)] + const (only keeping terms that involve p)
log g-(7) = Eg,[log p(X|p, T) + log p(12|7) + log p(7)] + const
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Mean-Field VI: A Simple Example

= Substituting p(X|u, T) = [IN=1p(xn|u, ) and p(u|7), we get

log g, (1) = Eq, [log p(X|u, ) + log p(u|7)] + const
= —E‘”z[T] {EN:(xn — )% + olp — uo)z} + const
= (Verify) The above is log of a Gausggln. This q,, = N (u|uy, Ay) with
i = /\oﬁoj—loli and Ay = (o + N)E,_[7] This update depends on g,
* Proceeding in a similar way (verify), we can show that g; = Gamma(t|ay, by)
an = 2 + % and by = by + ;qu ZN:(Xn 12+ Aot — o) ] This update depends on g,
n=1

= Note: Updates of q, and g7 depend on each other (hence alternating updates needed)
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Mean-Field VI: A Closer Look

" Since log q}'-‘(Zj) = E;jllogp(X,Z)] + const = E;4; llog p(X, Zj,Z_j)] + const
* For any model
log g7 (Z;) = Eiyflog p(Z;|X, Z_;)] + const ===
" Thus opt variational distr q}f (Zj) basically requires expectations of CP p(Zj|X, Z_j)
* For locally conjugate models, CP can be easily found and is usually an exp-fam distr
p(Zj|X,Z_;) = h(Z;)exp [n(X, Z_;)'Z; - A(n(X, Z—j))]
= Using the above, we can rewrite the optimal variational distribution as follows

08} (Z)) = Eiy|log (h(Zj)exp [n(X,Z-))7Z; — An(X, Z-)))] )| + const
) For locally

= q; (Zj) o< h(Zj)exp {Er'#j:'/(X-Z—J)]TZJ} (verify) | conjugate

model

= Thus, with local conj, we just require expectation of nat. params. of CP of Z;
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. . Modern VI methods (e.g., those
VI by Computing ELBO Gradients ied n Bayesin de ?e)am'n@

» Can also do VI by computing ELBO's gradient and doing gradient ascent/descent

* Gradient based approach is broadly applicable, not just for mean-field VI

1. Assume q(Z) to be from some family of distributions with variational parameters ¢
2. Write down the full ELBO expression (will give us a function of var parameters ¢)

L(q) = L(¢) = Eq[logp(X,Z)]—Eqllogq(Z)]

~ [ a@ogp(X2)dz + [ a(2)logp(2)dz ~ [ a(2)loga(2)dz
3. Compute ELBO gradients, i.e, V4 L(¢) and use gradient methods to find optimal ¢

= Step 2 may be simplified due to the problem structure or the form of q(Z)
= i.i.d. observations simplify log p(X|Z); conditionally independent priors simplify log p(Z)
" | ocally-conjugate models
= The mean-field assumption simplifies q(Z) as q = [1}%, q;
= Moreover, the last term reduces to sum of entropies of g;'s (which usually has known forms)
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Mean-Field VI by Taking ELBO’s Gradients

= Mean-field assumption q(Z|¢) = T1:%, q(Z;|¢;) results in following optimal distribution

Note that here we do not have to

exp (Eiij [log p (X’ Z)]) a.ssu_me_the form .of this variational

distribution. We simply compute the RHS

is approach is applicable (Z;) = . N
In P " . pplicabl q] ( ]) f eXp([Eiij [lOg p(X; Z)] dZ] andlfmd what it is (|'n the locally-

even if we don't have conjugate case, it will be the same

mean-field assumption distribution as the prior)
= Alternatively, we can take ELBO's partial deriv wirt. ¢4, @,, ..., @ to find their optimal values
= Consider a Bayesian linear regression model Brior on variance of
Prior on w A assumed fixed Gaussian likelihood

Likeihood /. ~, Normal(z] w, o). u'wNonnal(O A7), o~ Gamma(a,b)

Needed Joint distribution on Note that in this approach, we
N ELBO data and unknowns 1)( l/. ll'. a ‘lt) ]) l[ ]) l/l | l ‘o llv ha\{e .tO assgmg a form fOF each
‘ I I variational distribution. It is

Assumed variational s—] common to assume them to

posterior. with mean-field ([( W O) - ([((1 )([( ll‘) dema l(l b’)Nonna] ll I:“ ) have the same form as the
assumption respective priors

* Now doing VI amounts to maximizing ELBO to find the optimal variational params a’, b’, u', Z’
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Mean-Field VI by Taking ELBO’s Gradients

For the Bayesian linear regression model, instead

" The E'—BO IS of p(X, Z), it will be of the form p(y, Z|X)

L(q) = L(¢) = Eyllogp(X,Z)] — E4llogq(Z)] = E,[logp(Z)] + E,4llog p(X|Z)] — E,[log q(Z)]
- [a@10gp@dz + | a@ 1ogpxiDdz + [ a2 logatz)az

" Thus the ELBO in the Bayesian linear regression model will be (assuming i.i.d. obs)

AN / / ‘ g ) ) Expectations of the EXpeCtatiOﬂS of the |Og of the var.
L(a b, p.Y) = /’1(“ ) In p(a)da + /’1(” ) In p(w)du Iogpof the likelihood distributions (= their entropies)

N
Expectations of the + Z//q(n)q(u*)lnp(y,-].r,—.u'.u)(lu'(lu — /q(u)luq(n)(/n —/q(u')luq(u')(lw
i=1

log of the prior
= Substituting the priors, likelihoods, and variational distributions

/ N l ”l
((;/, — T ') +z7 v’r,—) + constant

A T G B < N / a R— /\!TI N ) A\"/ /
LA 0.0, 5 = (u—l)((,(u)—lu/))-1;ﬁ+constant —5(;1 ji" + tr(X")) + constant —?(1_((:)—11111)—2;5/)—, ¥

Digamma function (log of
gamma function) +a' —Inb' +InT(a’) + (1 — a')d(d’) +5 In[E] + constant

= Can now maximize the above ELBO wirt. a’, b’, u’, 2" in an alternating fashion
» For most models, ELBO or its gradients won't have a simple form (methods like BBVI, reparam
trick etc will be needed in those cases) CS772A: PML



Coming Up Next

= \/| for latent variable models with local and global unknowns

= \/| for non-conjugate models
= Mostly such methods rely on computing approximations of ELBO and/or its gradients

CS772A: PML



