Latent Variable Models and the EM
Algorithm (Contd)
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Announcement

* Mid-sem exam on Sept 19, 1800-2000
" Venue: 17/, ERES seating scheme
= Syllabus: Up to today's lecture

" Closed book exam
» Necessary formulae/equations will be provided in the question paper
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Plan Today

" Expectation Maximization (EM) algorithm for param-est/inference in LVMs

" An example of EM
= Parameter estimation for Gaussian mixture models
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Parameter Estimation in Latent Variable Models

* Assume each observation x,, to be associated with a “local” latent variable z,,

p(z,,|@): A suitable prior distribution based on the nature of z,
p(x,|z,,0): A suitable likelihood based on the nature of x,,
@ @
N

= Although we can do fully Bayesian inference for all the unknowns, suppose we
only want a point estimate of the "global” parameters @ = (8, ¢) via MLE/MAP

= Such MLE/MAP problems in LVMs are difficult to solve in a “clean” way
= Can do gradient based opt on log-lik but usually won't get closed form updates for @

" However, EM algo gives a clean way to obtain closed form updates for © for such LVMs
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Why MLE/MAP of Params is Hard for LVMs?

" Suppose we want to estimate parameters 0 via MLE. It we knew z,,, we could solve

Easy to solve

N N
Ome = argmax ) logp(xy, 2,/©) =argmax  _[log p(zs|¢) + log p(xn|2s, 0)]

n—1 n—1 In particular, if they are

= Fasy. Usually closed form if p(z,|¢) and p(x,|z,, 8) have simple forms™ @etmdsouton:
" However, since in LVMs, z,, is hidden, the MLE problem for © will be the following

N
OvmEe = arg max Z log p(x,|©) = arg max log p(X|©)

n=1

" log p(x,,|®) will not have a simple expression since p(x,,|0®) requires sum/integral

p(x,|©) = Z p(Xn,zn|©) ... orif z, is continuous: p(x,|©) = /p(x,,, z,;|0)dz,

Zn
Can still use gradient based methods but
won't get clean, closed-form updates for ©

= MLE now becomes difficult, no closed form expression for 0

» Can we maximize some other quantity instead of log p(x,|®) for this MLE?
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An Important ldentity

" Assume p, = p(Z|X,0) and q(£) to be some prob distribution over Z, then for all g
log p(X|0) = L(g,0) + KL(q||p,) —. Verfy the identity

Assume Z discrete

_ _ p(X,2|0)

In the above £(q,0) = %, q(2)log | e } . '
L _ p(Z|X,®) KL(q||p)

KL(qllp,) = = £z 9(@)log | >}

_'_I_
» KL is always non-negative, so log p(X|0) = L(q, ©)
L(q.0) Inp(X|0)

* Thus L(q, ®) is a lower-bound on log p(X|0) } ]

» Thus if we maximize L(qg, ©), it will also improve log p(X|0)

= Also, as we'll see, it's easier to maximize L(q, ©)
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log p(X|0) is called Incomplete-

I\/Iaximizing L(q, @) Data Log Likelihood (ILL) )\

* £(g,0) depends on q and O. We'll use ALT-OPT to maximize it e"'»

= Let's maximize £L(g, ®) wirt. g with © fixed at some ©°ld | since logp(Xie) = £(q,0) + KL(qllp,)

is constant when @ is held fixed at ©°'d

q= argmaqu(q, G)Old) = argmianL(quz) =p, = p(Z|X, @Old)

The posterior distribution of Z

= Now let's maximize £(q, ®) wrt. © with q fixed at § = p, = p(Z|X, ®°'Y) | gien curent parameters 6°14

p(X,Z|0) }
p(Z|X, 0°ld)

Maximization of expected CLL where 1d

the expectation is wirt. the posterior = dargmaxg z P(Z|X, O° ) 08 p(X, Zl ®)

distribution of Z given current 7 Complete-Data Log
@eld Likelihood (CLL)

parameters = argmaxg [E logp(X,Z|06
8 Q] p(Z|X, @Old)[ gp( ) | )]
Much easier than maximizing ILL since
CLL will have simple expressions (since
it is kind of akin to knowing Z)

E"*W = argmaxgL(g,0®) = argmaxg Z p(Z|X, 0° log{
Z

argmaxg Q(0, 0°1%)
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The Expectation-Maximization (EM) Algorithm

= ALT-OPT of L(q,®) wrt. g and 0 gives the EM algorithm (Dempster, Laird, Rubin, 1977)

. Primarily designed for doing point estimation of the Usually computing CP + expected CLL
The EM Algonthm parameters O but also gives (CP of) latent variables z, is referred to as the E step, and max. A
of exp-CLL wirt. © as the M step

Q Initialize © as OO set t =1 ‘!“/

@ Step 1: Compute posterior of latent variables given current parameters ©(t—1)

Conditional posterior of
each latent variable z,

(210D p(x,| 2, 0t D)
- p(x,|©—1))

p(z9|x,, ©~1) o prior X likelihood

Assuming the (expected) CLL
Ep(Z|X, @Old) [log p(X, ZIG))]

factorizes over all observations

Latent variables also
assumed indep. a priori

© Step 2: Now maximize the expected complete data log-likelihood w.r.t. ©
N

0" = arg max Q(6, e'"1) = arg max > E 0, ot 108 p(xn, 27 (O)]
n=1
@ If not yet converged, set t = t + 1 and go to step 2.

>

= Note: If we can take the MAP estimate Z,, of z,, (not the CP) in Step 1 and maximize the CLL
in Step 2 using that, i.e., do argmaxg Z,’Ll[log p(xn, Z“n(t)|®)] then this will be std ALT-OPT
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The Expected CLL

" Expected CLL in EM is given by (assume observations are i.i.d.)

N
0(0,0%) = Z Epz,1x,.004)[log p(xn, 24|©)]

n=1

N
Z E p(zy1xn,004) (108 P(Xn|Zn, ©) + log p(z,|O)]
n=1

= f p(z,,|0) and p(x,,|z,, ©®) are exp-family distributions, (0, ©°') has a very simple form

" |n resulting expressions, replace terms containing z,,'s by their respective expectations, e.g.,

= 7z, replaced by [Ep(Zn| X, @) |Z,,]
= 2.z, replaced by ]Ep(zn|xn, ) (2,2, "]

» However, in some LVMs, these expectations are intractable to compute and need to be
approximated (will see some examples later), e.g., using MC integral approximation
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What’s Going On In EM 2| hems e
g e | them until convergence
to some local optima KL becomes zero and L(q, ®) becomes
equal to log p(X|0); thus their curves

= As we saw, the maximization of lower bound L(g, ®) had two steps | teuchat current ©
= Step 1 finds the optimal g (call it @) by setting it as the posterior of Z given current ©

» Step 2 maximizes L(g, 0) wr.t. ©® which gives a new 0.,

Note that ® only changes in Step 2 A
so the objective log p(X|0©) .
can only change in Step 2 A4 /

log p(X|0) e-.,»

Also kind of similar to Newton's
method (and has second order like
convergence behavior in some cases)

Local optima
Green curve: L(§, ©) after found for @ g
setting q to g :

Unlike Newton's method, we don't
construct and optimize a quadratic
approximation, but a lower bound

Good initialization matters;
otherwise would converge
to a poor local optima

Even though original MLE problem
argmaxglog p(X|©) could be solved
using gradient methods, EM often
works faster and has cleaner updates
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Some Applications of EM

= Mixture Models (each data-point comes from one of K mixture components)
" Examples: Mixture of Gaussians, Mixture of Experts, etc

" | atent variable models for dimensionality reduction or representation learning
» Probabilistic PCA, Factor Analysis, Variational Autoencoders, etc

" Problems models with missing features/labels (treated as latent variables)
= An example of problem with missing labels: Semi-supervised learning

" Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
= MLE-II estimates hyperparams by maximizing the marginal likelihood, e.g.,

For a Bayesian linear

{/:L ,BA} = argmaxj g p(yIX, A, .B) = argmaxj g j p(ylw, X, ﬂ)p(WM)dW regression model

= With EM, can treat w as latent var, and A, 8 as “parameters”
= [ step will estimate the CP of w given current estimates of A4, 8
= M step will re-estimate 4, B by maximizing the expected CLL Expectations wit

Ellog p(y, w|X, 3, A)] = E[log p(y|w, X, 3) + log p(w|\)] |thetfotw
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If the z,, were known, it just becomes 12

| . . I\/I d | generative classification, for which
An Exa | I I p e . I\/I IXt u re O e S which we know how to estimate 8 and A
¢, given training data v 4 /
* Assume K probability distributions (e.g., Gaussians), one for each cluster e"’
p(x)isa
: : o t N(xlu,Z,) | Gaussian mixture
p(z, |¢) = multinoulli(7r) Parameters of thell{( distributions, model (GMM)
(also means p(z,, = k |¢) = my) eg. 0 = {f Ziti=1

Discrete latent variable (with K possible 9 )

values) or a one-hot vector of length K. -

Modeled by a multinoulli distribution as pl’iOl’ Assumed generated from one The likelinood
of the K distributions distributions
depending on the true (but

The parameter vector unknown) value of z, (which
T = [mq, Ty, .., Tk ] OF ¢ clustering will find))
the multinoulli distribution ZTL
N p(x, |2, = k,0) = N (p, Z)

* The log-likelihood will be

MLE on this objective won't
give closed form solution for

K
log p(xnIG) = log Zk—lp(xn' Zy, = k|®) the parameters

K K
=loz z, =k X,|z, =k, 0 =loz T, N (x >
g k=1p( n = klp)p(xy|z, ) 8/, T (Xn |1k, Zi) ..



Detour: MLE for Generative Classification

" Assume a K class generative classification model with Gaussian class-conditionals

" Assume class k = 1,2, ..., K is modeled by a Gaussian with mean p;, and cov matrix Xy
" The labels z,, (known) are one-hot vecs. Also, z,,, = 1if z,, = k, and z,;;, = 0, o/w

= Assuming class prior as p(z,, = k) = m,, the model has params © = {my, tx, Zi} net

= Given training data {x,,, Z,} n—4. the MLE solution will be

1 ~—N
= Nz 1an Same as ~k y “ where Ny, is # of training ex. for which y, = k
n

fy = N_k2n=12nkxn Same as —an —1 Xn
2k = 121\’ an(xn—ﬁk)(xn—ﬁk)T Same as — —x(Xn—fg)(x —HR)T
Nk —1 Np nz n n
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Detour: MLE for Generative Classification

= Here is a formal derivation of the MLE solution for ® = {my, t, 2} ~eq

0= dI'ginaXxe p(X,Z|@) — argmaXe H11¥=1 p(xn:zn|®)mu|tmou||i

. Gaussian
_ -—-N
= argmaxe [I}-1p(2a]0) p(xx|Zn, 6)
n general, in models with probability distributions
from the exponential family, the MLE problem will
usually have a simple analytic form _ TN K Znk TTK — Znk
Also, due to the form of the likelihood N ] K
(Gaussian) and prior (multinoulli), the P
MLE problem had a nice separable = dIrgmaXeg [Tl,'kp (.X'n |Zn = k, @)] nk
structure after taking the log An=1 4 k=1
JV K
Can see that, when estimating the _ _ Znk
parameters of the k™ Gaussian = argmaxg lOg ‘ ‘ [T[kp(xn |ZTL — k' ®)]
(T, k> 2k ), we only will only need in=14 1Lk=1

training examples from the k" class,
i.e., examples for which z,;, =1

N K
= argmaxg E E Zni[log . + log IV (xp | ik, )]
: S n=1 k=1
The form of this expression is important;

will encounter this in GMM too CS772A: PML
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EM for Mixture Models

* 50 how do we estimate the parameters of a GMM where z,,'s are unknown?

A Well cind of already k Hmmmm.. So can we make a guess

|.¢.‘ / " © ’tyog It% o@anea y QOW what the value of each z, and then

» OW 0 OIS & REMEMBEr estimate 8 and ¢ as we do in case
generative classification?

of generative classification??
Yes, exactly. © However, just like in
gen-class, you will need to repeat
the guess and estimate them a few
times until you converge

¢ Zy

N

" The guess about Z,, can be in one of the two forms

= A “hard” guess — a single best value Z,, (some “optimal” value of the random variable z,,)

= The “expected” value [E[z,,] of the random variable z,, EM is pretty much like ALT-OPT
but with soft/expected values

= Using the hard guess Z,, of z,, will result in an ALT-OPT like algorithm of the latent variables

= Using the expected value of z,, will give the so-called Expectation-Maximization (EM)_algg,
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EM for Gaussian Mixture Model (GMM)

Expectation of CLL
= EM finds @,z by maximizing E[log p(X, Z|®)] rather than log p(X, Z ‘@)
» Note: Expectation will be wirt. the conditional posterior distribution of Z, i.e., p(Z|X, ©)

It is “conditional” posterior

- The EM algOrithm fOr GMM Operates aS fO”OWS because it is also conditioned Requires knowing ©
m |nitialize ® = {nk'ﬂk:zk}llgzl as @ on @, not just data X

] Repeat until convergence Needed to get the expected CLL
= Compute conditional posterior p(Z|X, ®). Since obs are i.i.d, compute separately for each n (and for k = 1,2,..K)

Same as p(Zpx = 1] %5, 0), just a p(zn — k|xn, @) X p(Zn = k|@) p(xnlzn = k, @) - ﬁ-kN(xnlﬁk'ik)

different notation

= Update ® by maximizing the expected complete data log-likelihood

Solution has a similar form as

N
ALT-OPT (or gen. class.), 0 = argmaxgE anllogn(X,Z|0)| = Z E oy llog p(x;,, 2, |0O
except we now have the 5 © p(Z|X,®)[ gp( ! | )] n=1 p(ZnIxn,O)[ gp( n nl )]
expectation of z,y being used

N K
1 N —
b= 25" B o= Y Elalx, = Argmaxo E [7 D zuillogm + 10g W (xalito %]
n=1 k n=1
Ny, . Effective number
of points in cluster k 1 = argmaxg y 7 an lOg Ty + lOg N(xnlﬂkr Zk)]

N
S = = Z Lz (e i) (e )T
k CS772A: PML
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EM for GMM (Contd) g

N (xn | B Zk)
YK RN (xn| e e)

Need to normalize: E[zy;] =

* The EM algo for GMM required E[z,;]. Note z,,;, € {0,1}

ElZe) = Yk = 0 X p(Zne = 01, ©) + 1 X p(zpse = 1]y, ©) = PZnic = 1, 8) < 72 N (| e, Zc)

EM for Gaussian Mixture Model

Q Initialize © = {7y, puk, Zi }E; as ©O) set t =1
@ E step: compute the expectation of each z, (we need it in M step)

Accounts for fraction of Accounts for cluster shapes (since
Soft K-means, which is more of a heuristic to points in each cluster (t— (t—1) «(t—1) each cluster is a Gaussian
get soft-clustering, also gave us probabilities E[z ] _ ,},(t) _ \ g (xn ‘P" ; 2 J Vn, k
' (t—1 t—1 (t—1
but doesn't account for cluster shapes or ZE . Wg )N( n|!-‘r{ ) L E! ))

fraction of points in each cluster

® Given “responsibilities” 7o = E[zn], andre—estimate © via MLE

Effective number of points

(t)  _
HLy = Z ’Ynk Xn in the k" cluster
M-step 1
-
ZE;) = N_k Z Yok (X_,, (xn P"_(:(r))
GRS
N

@ Set t = t+ 1 and go to step 2 if not yet converged CS7T72A: PML




EM vs Gradient-based Methods

" Can also estimate params using gradient-based optimization instead of EM
= We can usually explicitly sum over or integrate out the latent variables Z, e.g.,

L(©) = log p(X|©) = log > _p(X,Z|O)
Z
= Now we can optimize L(®) using first/second order optimization to find the optimal @

» M is usually preferred over this approach because
" The M step has often simple closed-form updates for the parameters ©
= Often constraints (e.g., PSD matrices) are automatically satisfied due to form of updates

= In some cases!, EM usually converges faster (and often like second-order methods)
= £.g., Example: Mixture of Gaussians with when the data is reasonably well-clustered

» EM also provides the conditional posterior over the latent variables Z (from E step)

TOptimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996),
Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017) CS772A: PML



EM: Some Final Comments

" The E and M steps may not always be possible to perform exactly. Some reasons

» The conditional posterior of latent variables p(Z|X, ®) may not be easy to compute
= Will need to approximate p(Z|X, ©) using methods such as MCMC or variational inference r.c s in

» Even if p(Z|X, 0) is easy, the expected CLL may not be easy to compute Monte-Carlo EM

Can often be approximated

E['Og p(X Zl@)] — f |Og p(x Z|@)p(Z|X G))dz by Monte-Carlo using

sample from the CP of Z

= Maximization of the expected CLL may not be possible in closed form

* EM works even if the M step is only solved approximately (Generalized EM)

" [ M step has multiple parameters whose updates depend on each other, they are
updated in an alternating fashion - called Expectation Conditional Maximization (ECM)

= Other advanced probabilistic inference algos are based on ideas similar to EM

= £.g., Variational EM, Variational Bayes (VB) inference, a.k.a. Variational Inference (V1)
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