Latent Variable Models and the EM Algorithm (Contd)

CS772A: Probabilistic Machine Learning Piyush Rai

Announcement

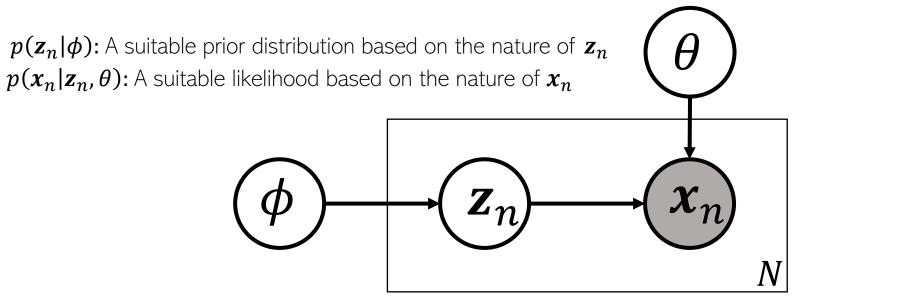
- Mid-sem exam on Sept 19, 1800-2000
- Venue: L17, ERES seating scheme
- Syllabus: Up to today's lecture
- Closed book exam
 - Necessary formulae/equations will be provided in the question paper

Plan Today

- Expectation Maximization (EM) algorithm for param-est/inference in LVMs
- An example of EM
 - Parameter estimation for Gaussian mixture models

Parameter Estimation in Latent Variable Models

• Assume each observation x_n to be associated with a "local" latent variable z_n



- Although we can do fully Bayesian inference for all the unknowns, suppose we only want a point estimate of the "global" parameters $\Theta = (\theta, \phi)$ via MLE/MAP
- Such MLE/MAP problems in LVMs are difficult to solve in a "clean" way
 - Can do gradient based opt on log-lik but usually won't get closed form updates for Θ
 - However, EM algo gives a clean way to obtain closed form updates for Θ for such LVMs

Why MLE/MAP of Params is Hard for LVMs?

• Suppose we want to estimate parameters Θ via MLE. If we knew $\boldsymbol{z_n}$, we could solve

$$\Theta_{MLE} = \arg \max_{\Theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n, \mathbf{z}_n | \Theta) = \arg \max_{\Theta} \sum_{n=1}^{N} \left[\log p(\mathbf{z}_n | \phi) + \log p(\mathbf{x}_n | \mathbf{z}_n, \theta) \right]^{\text{Easy to solve}}$$

- Easy. Usually closed form if $p(\pmb{z}_n|\pmb{\phi})$ and $p(\pmb{x}_n|\pmb{z}_n,\pmb{\theta})$ have simple forms
- However, since in LVMs, \mathbf{z}_n is hidden, the MLE problem for Θ will be the following $\Theta_{MLE} = \arg \max_{\Theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n | \Theta) = \arg \max_{\Theta} \log p(\mathbf{X} | \Theta)$
- $\log p(x_n | \Theta)$ will not have a simple expression since $p(x_n | \Theta)$ requires sum/integral

$$p(\mathbf{x}_n | \Theta) = \sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n | \Theta) \quad \dots \text{ or if } \mathbf{z}_n \text{ is continuous:} \quad p(\mathbf{x}_n | \Theta) = \int p(\mathbf{x}_n, \mathbf{z}_n | \Theta) d\mathbf{z}_n$$

• MLE now becomes difficult, no closed form expression for Θ_{\neg}

• Can we maximize some other quantity instead of $\log p(x_n | \Theta)$ for this MLE?

won't get clean, closed-form updates for Θ

An Important Identity

• Assume $p_z = p(Z|X, \Theta)$ and q(Z) to be some prob distribution over Z, then for all q

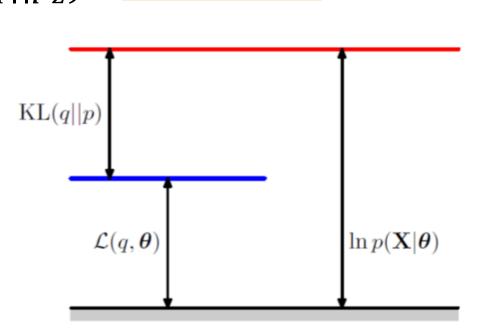
 $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + KL(q||p_z)$

• In the above
$$\mathcal{L}(q, \Theta) = \sum_{Z} q(Z) \log \left\{ \frac{p(X, Z | \Theta)}{q(Z)} \right\}$$

•
$$KL(q||p_z) = -\sum_Z q(\mathbf{Z})\log\left\{\frac{p(\mathbf{Z}|\mathbf{X},\Theta)}{q(\mathbf{Z})}\right\}$$

Assume **Z** discrete

- KL is always non-negative, so $\log p(X|\Theta) \ge \mathcal{L}(q,\Theta)$
- Thus $\mathcal{L}(q, \Theta)$ is a lower-bound on $\log p(X|\Theta)$
- Thus if we maximize $\mathcal{L}(q, \Theta)$, it will also improve $\log p(X|\Theta)$
- Also, as we'll see, it's easier to maximize $\mathcal{L}(q, \Theta)$



Verify the identity

Maximizing $\mathcal{L}(q, \Theta)$

- $\mathcal{L}(q, \Theta)$ depends on q and Θ . We'll use ALT-OPT to maximize it
- Let's maximize $\mathcal{L}(q, \Theta)$ w.r.t. q with Θ fixed at some Θ^{old} Since $\log p(X|\Theta) = \mathcal{L}(q, \Theta) + KL(q||p_z)$ is constant when Θ is held fixed at Θ^{old}

$$\hat{q} = \operatorname{argmax}_{q} \mathcal{L}(q, \Theta^{\text{old}}) = \operatorname{argmin}_{q} KL(q||p_{z}) = p_{z} = p(Z|X, \Theta^{\text{old}})$$

• Now let's maximize $\mathcal{L}(q, \Theta)$ w.r.t. Θ with q fixed at $\hat{q} = p_z = p(Z|X, \Theta^{\text{old}})$

The posterior distribution of
$$Z$$
 given current parameters Θ^{old}

$$\Theta^{\text{new}} = \operatorname{argmax}_{\Theta} \mathcal{L}(\hat{q}, \Theta) = \operatorname{argmax}_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log \left\{ \frac{p(X, Z|\Theta)}{p(Z|X, \Theta^{\text{old}})} \right\}$$

ation of expected CLL where
extation is w.r.t. the posterior = $\operatorname{argmax}_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log p(X, Z|\Theta)$

Maximization of expected CLL when the expectation is w.r.t. the posterior distribution of Z given current parameters Θ^{old}

Much easier than maximizing ILL since CLL will have simple expressions (since it is kind of akin to knowing Z)

$$\arg \max_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log p(X, Z|\Theta)$$

$$\arg \max_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log p(X, Z|\Theta)$$

$$\arg \max_{\Theta} \mathbb{E}_{p(Z|X, \Theta^{\text{old}})} [\log p(X, Z|\Theta)]$$

$$\arg \max_{\Theta} Q(\Theta, \Theta^{\text{old}})$$

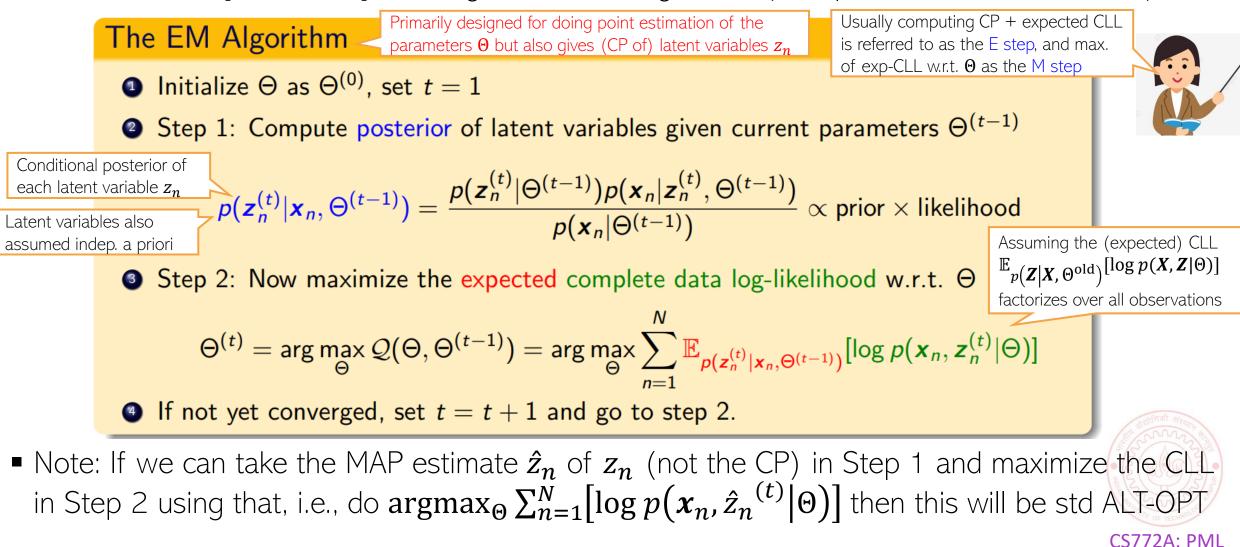
$$\operatorname{Complete-Data Log}_{\text{Likelihood (CLL)}}$$

$$\operatorname{Complete-Data Log}_{\text{Likelihood (CLL)}}$$

$$\operatorname{Complete-Data Log}_{\text{Likelihood (CLL)}}$$

The Expectation-Maximization (EM) Algorithm

• ALT-OPT of $\mathcal{L}(q, \Theta)$ w.r.t. q and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)



The Expected CLL

Expected CLL in EM is given by (assume observations are i.i.d.)

$$\begin{aligned} \mathcal{Q}(\Theta, \Theta^{old}) &= \sum_{n=1}^{N} \mathbb{E}_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta^{old})} [\log p(\boldsymbol{x}_n, \boldsymbol{z}_n | \Theta)] \\ &= \sum_{n=1}^{N} \mathbb{E}_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta^{old})} [\log p(\boldsymbol{x}_n | \boldsymbol{z}_n, \Theta) + \log p(\boldsymbol{z}_n | \Theta)] \end{aligned}$$

- If $p(\mathbf{z}_n|\Theta)$ and $p(\mathbf{x}_n|\mathbf{z}_n,\Theta)$ are exp-family distributions, $Q(\Theta,\Theta^{\text{old}})$ has a very simple form
- In resulting expressions, replace terms containing z_n 's by their respective expectations, e.g.,
 - \boldsymbol{z}_n replaced by $\mathbb{E}_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \widehat{\Theta})}[\boldsymbol{z}_n]$
 - $\boldsymbol{z}_n \boldsymbol{z}_n^{\mathsf{T}}$ replaced by $\mathbb{E}_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \widehat{\boldsymbol{\Theta}})}[\boldsymbol{z}_n \boldsymbol{z}_n^{\mathsf{T}}]$
- However, in some LVMs, these expectations are intractable to compute and need to be approximated (will see some examples later), e.g., using MC integral approximation

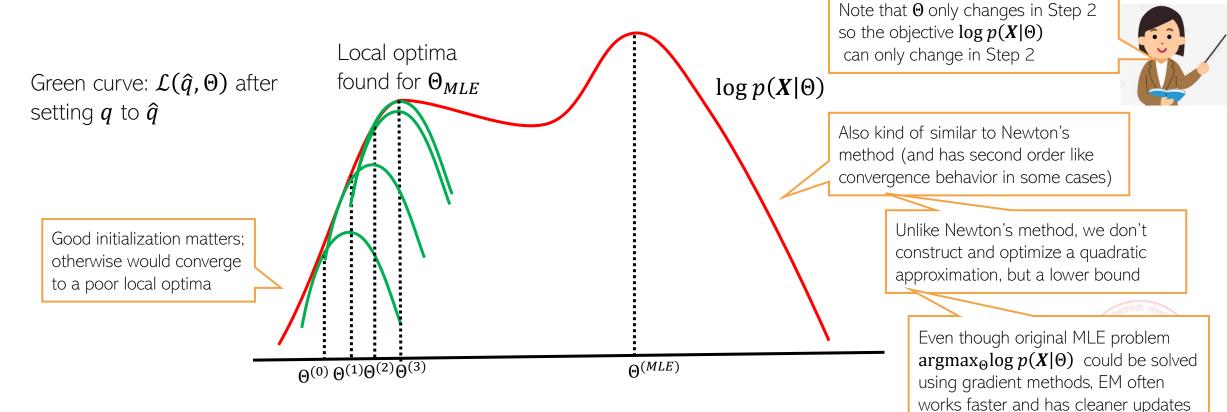
CS772A: PML

What's Going On In EM?

Alternating between them until convergence to some local optima

KL becomes zero and $\mathcal{L}(q, \Theta)$ becomes equal to $\log p(X|\Theta)$; thus their curves touch at current Θ

- As we saw, the maximization of lower bound $\mathcal{L}(q,\Theta)$ had two steps
- Step 1 finds the optimal q (call it \hat{q}) by setting it as the posterior of Z given current Θ
- Step 2 maximizes $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ which gives a new Θ .



CS772A: PML

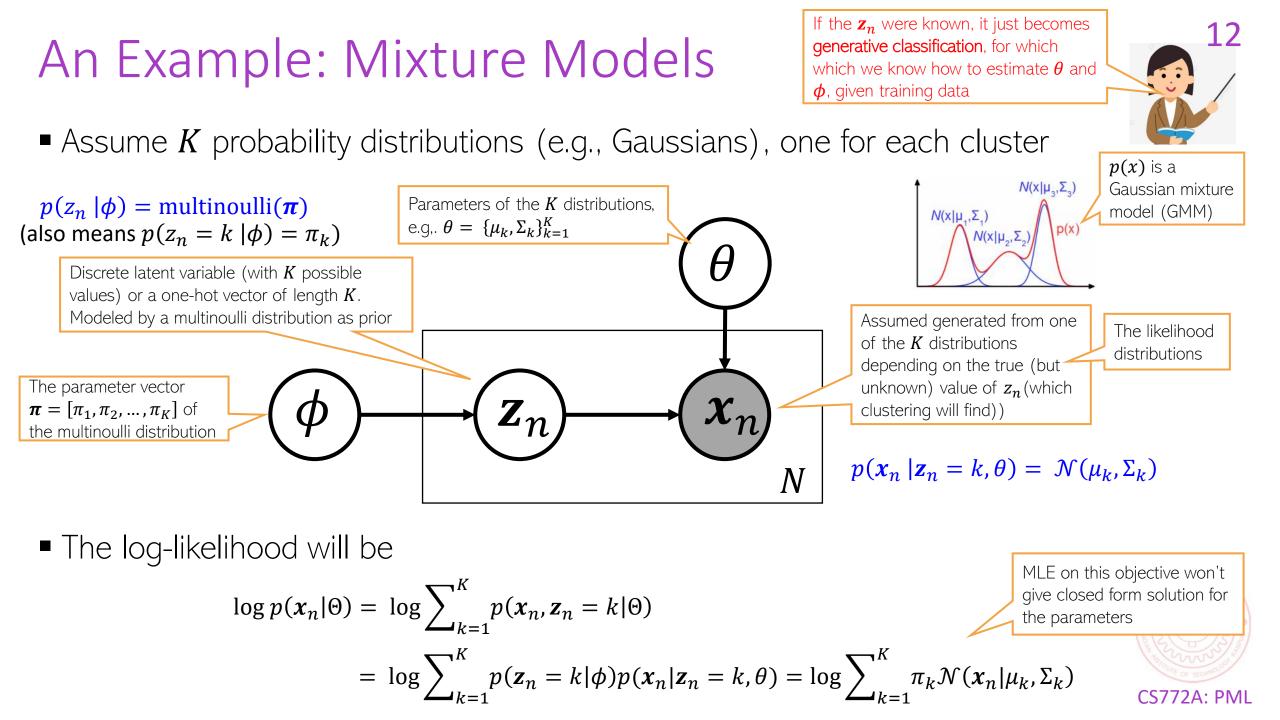
Some Applications of EM

- Mixture Models (each data-point comes from one of K mixture components)
 - Examples: Mixture of Gaussians, Mixture of Experts, etc
- Latent variable models for dimensionality reduction or representation learning
 - Probabilistic PCA, Factor Analysis, Variational Autoencoders, etc
- Problems models with missing features/labels (treated as latent variables)
 - An example of problem with missing labels: Semi-supervised learning
- Hyperparameter estimation in probabilistic models (an alternative to MLE-II)
 - MLE-II estimates hyperparams by maximizing the marginal likelihood, e.g.,

 $\{\hat{\lambda}, \hat{\beta}\} = \operatorname{argmax}_{\lambda,\beta} p(\boldsymbol{y}|\boldsymbol{X}, \lambda, \beta) = \operatorname{argmax}_{\lambda,\beta} \left(p(\boldsymbol{y}|\boldsymbol{w}, \boldsymbol{X}, \beta) p(\boldsymbol{w}|\lambda) d\boldsymbol{w} \right)$

- With EM, can treat w as latent var, and λ , β as "parameters"
 - E step will estimate the CP of w given current estimates of λ, β
 - M step will re-estimate λ, β by maximizing the expected CLL $\mathbb{E}[\log p(y, w | \mathbf{X}, \beta, \lambda)] = \mathbb{E}[\log p(y | w, \mathbf{X}, \beta) + \log p(w | \lambda)]$

For a Bayesian linear regression model



Detour: MLE for Generative Classification

- Assume a K class generative classification model with Gaussian class-conditionals
- Assume class $k=1,2,\ldots,K$ is modeled by a Gaussian with mean μ_k and cov matrix Σ_k
- The labels \mathbf{z}_n (known) are one-hot vecs. Also, $z_{nk}=1$ if $\mathbf{z}_n=k$, and $\mathbf{z}_{nk}=0$, o/w
- Assuming class prior as $p(\mathbf{z}_n = k) = \pi_k$, the model has params $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$
- Given training data $\{x_n, z_n\}_{n=1}^N$, the MLE solution will be

$$\hat{\pi}_{k} = \frac{1}{N} \sum_{n=1}^{N} z_{nk} \qquad \text{Same as } \frac{N_{k}}{N} \text{ where } N_{k} \text{ is } \# \text{ of training ex. for which } y_{n} = k$$

$$\hat{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} z_{nk} \boldsymbol{x}_{n} \qquad \text{Same as } \frac{1}{N_{k}} \sum_{n:z_{n}=k}^{N} \boldsymbol{x}_{n}$$

$$\hat{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} z_{nk} (\boldsymbol{x}_{n} - \hat{\mu}_{k}) (\boldsymbol{x}_{n} - \hat{\mu}_{k})^{\mathsf{T}} \qquad \text{Same as } \frac{1}{N_{k}} \sum_{n:z_{n}=k}^{N} (\boldsymbol{x}_{n} - \hat{\mu}_{k}) (\boldsymbol{x}_{n} - \hat{\mu}_{k})^{\mathsf{T}}$$

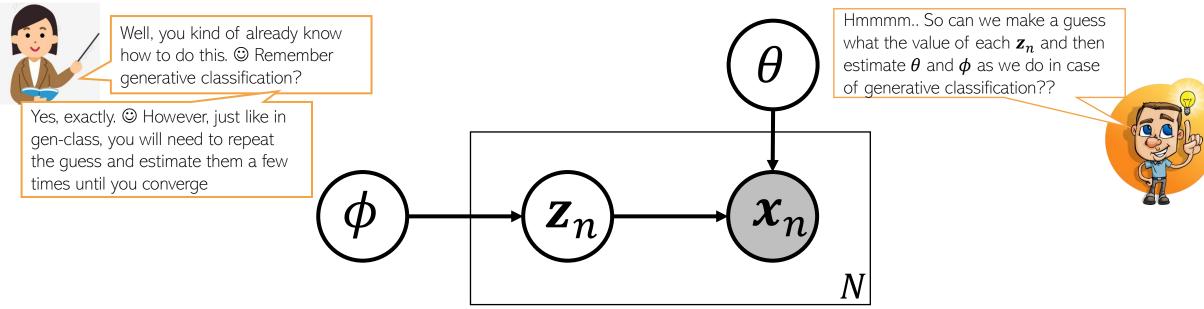
Detour: MLE for Generative Classification

• Here is a formal derivation of the MLE solution for $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$

 $\widehat{\Theta} = \operatorname{argmax}_{\Theta} p(X, Z | \Theta) = \operatorname{argmax}_{\Theta} \prod_{n=1}^{N} p(x_n, z_n | \Theta)_{\text{multinoulli}}$ Gaussian = $\operatorname{argmax}_{\Theta} \prod_{n=1}^{N} p(\mathbf{z}_n | \Theta) p(\mathbf{x}_n | \mathbf{z}_n, \Theta)$ In general, in models with probability distributions from the exponential family, the MLE problem will = $\operatorname{argmax}_{\Theta} \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{Z_{nk}} \prod_{k=1}^{K} p(x_{n} | \mathbf{z}_{n} = k, \Theta)^{Z_{nk}}$ usually have a simple analytic form Also, due to the form of the likelihood $= \operatorname{argmax}_{\Theta} \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_{k} p(x_{n} | \mathbf{z}_{n} = k, \Theta)]^{Z_{nk}}$ (Gaussian) and prior (multinoulli), the MLE problem had a nice separable structure after taking the log $= \operatorname{argmax}_{\Theta} \log \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_{k} p(x_{n} | \boldsymbol{z}_{n} = k, \Theta)]^{Z_{nk}}$ Can see that, when estimating the parameters of the k^{th} Gaussian (π_k, μ_k, Σ_k) , we only will only need training examples from the k^{th} class, $= \operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\boldsymbol{x}_n | \mu_k, \boldsymbol{\Sigma}_k)]$ i.e., examples for which $z_{nk} = 1$ The form of this expression is important; will encounter this in GMM too **CS772A: PML**

EM for Mixture Models

• So how do we estimate the parameters of a GMM where z_n 's are <u>unknown</u>?



- The guess about $oldsymbol{z}_n$ can be in one of the two forms
 - A "hard" guess a single best value $\hat{\boldsymbol{z}}_n$ (some "optimal" value of the random variable \boldsymbol{z}_n)
 - The "expected" value $\mathbb{E}[\boldsymbol{z}_n]$ of the random variable \boldsymbol{z}_n
- Using the hard guess \hat{z}_n of z_n will result in an ALT-OPT like algorithm of the latent variables
- Using the expected value of z_n will give the so-called Expectation-Maximization (EM) alo

EM is pretty much like ALT-OPT

EM for Gaussian Mixture Model (GMM)

- EM finds Θ_{MLE} by maximizing $\mathbb{E}[\log p(X, Z | \Theta)]$ rather than $\log p(X, \widehat{Z} | \Theta)$
- Note: Expectation will be w.r.t. the <u>conditional</u> posterior distribution of Z, i.e., $p(Z|X, \Theta)$
- The EM algorithm for GMM operates as follows
 - Initialize $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ as $\widehat{\Theta}$
 - Repeat until convergence

Needed to get the expected CLL

It is "conditional" posterior because it is also conditioned \mathbb{R} Rec on Θ , not just data X

Expectation of CLL

Requires knowing Θ

• Compute conditional posterior $p(Z|X, \widehat{\Theta})$. Since obs are i.i.d, compute separately for each n (and for k = 1, 2, ..., K)

Same as $p(z_{nk} = 1 | x_n, \widehat{\Theta})$ different notation

), just a
$$p(\mathbf{z}_n = k | \mathbf{x}_n, \widehat{\Theta}) \propto p(\mathbf{z}_n = k | \widehat{\Theta}) p(\mathbf{x}_n | \mathbf{z}_n = k, \widehat{\Theta}) = \widehat{\pi}_k \mathcal{N}(\mathbf{x}_n | \widehat{\mu}_k, \widehat{\Sigma}_k)$$

• Update Θ by maximizing the <u>expected</u> complete data log-likelihood

Solution has a similar form as
ALT-OPT (or gen. class.),
except we now have the
expectation of
$$z_{nk}$$
 being used

$$\widehat{\Theta} = \arg\max_{\Theta} \mathbb{E}_{p(Z|X,\widehat{\Theta})}[\log p(X, Z|\Theta)] = \sum_{n=1}^{N} \mathbb{E}_{p(z_n|x_n,\widehat{\Theta})}[\log p(x_n, z_n|\Theta)]$$

$$= \arg\max_{\Theta} \mathbb{E}\left[\sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk}[\log \pi_k + \log \mathcal{N}(x_n|\mu_k, \Sigma_k)]\right]$$

$$= \arg\max_{\Theta} \mathbb{E}\left[\sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk}[\log \pi_k + \log \mathcal{N}(x_n|\mu_k, \Sigma_k)]\right]$$

$$= \arg\max_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[z_{nk}][\log \pi_k + \log \mathcal{N}(x_n|\mu_k, \Sigma_k)]$$

$$= \arg\max_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[z_{nk}][\log \pi_k + \log \mathcal{N}(x_n|\mu_k, \Sigma_k)]$$

$$= \arg\max_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[z_{nk}][\log \pi_k + \log \mathcal{N}(x_n|\mu_k, \Sigma_k)]$$

$$= \arg\max_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[z_{nk}][\log \pi_k + \log \mathcal{N}(x_n|\mu_k, \Sigma_k)]$$

$$= \operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[z_{nk}][\log \pi_k + \log \mathcal{N}(x_n|\mu_k, \Sigma_k)]$$

EM for GMM (Contd)

• The EM algo for GMM required $\mathbb{E}[z_{nk}]$. Note $z_{nk} \in \{0,1\}$

 $\mathbb{E}[z_{nk}] = \gamma_{nk} = 0 \times p(z_{nk} = 0 | x_n, \widehat{\Theta}) + 1 \times p(z_{nk} = 1 | x_n, \widehat{\Theta}) = p(z_{nk} = 1 | x_n, \widehat{\Theta}) \propto \hat{\pi}_k \mathcal{N}(x_n | \hat{\mu}_k, \hat{\Sigma}_k)$

EM for Gaussian Mixture Model

1 Initialize
$$\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$$
 as $\Theta^{(0)}$, set $t = 1$

points in each cluster

E step: compute the expectation of each z_n (we need it in M step) 2 Accounts for fraction of Accounts for cluster shapes (since

Soft *K*-means, which is more of a heuristic to get soft-clustering, also gave us probabilities but doesn't account for cluster shapes or fraction of points in each cluster

• Given "responsibilities"
$$\gamma_{nk} = \mathbb{E}[z_{nk}]$$
, and $N_k = \sum_{n=1}^{N} \gamma_{nk}$, re-estimate Θ via MLE

ts in each cluster $\mathbb{E}[\boldsymbol{z}_{nk}^{(t)}] = \gamma_{nk}^{(t)} = \frac{\pi_{k}^{(t-1)} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}^{(t-1)}, \boldsymbol{\Sigma}_{k}^{(t-1)})}{\sum_{k=1}^{K} \pi_{k}^{(t-1)} \mathcal{N}(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}^{(t-1)}, \boldsymbol{\Sigma}_{k}^{(t-1)})}$

$$f_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} \mathbf{x}_{n}$$
 Effective number of points in the k^{th} cluster

 $\boldsymbol{\Sigma}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}$ M-step:

Set
$$t = t + 1$$
 and go to step 2 if not yet converged

 $|\boldsymbol{\mu}\rangle$

Reason: $\sum_{k=1}^{K} \gamma_{nk} = 1$

Need to normalize: $\mathbb{E}[z_{nk}] = \frac{\widehat{\pi}_k \mathcal{N}(x_n | \widehat{\mu}_k, \widehat{\Sigma}_k)}{\sum_{\ell=1}^{K} \widehat{\pi}_\ell \mathcal{N}(x_n | \widehat{\mu}_\ell, \widehat{\Sigma}_\ell)}$

each cluster is a Gaussian

 $\forall n, k$

EM vs Gradient-based Methods

- Can also estimate params using gradient-based optimization instead of EM
 - We can usually explicitly sum over or integrate out the latent variables $oldsymbol{Z}$, e.g.,

$$\mathcal{L}(\Theta) = \log p(\mathbf{X}|\Theta) = \log \sum_{n} p(\mathbf{X}, \mathbf{Z}|\Theta)$$

- Now we can optimize $\mathcal{L}(\Theta)$ using first/second order optimization to find the optimal Θ
- EM is usually preferred over this approach because
 - ${\ensuremath{\,^\circ}}$ The M step has often simple closed-form updates for the parameters Θ
 - Often constraints (e.g., PSD matrices) are automatically satisfied due to form of updates
 - In some cases[†], EM usually converges faster (and often like second-order methods)
 - E.g., Example: Mixture of Gaussians with when the data is reasonably well-clustered
 - EM also provides the conditional posterior over the latent variables Z (from E step)

EM: Some Final Comments

- The E and M steps may not always be possible to perform exactly. Some reasons
 - The conditional posterior of latent variables p(Z|X, O) may not be easy to compute
 Will need to approximate p(Z|X, O) using methods such as MCMC or variational inference Results in
 - Even if $p(Z|X,\Theta)$ is easy, the expected CLL may not be easy to compute $\mathbb{E}[\log p(X, Z|\Theta)] = \int \log p(X, Z|\Theta) p(Z|X, \Theta) dZ$ Can often be approximated by Monte-Carlo using sample from the CP of Z
 - Maximization of the expected CLL may not be possible in closed form
- EM works even if the M step is only solved approximately (Generalized EM)
- If M step has multiple parameters whose updates depend on each other, they are updated in an alternating fashion - called Expectation Conditional Maximization (ECM)
- Other advanced probabilistic inference algos are based on ideas similar to EM
 - E.g., Variational EM, Variational Bayes (VB) inference, a.k.a. Variational Inference (VI)

Monte-Carlo EM

CS772A: PML