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Announcement

▪ Mid-sem exam on Sept 19, 1800-2000

▪ Venue: L17, ERES seating scheme

▪ Syllabus: Up to today’s lecture

▪ Closed book exam
▪ Necessary formulae/equations will be provided in the question paper
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Plan Today

▪ Expectation Maximization (EM) algorithm for param-est/inference in LVMs

▪ An example of EM
▪ Parameter estimation for Gaussian mixture models
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Parameter Estimation in Latent Variable Models

▪ Assume each observation 𝒙𝑛 to be associated with a “local” latent variable 𝒛𝑛

▪ Although we can do fully Bayesian inference for all the unknowns, suppose we 
only want a point estimate of the “global” parameters Θ = (𝜃, 𝜙) via MLE/MAP

▪ Such MLE/MAP problems in LVMs are difficult to solve in a “clean” way
▪ Can do gradient based opt on log-lik but usually won’t get closed form updates for Θ

▪ However, EM algo gives a clean way to obtain closed form updates for Θ for such LVMs

4

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

𝑝 𝒛𝑛 𝜙 : A suitable prior distribution based on the nature of 𝒛𝑛
𝑝 𝒙𝑛 𝒛𝑛, 𝜃 : A suitable likelihood based on the nature of 𝒙𝑛
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Why MLE/MAP of Params is Hard for LVMs?

▪ Suppose we want to estimate parameters Θ via MLE. If  we knew 𝒛𝑛, we could solve

▪ Easy. Usually closed form if  𝑝 𝒛𝑛 𝜙 and 𝑝 𝒙𝑛 𝒛𝑛, 𝜃 have simple forms

▪ However, since in LVMs, 𝒛𝑛 is hidden, the MLE problem for Θ will be the following

▪ log 𝑝(𝒙𝑛|Θ) will not have a simple expression since 𝑝(𝑥𝑛|Θ) requires sum/integral

▪ MLE now becomes difficult, no closed form expression for Θ

▪ Can we maximize some other quantity instead of log 𝑝(𝑥𝑛|Θ) for this MLE?
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In particular, if  they are 

exp-fam distributions

Easy to solve

Can still use gradient based methods but 

won’t get clean, closed-form updates for Θ
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An Important Identity

▪ Assume 𝑝𝑧 = 𝑝(𝒁|𝑿, Θ) and 𝑞(𝒁) to be some prob distribution over 𝒁, then for all 𝑞

▪ In the above ℒ 𝑞, Θ = σ𝑍 𝑞 𝑍 log
𝑝(𝑋,𝑍|Θ)

𝑞(𝑍)

▪ 𝐾𝐿(𝑞| 𝑝𝑧 = −σ𝑍 𝑞 𝒁 log
𝑝(𝒁|𝑿,Θ)

𝑞(𝒁)

▪ KL is always non-negative, so log 𝑝 𝑿 Θ ≥ ℒ 𝑞, Θ

▪ Thus ℒ 𝑞, Θ is a lower-bound on log 𝑝 𝑿 Θ

▪ Thus if  we maximize ℒ 𝑞, Θ , it will also improve log 𝑝 𝑿 Θ

▪ Also, as we’ll see, it’s easier to maximize ℒ 𝑞, Θ

6

log 𝑝 𝑿 Θ = ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)Assume 𝒁 discrete
Verify the identity
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7
Maximizing ℒ 𝑞, Θ

7

▪ ℒ 𝑞, Θ depends on 𝑞 and Θ. We’ll use ALT-OPT to maximize it

▪ Let’s maximize ℒ 𝑞, Θ w.r.t. 𝑞 with Θ fixed at some Θold

▪ Now let’s maximize ℒ 𝑞, Θ w.r.t. Θ with 𝑞 fixed at ො𝑞 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

ො𝑞 = argmax𝑞ℒ 𝑞, Θold = argmin𝑞𝐾𝐿(𝑞| 𝑝𝑧

Since log 𝑝 𝑿 Θ = ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)
is constant when Θ is held fixed at Θold

Θnew = argmaxΘℒ ො𝑞, Θ = argmaxΘ

𝑍

𝑝(𝒁|𝑿, Θold) log
𝑝(𝑿, 𝒁|Θ)

𝑝(𝒁|𝑿, Θold)

= argmaxΘ

𝑍

𝑝 𝒁 𝑿, Θold log 𝑝(𝑿, 𝒁|Θ)

= argmaxΘ 𝔼𝑝 𝒁 𝑿, Θold
[log 𝑝(𝑿, 𝒁|Θ)]

Maximization of expected CLL where 

the expectation is w.r.t. the posterior 

distribution of 𝑍 given current 

parameters Θold

The posterior distribution of 𝑍

given current parameters Θold

= argmaxΘ 𝒬(Θ, Θ
old)

Complete-Data Log 

Likelihood (CLL)

log 𝑝 𝑿 Θ is called Incomplete-

Data Log Likelihood (ILL)

Much easier than maximizing ILL since 

CLL will have simple expressions (since 

it is kind of akin to knowing 𝑍)

= 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)
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The Expectation-Maximization (EM) Algorithm
8

▪ ALT-OPT of ℒ 𝑞, Θ w.r.t. 𝑞 and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)

▪ Note: If  we can take the MAP estimate Ƹ𝑧𝑛 of 𝑧𝑛 (not the CP) in Step 1 and maximize the CLL 

in Step 2 using that, i.e., do argmaxΘσ𝑛=1
𝑁 log 𝑝 𝒙𝑛, Ƹ𝑧𝑛

(𝑡) Θ then this will be std ALT-OPT

Conditional posterior of 

each latent variable 𝑧𝑛

Latent variables also 

assumed indep. a priori Assuming the (expected) CLL 

𝔼
𝑝 𝒁 𝑿, Θold

[log 𝑝(𝑿, 𝒁|Θ)]

factorizes over all observations

Primarily designed for doing point estimation of the 

parameters Θ but also gives (CP of) latent variables 𝑧𝑛

Usually computing CP + expected CLL 

is referred to as the E step, and max. 

of exp-CLL w.r.t. Θ as the M step



CS772A: PML

The Expected CLL
9

▪ Expected CLL in EM is given by (assume observations are i.i.d.)

▪ If  𝑝 𝒛𝑛 Θ and 𝑝 𝒙𝑛 𝒛𝑛, Θ are exp-family distributions, 𝒬(Θ, Θold) has a very simple form

▪ In resulting expressions, replace terms containing 𝑧𝑛’s by their respective expectations, e.g.,
▪ 𝒛𝑛 replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, Θ
[𝒛𝑛]

▪ 𝒛𝑛𝒛𝑛
⊤ replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, Θ
[𝒛𝑛𝒛𝑛

⊤]

▪ However, in some LVMs, these expectations are intractable to compute and need to be 
approximated (will see some examples later), e.g., using MC integral approximation
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What’s Going On In EM?
10

▪ As we saw, the maximization of lower bound ℒ 𝑞, Θ had two steps 

▪ Step 1 finds the optimal 𝑞 (call it ො𝑞) by setting it as the posterior of 𝒁 given current Θ

▪ Step 2 maximizes ℒ ො𝑞, Θ w.r.t. Θ which gives a new Θ. 

Θ(0)Θ(1)Θ
(2)Θ(3)

Green curve: ℒ ො𝑞, Θ after 

setting 𝑞 to ො𝑞
log 𝑝 𝑿 Θ

Local optima 

found for Θ𝑀𝐿𝐸

KL becomes zero and ℒ 𝑞, Θ becomes 

equal to log 𝑝 𝑿 Θ ; thus their curves 

touch at current Θ

Note that Θ only changes in Step 2 

so the objective log 𝑝 𝑿 Θ
can only change in Step 2

Θ(𝑀𝐿𝐸)

Good initialization matters; 

otherwise would converge 

to a poor local optima

Also kind of similar to Newton’s 

method (and has second order like 

convergence behavior in some cases)

Unlike Newton’s method, we don’t 

construct and optimize a quadratic 

approximation, but a lower bound

Even though original MLE problem 

argmaxΘlog 𝑝 𝑿 Θ could be solved 

using gradient methods, EM often 

works faster and has cleaner updates

Alternating between 

them until convergence 

to some local optima
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Some Applications of EM

▪ Mixture Models (each data-point comes from one of 𝐾 mixture components)

▪ Examples: Mixture of Gaussians, Mixture of Experts, etc

▪ Latent variable models for dimensionality reduction or representation learning

▪ Probabilistic PCA, Factor Analysis, Variational Autoencoders, etc

▪ Problems models with missing features/labels (treated as latent variables)

▪ An example of problem with missing labels: Semi-supervised learning

▪ Hyperparameter estimation in probabilistic models (an alternative to MLE-II)

▪ MLE-II estimates hyperparams by maximizing the marginal likelihood, e.g.,

▪ With EM, can treat 𝒘 as latent var, and 𝜆, 𝛽 as “parameters”

▪ E step will estimate the CP of 𝑤 given current estimates of 𝜆, 𝛽

▪ M step will re-estimate 𝜆, 𝛽 by maximizing the expected CLL

11

መ𝜆, መ𝛽 = argmax𝜆,𝛽 𝑝 𝒚 𝑿, 𝜆, 𝛽 = argmax𝜆,𝛽න𝑝 𝒚 𝒘,𝑿, 𝛽 𝑝 𝒘 𝜆 𝑑𝒘
For a Bayesian linear 

regression model

Expectations w.r.t.

the CP of 𝒘
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An Example: Mixture Models

▪ Assume 𝐾 probability distributions (e.g., Gaussians), one for each cluster

▪ The log-likelihood will be

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

Discrete latent variable (with 𝐾 possible 

values) or a one-hot vector of length 𝐾. 

Modeled by a multinoulli distribution as prior

Parameters of the 𝐾 distributions, 

e.g,. 𝜃 = 𝜇𝑘, Σ𝑘 𝑘=1
𝐾

The parameter vector 

𝝅 = 𝜋1, 𝜋2, … , 𝜋𝐾 of 

the multinoulli distribution

𝑝 𝑧𝑛 𝜙 = multinoulli(𝝅)

𝑝 𝒙𝑛 𝒛𝑛 = 𝑘, 𝜃 = 𝒩 𝜇𝑘 , Σ𝑘

Assumed generated from one 

of the 𝐾 distributions 

depending on the true (but 

unknown) value of 𝑧𝑛(which 

clustering will find))

(also means 𝑝 𝑧𝑛 = 𝑘 𝜙 = 𝜋𝑘)

The likelihood 

distributions

If the 𝒛𝑛 were known, it just becomes 

generative classification, for which 

which we know how to estimate 𝜃 and 

𝜙, given training data 

12

𝑝(𝑥) is a 

Gaussian mixture 

model (GMM)

log 𝑝 𝒙𝑛 Θ = log
𝑘=1

𝐾

𝑝 𝒙𝑛, 𝒛𝑛 = 𝑘 Θ

MLE on this objective won’t 

give closed form solution for 

the parameters

= log
𝑘=1

𝐾

𝑝 𝒛𝑛 = 𝑘 𝜙 𝑝(𝒙𝑛|𝒛𝑛 = 𝑘, 𝜃) = log
𝑘=1

𝐾

𝜋𝑘𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘
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Detour: MLE for Generative Classification
13

▪ Assume a 𝐾 class generative classification model with Gaussian class-conditionals

▪ Assume class 𝑘 = 1,2,… , 𝐾 is modeled by a Gaussian with mean 𝜇𝑘 and cov matrix Σ𝑘

▪ The labels 𝒛𝑛 (known) are one-hot vecs. Also, 𝑧𝑛𝑘 = 1 if  𝒛𝑛 = 𝑘, and 𝒛𝑛𝑘 = 0, o/w

▪ Assuming class prior as 𝑝(𝒛𝑛 = 𝑘) = 𝜋𝑘, the model has params Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾

▪ Given training data {𝒙𝑛, 𝒛𝑛} 𝑛=1
𝑁 , the MLE solution will be 

Same as 
1

𝑁𝑘
σ𝑛:𝒛𝑛=𝑘
𝑁 𝒙𝑛

Same as 
1

𝑁𝑘
σ𝑛:𝒛𝑛=𝑘
𝑁 (𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)

⊤

ො𝜋𝑘 =
1

𝑁


𝑛=1

𝑁

𝑧𝑛𝑘

Ƹ𝜇𝑘 =
1

𝑁𝑘


𝑛=1

𝑁

𝑧𝑛𝑘𝒙𝑛

Σ𝑘 =
1

𝑁𝑘


𝑛=1

𝑁

𝑧𝑛𝑘(𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)
⊤

Same as 
𝑁𝑘

𝑁
where 𝑁𝑘 is # of training ex. for which 𝑦𝑛 = 𝑘



CS772A: PML

Detour: MLE for Generative Classification
14

▪ Here is a formal derivation of the MLE solution for Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘} 𝑘=1
𝐾

Θ = argmaxΘ 𝑝(𝑿, 𝒁|Θ) = argmaxΘ ς𝑛=1
𝑁 𝑝(𝒙𝑛, 𝒛𝑛|Θ)

= argmaxΘ ς𝑛=1
𝑁 𝑝(𝒛𝑛|Θ) 𝑝(𝑥𝑛|𝒛𝑛, Θ)

= argmaxΘ ς𝑛=1
𝑁 ς𝑘=1

𝐾 𝜋𝑘
𝑧𝑛𝑘 ς𝑘=1

𝐾 𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)𝑧𝑛𝑘

= argmaxΘ ෑ
𝑛=1

𝑁

ෑ
𝑘=1

𝐾

[𝜋𝑘𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)]𝑧𝑛𝑘

= argmaxΘ logෑ
𝑛=1

𝑁

ෑ
𝑘=1

𝐾

[𝜋𝑘𝑝(𝑥𝑛|𝒛𝑛 = 𝑘, Θ)]𝑧𝑛𝑘

= argmaxΘ 
𝑛=1

𝑁


𝑘=1

𝐾

𝑧𝑛𝑘[log 𝜋𝑘 + log𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘 ]

multinoulli Gaussian

Can see that, when estimating the 

parameters of the 𝑘𝑡ℎ Gaussian 

(𝜋𝑘, 𝜇𝑘, Σ𝑘), we only will only need 

training examples from the 𝑘𝑡ℎ class, 

i.e., examples for which 𝑧𝑛𝑘 = 1

Also, due to the form of the likelihood 

(Gaussian) and prior (multinoulli), the 

MLE problem had a nice separable 

structure after taking the log

In general, in models with probability distributions 

from the exponential family, the MLE problem will 

usually have a simple analytic form

The form of this expression is important; 

will encounter this in GMM too
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EM for Mixture Models

▪ So how do we estimate the parameters of a GMM where 𝒛𝑛’s are unknown?

▪ The guess about 𝒛𝑛 can be in one of the two forms

▪ A “hard” guess – a single best value ො𝒛𝑛(some “optimal” value of the random variable 𝒛𝑛)

▪ The “expected” value 𝔼 𝒛𝑛 of the random variable 𝒛𝑛

▪ Using the hard guess ො𝒛𝑛 of 𝒛𝑛 will result in an ALT-OPT like algorithm

▪ Using the expected value of 𝒛𝑛 will give the so-called Expectation-Maximization (EM) algo

𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

Well, you kind of already know 

how to do this. ☺ Remember 

generative classification?

Hmmmm.. So can we make a guess 

what the value of each 𝒛𝑛 and then 

estimate 𝜃 and 𝜙 as we do in case 

of generative classification??

Yes, exactly. ☺ However, just like in 

gen-class, you will need to repeat 

the guess and estimate them a few 

times until you converge

EM is pretty much like ALT-OPT 

but with soft/expected values 

of the latent variables

15
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EM for Gaussian Mixture Model (GMM)
16

▪ EM finds Θ𝑀𝐿𝐸 by maximizing 𝔼 log 𝑝 𝑿, 𝒁 Θ rather than log 𝑝 𝑿, 𝒁 Θ

▪ Note: Expectation will be w.r.t. the conditional posterior distribution of 𝒁, i.e., 𝑝(𝒁|𝑿, Θ)

▪ The EM algorithm for GMM operates as follows

▪ Initialize Θ = {𝜋𝑘 , 𝜇𝑘 , Σ𝑘}𝑘=1
𝐾 as Θ

▪ Repeat until convergence

▪ Compute conditional posterior 𝑝(𝒁|𝑿, Θ). Since obs are i.i.d, compute separately for each 𝑛 (and for 𝑘 = 1,2, . . 𝐾)

▪ Update Θ by maximizing the expected complete data log-likelihood

Θ = argmaxΘ𝔼𝑝(𝒁|𝑿,Θ) log 𝑝 𝑿, 𝒁 Θ = 
𝑛=1

𝑁

𝔼𝑝(𝒛𝑛|𝒙𝑛,Θ) log 𝑝 𝒙𝑛, 𝒛𝑛 Θ

𝑝 𝒛𝑛 = 𝑘 𝒙𝑛, Θ ∝ 𝑝 𝒛𝑛 = 𝑘 Θ 𝑝 𝒙𝑛 𝒛𝑛 = 𝑘, Θ = ො𝜋𝑘𝒩 𝑥𝑛| ො𝜇𝑘 , Σ𝑘

Expectation of CLL

Needed to get the expected CLL

= argmaxΘ 𝔼 
𝑛=1

𝑁


𝑘=1

𝐾

𝑧𝑛𝑘[log 𝜋𝑘 + log𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘 ]

= argmaxΘ 
𝑛=1

𝑁


𝑘=1

𝐾

𝔼[𝑧𝑛𝑘][log 𝜋𝑘 + log𝒩 𝒙𝑛|𝜇𝑘 , Σ𝑘 ]

ො𝜋𝑘 =
1

𝑁


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘] Ƹ𝜇𝑘 =
1

𝑁𝑘


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘]𝒙𝑛

Σ𝑘 =
1

𝑁𝑘


𝑛=1

𝑁

𝔼[𝑧𝑛𝑘](𝒙𝑛− Ƹ𝜇𝑘)(𝒙𝑛− Ƹ𝜇𝑘)
⊤

Solution has a similar form as 

ALT-OPT (or gen. class.), 

except we now have the 

expectation of 𝑧𝑛𝑘 being used

Same as 𝑝(𝑧𝑛𝑘 = 1| 𝒙𝑛, Θ), just a 

different notation

It is “conditional” posterior 

because it is also conditioned 

on Θ, not just data 𝑋
Requires knowing Θ

𝑁𝑘 : Effective number 

of points in cluster k
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EM for GMM (Contd)
17

▪ The EM algo for GMM required 𝔼[𝑧𝑛𝑘]. Note 𝑧𝑛𝑘 ∈ {0,1}
𝔼 𝑧𝑛𝑘 = 𝛾𝑛𝑘 = 0 × 𝑝(𝑧𝑛𝑘 = 0|𝑥𝑛, Θ) + 1 × 𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛 , Θ) ∝ ො𝜋𝑘𝒩 𝑥𝑛| Ƹ𝜇𝑘 , Σ𝑘= 𝑝(𝑧𝑛𝑘 = 1|𝑥𝑛, Θ)

Need to normalize: 𝔼 𝑧𝑛𝑘 =
ෝ𝜋𝑘𝒩 𝑥𝑛|ෝ𝜇𝑘,Σ𝑘

σℓ=1
𝐾 ෝ𝜋ℓ𝒩 𝑥𝑛|ෝ𝜇ℓ,Σℓ

Reason: σ𝑘=1
𝐾 𝛾𝑛𝑘 = 1

M-step:

Soft 𝐾-means, which is more of a heuristic to 

get soft-clustering,  also gave us probabilities 

but doesn’t account for cluster shapes or 

fraction of points in each cluster

Accounts for cluster shapes (since 

each cluster is a Gaussian

Accounts for fraction of 

points in each cluster

Effective number of points 

in the 𝑘𝑡ℎ cluster
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EM vs Gradient-based Methods

▪ Can also estimate params using gradient-based optimization instead of EM

▪ We can usually explicitly sum over or integrate out the latent variables 𝒁, e.g.,

▪ Now we can optimize ℒ(Θ) using first/second order optimization to find the optimal Θ

▪ EM is usually preferred over this approach because

▪ The M step has often simple closed-form updates for the parameters Θ

▪ Often constraints (e.g., PSD matrices) are automatically satisfied due to form of updates

▪ In some cases†, EM usually converges faster (and often like second-order methods)

▪ E.g., Example: Mixture of Gaussians with when the data is reasonably well-clustered

▪ EM also provides the conditional posterior over the latent variables Z (from E step)

18

†Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996), 

Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)
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EM: Some Final Comments

▪ The E and M steps may not always be possible to perform exactly. Some reasons

▪ The conditional posterior of latent variables 𝑝(𝑍|𝑋, Θ) may not be easy to compute

▪ Will need to approximate 𝑝(𝑍|𝑋, Θ) using methods such as MCMC or variational inference

▪ Even if  𝑝(𝑍|𝑋, Θ) is easy, the expected CLL may not be easy to compute

▪ Maximization of the expected CLL may not be possible in closed form

▪ EM works even if  the M step is only solved approximately (Generalized EM)

▪ If  M step has multiple parameters whose updates depend on each other, they are 
updated in an alternating fashion - called Expectation Conditional Maximization (ECM)

▪ Other advanced probabilistic inference algos are based on ideas similar to EM

▪ E.g., Variational EM, Variational Bayes (VB) inference, a.k.a. Variational Inference (VI)
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Can often be approximated 

by Monte-Carlo using 

sample from the CP of 𝑍

Results in 

Monte-Carlo EM


