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Variational Bayes (VB) or Variational Inference (VI)

▪ Consider a model with data 𝑿 and unknowns 𝒁. Goal: Compute the posterior 𝑝(𝒁|𝑿)

▪ 𝒁 denotes all unknowns (params, latent vars, hyperparams of likelihood, prior, etc)

▪ Assuming 𝑝(𝒁|𝑿) is intractable, VB/VI approximates it by a distr 𝑞(𝒁|𝜙) or 𝑞𝜙(𝒁)

▪ We find the best approx. distr by finding 𝜙 s.t. its distance from 𝑝(𝒁|𝑿) is minimized

▪ Note: The name “variational” comes from Physics 
▪ Optimizing functions of distributions (KL is a func of distr) 
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𝜙∗ = argmin𝜙 KL[𝑞𝜙(𝒁)||𝑝(𝒁|𝑿)]

Other measures have also 

been used such as reverse 

KL (KL[𝑝||𝑞]), and 

various other divergence 

functions defined for 

distributions

But since we don’t 

know 𝑝(𝒁|𝑿), can 

we easily solve 

this optimization 

problem?

Defines a class of distributions 

parametrized by 𝜙

Often called variational parameters

VI turns inference into optimization

Often, we will simply write 

it as argmin𝑞 KL[𝑞| 𝑝𝑧
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Variational Bayes (VB) or Variational Inference (VI)

▪ VB/VI is based on following identity for the log marg-lik (log evidence) of a model 𝑚

▪ Since the log evidence log 𝑝 𝑿 𝑚 is constant w.r.t 𝒁, we must have

▪ Also note that since KL[𝑞| 𝑝𝑧 ≥ 0, we must have log 𝑝 𝑿 𝑚 ≥ ℒ 𝑞

▪ Therefore, ℒ 𝑞 is also known as Evidence Lower Bound (ELBO)
▪ VB/VI finds the best 𝑞(𝑍) by maximizing the ELBO w.r.t. 𝑞
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log 𝑝 𝑿 𝑚 = ℒ 𝑞 + KL(𝑞||𝑝𝑧)

ℒ 𝑞 = න𝑞 𝒁 log
𝑝(𝑿, 𝒁)

𝑞(𝒁)
𝑑𝒁 KL(𝑞| 𝑝𝑧 = − න𝑞 𝒁 log

𝑝(𝒁|𝑿)

𝑞(𝒁)
𝑑𝒁

Similar as the identify we had 

in case of EM, which was 

defined for log of the ILL

Also, unlike EM, here we don’t have any 

distinction b/w latent variables 𝒁 and 

parameters Θ (all unknowns will be denoted 

by 𝒁 here, and we have ℒ 𝑞 , not ℒ 𝑞, Θ )

argmin𝑞 KL[𝑞| 𝑝𝑧 = argmax𝑞 ℒ 𝑞
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VB/VI = Maximizing the ELBO

▪Notation: 𝑞(𝒁), 𝑞(𝒁|𝜙), 𝑞𝜙(𝒁), all refer to the same thing (the approx. distr.)

▪ VB/VI finds an approximating distribution 𝑞(𝒁) that maximizes the ELBO

▪ Since 𝑞(𝒁) depends on 𝜙, the ELBO is essentially a function of 𝜙

▪ Thus maximizing the ELBO will give an approximating distr. 𝑞(𝒁) which

▪ Explains the data 𝑿 well, i.e., gives it large probability (large 𝔼𝑞 log 𝑝(𝑿|𝒁) )

▪ Is close to the prior 𝑝(𝒁), i.e. is simple/regularized (small KL log 𝑞(𝒁)||𝑝(𝒁) )
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ℒ 𝑞 = න𝑞 𝒁 log
𝑝(𝑿, 𝒁)

𝑞(𝒁)
𝑑𝒁

ℒ 𝑞 = ℒ 𝜙 = 𝔼𝑞 log 𝑝(𝑿, 𝒁) − 𝔼𝑞 log 𝑞(𝒁)

= 𝔼𝑞 log 𝑝(𝑿|𝒁) − KL 𝑞(𝒁)||𝑝(𝒁)
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Maximizing the ELBO

▪ The goal is to maximize the ELBO 

▪ This may still be hard because
▪ ELBO expression has expectations, computed which may be intractable

▪ Maximizing the ELBO will require computing gradients which may not always be easy

▪ Some of the ways to make this problem easier
▪ Restricting the form of our approximation 𝑞(𝒁), e.g., mean-field VI 

▪ Using Monte-Carlo approximation of the expectation/gradient of the ELBO

▪ For locally conjugate models, ELBO maximization is easy
▪ Closed form updates for 𝑞(𝒁)
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ℒ 𝑞 = ℒ 𝜙 = 𝔼𝑞 log 𝑝(𝑿, 𝒁) − 𝔼𝑞 log 𝑞(𝒁)

= 𝔼𝑞 log 𝑝(𝑿|𝒁) − KL log 𝑞(𝒁)||𝑝(𝒁)

E.g., part of the ELBO 

may have terms that 

are not differentiable
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Some Properties of VI

▪ Recall that VI approximates a posterior 𝑝 by finding 𝑞 that minimizes KL(𝑞||𝑝)

▪ 𝑞(𝒁) will be small where 𝑝(𝒁|𝑿) is small otherwise KL will blow up

▪ Thus 𝑞(𝒁) avoids low-probability regions of the true posterior

▪ Some methods, e.g., Expectation Propagation (EP), can avoid this behavior
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𝑞 (red) avoids regions 

of 𝑝 (green) where the 

latter has low values

𝑞 (red) concentrated on one 

of the modes of 𝑝 (blue)

For 𝑞 to also capture the other 

mode, it will require crossing the 

low-probability region of 𝑝, 

thereby blowing up the KL

EP minimizes KL(𝑝||𝑞)
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ELBO for Model Selection

▪ Recall that ELBO is a lower bound on log of model evidence log 𝑝(𝑿|𝑚)

▪ Can compute ELBO for each model 𝑚 and choose the one with largest ELBO

▪ Some criticism since we are using a lower-bound but often works well in practice
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Each value of 𝐾
represents a 

different model
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VI and Convergence

▪ VI is guaranteed to converge to a local optima (just like EM)

▪ Therefore proper initialization is important (just like EM)
▪ Can sometimes run multiple times with different initializations and choose the best run

▪ ELBO increases monotonically with iterations
▪ Can thus monitor the ELBO to assess convergence

8
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Variational Inference and Expectation Maximization

▪ VI can be seen as a generalization of the EM algorithm

▪ In VI, there is no distinction between parameters Θ and latent variables 𝒁
▪ Also recall that EM finds CP of 𝒁 and point estimate for Θ

▪ VI treats all unknowns identically and infers posterior for all

▪ VI can be used within an EM algorithm if  the E step is intractable

▪ E step is intractable if  the CP of latent variables given params is intractable

▪ This version of EM is known as Variational EM (VEM)

▪ If  we only care about point estimates of the parameters, VEM is widely used if  
the CP of latent variables is intractable
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Mean-Field VI

▪ One of the simplest ways for doing VB/VI

▪ Assumes unknowns 𝒁 can be partitioned into 𝑀 groups 𝒁1, 𝒁2, . . . , 𝒁𝑀, s.t.,

▪ Learning the optimal 𝑞 reduces to learning the optimal 𝑞1, 𝑞2, … , 𝑞𝑀

▪ Groups usually chosen based on model’s structure, e.g., in Bayesian linear regression

▪ Mean-field is a very restrictive assumption. Ignores the correlations among unknowns
▪ Less restrictive versions also exist, such as structured mean-field (factorization is still there but only 

among groups of unknowns)
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𝑞 𝒁 𝜙 = ෑ
𝑖=1

𝑀

𝑞(𝒁𝑖|𝜙𝑖)
As a shorthand, often written as 𝑞 = ς𝑖=1

𝑀 𝑞𝑖
where 𝑞𝑖 = 𝑞 𝑍𝑖 𝜙𝑖

𝑝 𝒘, 𝛽, 𝜆 𝑋, 𝑦 ≈ 𝑞 𝑍 𝜙 = 𝑞 𝒘, 𝛽, 𝜆 𝜙 = 𝑞 𝒘 𝜙𝑤 𝑝 𝛽 𝜙𝛽 𝑝(𝜆|𝜙𝜆)

The name “mean-field” comes 

from statistical physics literature
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Deriving Mean-Field VI Updates

▪ With 𝑞 = ς𝑖=1
𝑀 𝑞𝑖 , what’s the optimal 𝑞𝑖 when we do argmax𝑞 ℒ 𝑞 ?

▪ Note that under this mean-field assumption, the ELBO simplifies to

▪ Suppose we wish to find the optimal 𝑞𝑗 given all other 𝑞𝑖’s (𝑖 ≠ 𝑗) as fixed, then

▪ Thus 𝑞𝑗
∗ = argmax𝑞𝑗 ℒ 𝑞 = argmin𝑞𝑗KL(𝑞𝑗|| Ƹ𝑝) = Ƹ𝑝(𝑋, 𝑍𝑗)
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ℒ 𝑞 = න𝑞 𝒁 log
𝑝(𝑿, 𝒁)

𝑞(𝒁)
𝑑𝒁 = නෑ

𝑖
𝑞𝑖 log 𝑝 𝑋, 𝑍 −

𝑖
log 𝑞𝑖 𝑑𝒁

ℒ 𝑞 = න𝑞𝑗 න log 𝑝 𝑋, 𝑍 ෑ

𝑖≠𝑗

𝑞𝑖 𝑑𝑍𝑖 𝑑𝑍𝑗 − න𝑞𝑗log 𝑞𝑗𝑑𝑍𝑗 + const w. r. t. 𝑞𝑗

= න𝑞𝑗 log Ƹ𝑝(𝑋, 𝑍𝑗) 𝑑𝑍𝑗 − න𝑞𝑗log 𝑞𝑗𝑍𝑗

= −KL(𝑞𝑗|| Ƹ𝑝) log Ƹ𝑝 𝑋, 𝑍𝑗 = 𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) + const

𝑞𝑗
∗ =

exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) )

 exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) 𝑑𝒁𝑗
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Deriving Mean-Field VI Updates

▪ So we saw that the optimal 𝑞𝑗 when doing mean-field VI is

▪ Note: Can often just compute the numerator and recognize denominator by inspection

▪ Important: For locally conjugate models, 𝑞𝑗
∗ 𝒁𝑗 will have the same form as prior 𝑝(𝑍𝑗)

▪ Only the distribution parameters will be different

▪ Important: For estimating 𝑞𝑗 the required expectation depends on other 𝑞𝑖 𝑖≠𝑗

▪ Thus we use an alternating update scheme for these (akin to ALT-OPT, Gibbs sampling, etc)

▪ Guaranteed to converge (to a local optima)
▪ We are basically solving a sequence of concave maximization problems

▪ Reason: ℒ 𝑞 = 𝑞𝑗 log Ƹ𝑝(𝑋, 𝑍𝑗) 𝑍𝑗 − 𝑞𝑗log 𝑞𝑗𝑍𝑗 is concave in 𝑞𝑗
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𝑞𝑗
∗ 𝒁𝑗 =

exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) )

 exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) 𝑑𝒁𝑗
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The Mean-Field VI Algorithm

▪ Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm

▪ Input: Model in form of priors and likelihood, or joint 𝑝(𝑿, 𝒁), Data 𝑿

▪ Output: A variational distribution 𝑞(𝑍) = ς𝑗=1
𝑀 𝑞𝑗(𝒁𝑗)

▪ Initialize: Variational distributions 𝑞𝑗(𝒁𝑗), 𝑗 = 1,2, …𝑀

▪ While the ELBO has not converged

▪ For each 𝑗 = 1,2,…𝑀, set

▪ Compute ELBO ℒ 𝑞 = 𝔼𝑞 log 𝑝(𝑿, 𝒁) − 𝔼𝑞 log 𝑞(𝒁)
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𝑞𝑗 𝒁𝑗 ∝ exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) )
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Mean-Field VI: A Simple Example

▪ Consider data 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑁} from a one-dim Gaussian 𝒩(𝜇, 𝜏−1)

▪ Assume the following normal-gamma prior on 𝜇 and 𝜏

▪ Posterior is also normal-gamma due to the jointly conjugate prior

▪ Let’s anyway verify this by trying mean-field VI for this model

▪ With mean-field assumption on the variational posterior 𝑞 𝜇, 𝜏 = 𝑞𝜇 𝜇 𝑞𝜏(𝜏)

▪ In this example, the log-joint                                                              . Thus 

14
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Mean-Field VI: A Simple Example

▪ Substituting 𝑝 𝐗 𝜇, 𝜏 = ς𝑛=1
𝑁 𝑝(𝑥𝑛|𝜇, 𝜏) and 𝑝(𝜇|𝜏), we get

▪ (Verify) The above is log of a Gaussian. This 𝑞𝜇
∗ = 𝒩(𝜇|𝜇𝑁, 𝜆𝑁) with

▪ Proceeding in a similar way (verify), we can show that 𝑞𝜏
∗ = Gamma(𝜏|𝑎𝑁, 𝑏𝑁)

▪ Note: Updates of 𝑞𝜇
∗ and 𝑞𝜏

∗ depend on each other (hence alternating updates needed)
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This update depends on 𝑞𝜏

This update depends on 𝑞𝜇
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Mean-Field VI: A Closer Look

▪ Since log 𝑞𝑗
∗ 𝒁𝑗 = 𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) + const = 𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁𝑗 , 𝒁−𝑗) + const

▪ Thus opt variational distr 𝑞𝑗
∗ 𝒁𝑗 basically requires expectations of CP 𝑝 𝒁𝑗 𝑿, 𝒁−𝑗

▪ For locally conjugate models, CP can be easily found and is usually an exp-fam distr

▪ Using the above, we can rewrite the optimal variational distribution as follows

▪ Thus, with local conj, we just require expectation of nat. params. of CP of 𝒁𝑗
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For any model 

For locally 

conjugate 

model 
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VI by Computing ELBO Gradients

▪ Can also do VI by computing ELBO’s gradient and doing gradient ascent/descent

▪ Gradient based approach is broadly applicable, not just for mean-field VI

1. Assume 𝑞(𝒁) to be from some family of distributions with variational parameters 𝜙

2. Write down the full ELBO expression (will give us a function of var parameters 𝜙)

3. Compute ELBO gradients, i.e., ∇𝜙 ℒ(𝜙) and use gradient methods to find optimal 𝜙

▪ Step 2 may be simplified due to the problem structure or the form of 𝑞(𝒁)
▪ i.i.d. observations simplify log 𝑝(𝑿|𝒁); conditionally independent priors simplify log 𝑝(𝒁)

▪ Locally-conjugate models

▪ The mean-field assumption simplifies 𝑞(𝒁) as 𝑞 = ς𝑖=1
𝑀 𝑞𝑖

▪ Moreover, the last term reduces to sum of entropies of 𝑞𝑖’s (which usually has known forms)

17Modern VI methods (e.g., those 

used in Bayesian deep learning) 

use this idea (more later)
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Mean-Field VI by Taking ELBO’s Gradients

▪ Mean-field assumption 𝑞 𝒁 𝜙 = ς𝑖=1
𝑀 𝑞(𝒁𝑖|𝜙𝑖) results in following optimal distribution

▪ Alternatively, we can take ELBO’s partial deriv w.r.t. 𝜙1, 𝜙2, … , 𝜙𝑀 to find their optimal values

▪ Consider a Bayesian linear regression model

▪ Now doing VI amounts to maximizing ELBO to find the optimal variational params 𝑎′, 𝑏′, 𝜇′, Σ′
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𝑞𝑗
∗ 𝒁𝑗 =

exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) )

 exp(𝔼𝑖≠𝑗 log 𝑝(𝑿, 𝒁) 𝑑𝒁𝑗

Prior on 𝑤

Likelihood

Prior on variance of 

Gaussian likelihood𝜆 assumed fixed

Joint distribution on 

data and unknowns

Assumed variational 

posterior with mean-field 

assumption

This approach is applicable 

even if we don’t have 

mean-field assumption

Note that in this approach, we 

have to assume a form for each 

variational distribution. It is 

common to assume them to 

have the same form as the 

respective priors

Note that here we do not have to 

assume the form of this variational 

distribution. We simply compute the RHS 

and find what it is (in the locally-

conjugate case, it will be the same 

distribution as the prior)

Needed 

in ELBO
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Mean-Field VI by Taking ELBO’s Gradients

▪ The ELBO is

▪ Thus the ELBO in the Bayesian linear regression model will be (assuming i.i.d. obs)

▪ Substituting the priors, likelihoods, and variational distributions

▪ Can now maximize the above ELBO w.r.t. 𝑎′, 𝑏′, 𝜇′, Σ′ in an alternating fashion

▪ For most models, ELBO or its gradients won’t have a simple form (methods like BBVI, reparam
trick etc will be needed in those cases)
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ℒ 𝑞 = ℒ 𝜙 = 𝔼𝑞 log 𝑝(𝑿, 𝒁) − 𝔼𝑞 log 𝑞 𝒁 = 𝔼𝑞 log 𝑝 𝒁 + 𝔼𝑞 log 𝑝(𝑿|𝒁) − 𝔼𝑞 log 𝑞(𝒁)

= න𝑞(𝒁) log 𝑝 𝒁 𝒅𝒁 + න𝑞(𝒁) log 𝑝 𝑿|𝒁 𝒅𝒁 +න𝑞(𝒁) log 𝑞 𝒁 𝒅𝒁

For the Bayesian linear regression model, instead 

of 𝑝(𝑿, 𝒁), it will be of the form 𝑝(𝒚, 𝒁|𝑿)

Expectations of the 

log of the prior

Expectations of the 

log of the likelihood

Expectations of the log of the var. 

distributions (= their entropies)

Digamma function (log of 

gamma function)
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Coming Up Next

▪ VI for latent variable models with local and global unknowns

▪ VI for non-conjugate models
▪ Mostly such methods rely on computing approximations of ELBO and/or its gradients
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