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Plan

▪ Wrap-up the discussion of CP and local conjugacy
▪ Gibbs sampling (more on this when we discuss MCMC)

▪ Latent Variable Models (LVM)
▪ The basic formulation of LVMs (specific models later)

▪ Parameter Estimation in LVMs

▪ Expectation Maximization algorithm for param-est/inference in LVMs
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Gibbs Sampling (Geman and Geman, 1982) 

▪ A general algo to generate samples from multivar. distr. one variable at a time
▪ Not limited to sampling from intractable posteriors only

▪ Sometimes can be used even if  we can draw from the multivar distr. directly

▪ Assume we want to sample from a joint distribution 𝑝 𝜃1, 𝜃2, … , 𝜃𝐾

▪ It generates one component 𝜃𝑘 at a time using its conditional 𝑝(𝜃𝑘|Θ−𝑘)

▪ Each conditional is assumed to be available in closed form. An example below:
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Note: If  posterior, it will be conditioned on other stuff 

too (e.g., data, other param, etc)

A 2-dim Gaussian

A 1-dim Gaussian

A 1-dim Gaussian

This example is a toy illustration of 

sampling from a 2-dim Gaussian 

by sampling from 1-dim Gaussians

A sample based representation 

of a 2-dim Gaussian distribution
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Gibbs Sampling (Geman and Geman, 1982)

▪ Can be used to get a sampling-based approx. of a multi-param. posterior

▪ Iteratively draws random samples from the CPs in a cyclic order

▪When run long enough, the sampler produces samples from the joint posterior

▪ For the simple two-param case 𝜃 = (𝜃1, 𝜃2), the Gibb sampler looks like this

▪ Initialize 𝜃2
(0)

▪ For 𝑠 = 1,2,… , 𝑆

▪ Draw a random sample for 𝜃1 as 𝜃1
(𝑠)

∼ 𝑝(𝜃1|𝑋, 𝜃2
(𝑠−1)

)

▪ Draw a random sample for 𝜃2 as 𝜃2
(𝑠)

∼ 𝑝(𝜃2|𝑋, 𝜃1
(𝑠)

)

▪ These 𝑆 random samples 𝜃1
𝑠
, 𝜃1

𝑠

𝑠=1

𝑆
represent joint posterior 𝑝(𝜃1, 𝜃2|𝑋)

▪ This is just a high-level idea. More on this when we discuss MCMC
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This CP uses the most recent 

value of 𝜃2

This CP uses the most recent 

value of 𝜃1
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Back to Bayesian Matrix Factorization
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Bayesian Matrix Factorization: The CPs

▪ BMF with Gaussian likelihood and Gaussian prior on each user/item params is not fully 
conjugate but has local conjugacy

▪ To see this, note that the conditional posterior (CP) for user parameter 𝒖𝑖

▪ The above is just like Bayesian linear regression, given 𝑹 and fixed 𝐕
▪ Weight vector is 𝒖𝑖 , training data is {(𝒗𝑗 , 𝑟𝑖𝑗)}𝑗: 𝑖,𝑗 ∈Ω, given

▪ Also have local conjugacy since likelihood and prior are conjugate (assuming hyperparams fixed) 

▪ Likewise, the CP for the item parameter 𝒗𝑗 can be computed as 
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=

Only depends on the 

ratings of user 𝑖. Also 

doesn’t depend on 𝐔−𝑖

Another Bayesian linear 

regression problem with 

weight vector 𝒗𝑗

This is due to the 

structure of the problem 

and the 𝒖𝑖’s being 

independent a priori
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Bayesian Matrix Factorization: The CPs

▪ The CPs will have forms similar to solution of Bayesian linear regression

▪ These CPs can be updated in an alternating fashion until convergence
▪ Many ways. One popular way is to use Gibbs sampling

▪ Note: Hyperparameters can also be inferred by computing their CPs1

▪ Can extend Gaussian BMF easily to other exp. family distr. while maintaining local conj.
▪ Example: Poisson likelihood and gamma priors on user/item parameters2
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1“Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo” by Salakhutdinov and Mnih (2008)

2“Scalable recommendation with Poisson factorization” by Gopalan et al(2013)
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BMF: Making Predictions

▪ PPD for each missing entry of the matrix (assuming hyperparams known)

▪ In general, this is intractable and needs approximation

▪ If  using Gibbs sampling, we can use 𝑆 samples (𝑢𝑖
𝑠
, 𝑣𝑗

(𝑠)
)𝑠=1
𝑆 to compute mean of 𝑟𝑖𝑗

▪ For the Gaussian likelihood case, the mean can be computed as

▪ Comparison of Bayesian MF with others (from Salakhutdinov and Mnih (2008))
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Can also compute the variance 

in the predicted 𝑟𝑖𝑗 using these 

𝑆 samples (think how)

All other baselines are optimization based 

or point estimation based probabilistic 

models (PMF = probabilistic matrix 

factorization with point estimation)
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Summary

▪ Local conjugacy is helpful even for complex prob. models with many params
▪ CPs will have a closed form

▪ Easy to implement Gibbs sampling can be used to get the (approx.) posterior

▪ Many other approx. inference algos (like variational inference) benefit from local conjugacy

▪Helps to choose likelihood and priors on each param as exp. family distr.
▪ So if  we can’t get a globally conjugate model, we can still get a model with local conjugacy

▪ Even if  we can’t have local conjugacy, the notion of CPs is applicable
▪ We can break the inference problem into estimating CPs (exactly if  we have local 

conjugacy, or approximately if  we don’t have local conjugacy)

▪ Almost all approx. algorithms work by estimating CPs exactly or approximately
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Coming Up

▪ Latent Variable Models

▪ Expectation Maximization

10
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Latent Variable Models

▪ Application 1: Can use these to model latent properties/features of data, e.g.,
▪ Cluster assignment of each observation (in mixture models)

▪ Low-dim rep. or “code” of each observation (e.g., prob. PCA, variational autoencoders, etc)

▪ In such apps, latent variables (𝒛𝑛’s) are called “local variables” (specific to individual 
obs.)and other unknown parameters/hyperparams (𝜃, 𝜙 above) are called “global var”
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𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

𝑝 𝒛𝑛 𝜙 : A suitable prior distribution based on the nature of 𝒛𝑛
𝑝 𝒙𝑛 𝒛𝑛, 𝜃 : A suitable likelihood based on the nature of 𝒙𝑛
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Latent Variable Models

▪ Application 2: Sometimes, augmenting a model by latent variables simplifies inference

▪ These latent variables aren’t part of the original model definition (hence called latent)

▪ Some of the popular examples of such augmentation include

▪ In Probit regression for binary classification, we can model each label 𝑦𝑛 ∈ {0,1} as 

.. and use EM etc, to infer the unknowns 𝒘 and 𝑧𝑛’s (PML-2, Sec 15.4)

▪ Many sparse priors on weights can be thought of as Gaussian “scale-mixtures”

.. where 𝜏𝑑’s are latent vars. Can use EM to infer 𝒘, 𝜏 (MLAPP 13.4.4 - EM for LASSO)

▪ Such augmentations can often make a non-conjugate model a locally conjugate one
▪ Conditional posteriors of the unknowns often have closed form in such cases
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𝑦𝑛 = 𝕀[𝑧𝑛 > 0] where       𝑧𝑛 ∼ 𝒩(𝒘⊤𝒙𝑛, 1) is an auxiliary latent variable 
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Nomenclature/Notation Alert

▪ Why call some unknowns as parameters and others as latent variables?

▪ Well, no specific reason. Sort of a convention adopted by some algorithms

▪ EM: Unknowns estimated in E step referred to as latent vars; those in M step as params

▪ Usual distinction: Latent vars – posterior inferred; parameters – point estimation done

▪ Some algos won’t make such distinction and will infer posterior over all unknowns

▪ Sometimes the “global” or “local” unknown distinction makes it clear
▪ Local variables = latent variables, global variables = parameters

▪ But remember that this nomenclature isn’t really cast in stone, no need to be confused 
so long as you are clear as to what the role of each unknown is, and how we want to 
estimate it (posterior or point estimate) and using what type of inference algorithm

13
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Hybrid Inference (posterior infer. + point est.)

▪ In many models, we infer posterior on some unknowns and do point est. for others

▪ We have already seen that MLE-II based inference does that

▪ Maximize the marginal likelihood to do point estimation for hyperparams

▪ Infer CP over the main parameter given the point estimates of hyperparams

▪ The Expectation-Maximization algorithm (will see today) also does something similar
▪ In E step, the CP of latent variables is inferred, given current point-est of params

▪ M step maximizes expected complete data log-lik. to get point estimates of params

▪ If  we can’t (due to computational or other reasons) infer posterior over all unknowns, 
how to decide which variables to infer posterior on, and for which to do point-est?

▪ Usual approach: Infer posterior over local vars and point estimates for global vars
▪ Reason: We typically have plenty of data to reliably estimate the global variables so it is okay even 

if  we just do point estimation for those (recall the schools problem in HW1)
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መ𝜆, መ𝛽 = argmax𝜆,𝛽 𝑝(𝒚|𝑿, 𝜆, 𝛽)

CP of 𝑤:  𝑝(𝒘|𝑿, 𝒚, መ𝜆, መ𝛽)

Akin to maximizing 

marg-lik
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Inference/Parameter Estimation in 
Latent Variable Models using 

Expectation-Maximization (EM)

15
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Parameter Estimation in Latent Variable Models

▪ Assume each observation 𝒙𝑛 to be associated with a “local” latent variable 𝒛𝑛

▪ Although we can do fully Bayesian inference for all the unknowns, suppose we 
only want a point estimate of the “global” parameters Θ = (𝜃, 𝜙) via MLE/MAP

▪ Such MLE/MAP problems in LVMs are difficult to solve in a “clean” way
▪ Would typically require gradient based methods with no closed form updates for Θ

▪ However, EM gives a clean way to obtain closed form updates for Θ
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𝒙𝑛𝒛𝑛

𝜃

𝜙

𝑁

𝑝 𝒛𝑛 𝜙 : A suitable prior distribution based on the nature of 𝒛𝑛
𝑝 𝒙𝑛 𝒛𝑛, 𝜃 : A suitable likelihood based on the nature of 𝒙𝑛
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Why MLE/MAP of Params is Hard for LVMs?

▪ Suppose we want to estimate parameters Θ via MLE. If  we knew 𝒛𝑛, we could solve

▪ Easy. Usually closed form if  𝑝 𝒛𝑛 𝜙 and 𝑝 𝒙𝑛 𝒛𝑛, 𝜃 have simple forms

▪ However, since in LVMs, 𝒛𝑛 is hidden, the MLE problem for Θ will be the following

▪ log 𝑝(𝒙𝑛|Θ) will not have a simple expression since 𝑝(𝑥𝑛|Θ) requires sum/integral

▪ MLE now becomes difficult, no closed form expression for Θ

▪ Can we maximize some other quantity instead of log 𝑝(𝑥𝑛|Θ) for this MLE?

17

In particular, if  they are 

exp-fam distributions

Easy to solve
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An Important Identity

▪ Assume 𝑝𝑧 = 𝑝(𝒁|𝑿, Θ) and 𝑞(𝒁) to be some prob distribution over 𝒁, then

▪ In the above ℒ 𝑞, Θ = σ𝑍 𝑞 𝑍 log
𝑝(𝑋,𝑍|Θ)

𝑞(𝑍)

▪ 𝐾𝐿(𝑞| 𝑝𝑧 = −σ𝑍 𝑞 𝒁 log
𝑝(𝒁|𝑿,Θ)

𝑞(𝒁)

▪ KL is always non-negative, so log 𝑝 𝑿 Θ ≥ ℒ 𝑞, Θ

▪ Thus ℒ 𝑞, Θ is a lower-bound on log 𝑝 𝑿 Θ

▪ Thus if  we maximize ℒ 𝑞, Θ , it will also improve log 𝑝 𝑿 Θ

▪ Also, as we’ll see, it’s easier to maximize ℒ 𝑞, Θ
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log 𝑝 𝑿 Θ = ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)Assume 𝒁 discrete
Verify the identity
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19
Maximizing ℒ 𝑞, Θ
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▪ ℒ 𝑞, Θ depends on 𝑞 and Θ. We’ll use ALT-OPT to maximize it

▪ Let’s maximize ℒ 𝑞, Θ w.r.t. 𝑞 with Θ fixed at some Θold

▪ Now let’s maximize ℒ 𝑞, Θ w.r.t. Θ with 𝑞 fixed at ො𝑞 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

ො𝑞 = argmax𝑞ℒ 𝑞, Θold = argmin𝑞𝐾𝐿(𝑞| 𝑝𝑧 = 𝑝𝑧 = 𝑝(𝒁|𝑿, Θold)

Since log 𝑝 𝑿 Θ = ℒ 𝑞, Θ + 𝐾𝐿(𝑞||𝑝𝑧)
is constant when Θ is held fixed at Θold

Θnew = argmaxΘℒ ො𝑞, Θ = argmaxΘ෍

𝑍

𝑝(𝒁|𝑿, Θold) log
𝑝(𝑿, 𝒁|Θ)

𝑝(𝒁|𝑿, Θold)

= argmaxΘ෍

𝑍

𝑝 𝒁 𝑿, Θold log 𝑝(𝑿, 𝒁|Θ)

= argmaxΘ 𝔼𝑝 𝒁 𝑿, Θold
[log 𝑝(𝑿, 𝒁|Θ)]

Maximization of expected CLL where 

the expectation is w.r.t. the posterior 

distribution of 𝑍 given current 

parameters Θold

The posterior distribution of 𝑍

given current parameters Θold

= argmaxΘ 𝒬(Θ, Θ
old)

Complete-Data Log 

Likelihood (CLL)

log 𝑝 𝑿 Θ is called Incomplete-

Data Log Likelihood (ILL)

Much easier than maximizing ILL since 

CLL will have simple expressions (since 

it is akin to knowing 𝑍)
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The Expectation-Maximization (EM) Algorithm
20

▪ ALT-OPT of ℒ 𝑞, Θ w.r.t. 𝑞 and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)

▪ Note: If  we can take the MAP estimate Ƹ𝑧𝑛 of 𝑧𝑛 (not full posterior) in Step 1 and maximize 

the CLL in Step 2 using that, i.e., do argmaxΘσ𝑛=1
𝑁 log 𝑝 𝒙𝑛 , Ƹ𝑧𝑛

(𝑡) Θ this will be ALT-OPT

Conditional posterior of 

each latent variable 𝑧𝑛

Latent variables also 

assumed indep. a priori Assuming the (expected) CLL 

𝔼
𝑝 𝒁 𝑿, Θold

[log 𝑝(𝑿, 𝒁|Θ)]

factorizes over all observations

Primarily designed for doing point estimation of the 

parameters Θ but also gives (CP of) latent variables 𝑧𝑛

Usually computing CP + expected CLL 

is referred to as the E step, and max. 

of exp-CLL w.r.t. Θ as the M step



CS772A: PML

The Expected CLL
21

▪ Expected CLL in EM is given by (assume observations are i.i.d.)

▪ If  𝑝 𝒛𝑛 Θ and 𝑝 𝒙𝑛 𝒛𝑛, Θ are exp-family distributions, 𝒬(Θ, Θold) has a very simple form

▪ In resulting expressions, replace terms containing 𝑧𝑛’s by their respective expectations, e.g.,
▪ 𝒛𝑛 replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, ෡Θ
[𝒛𝑛]

▪ 𝒛𝑛𝒛𝑛
⊤ replaced by 𝔼

𝑝 𝒛𝑛 𝒙𝑛, ෡Θ
[𝒛𝑛𝒛𝑛

⊤]

▪ However, in some LVMs, these expectations are intractable to compute and need to be 
approximated (will see some examples later)
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What’s Going On?
22

▪ As we saw, the maximization of lower bound ℒ 𝑞, Θ had two steps 

▪ Step 1 finds the optimal 𝑞 (call it ො𝑞) by setting it as the posterior of 𝒁 given current Θ

▪ Step 2 maximizes ℒ ො𝑞, Θ w.r.t. Θ which gives a new Θ. 

Θ(0)Θ(1)Θ
(2)Θ(3)

Green curve: ℒ ො𝑞, Θ after 

setting 𝑞 to ො𝑞
log 𝑝 𝑿 Θ

Local optima 

found for Θ𝑀𝐿𝐸

KL becomes zero and ℒ 𝑞, Θ becomes 

equal to log 𝑝 𝑿 Θ ; thus their curves 

touch at current Θ

Note that Θ only changes in Step 2 

so the objective log 𝑝 𝑿 Θ
can only change in Step 2

Θ(𝑀𝐿𝐸)

Good initialization matters; 

otherwise would converge 

to a poor local optima

Also kind of similar to Newton’s 

method (and has second order like 

convergence behavior in some cases)

Unlike Newton’s method, we don’t 

construct and optimize a quadratic 

approximation, but a lower bound

Even though original MLE problem 

argmaxΘlog 𝑝 𝑿 Θ could be solved 

using gradient methods, EM often 

works faster and has cleaner updates

Alternating between 

them until convergence 

to some local optima
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EM vs Gradient-based Methods

▪ Can also estimate params using gradient-based optimization instead of EM

▪ We can usually explicitly sum over or integrate out the latent variables 𝒁, e.g.,

▪ Now we can optimize ℒ(Θ) using first/second order optimization to find the optimal Θ

▪ EM is usually preferred over this approach because

▪ The M step has often simple closed-form updates for the parameters Θ

▪ Often constraints (e.g., PSD matrices) are automatically satisfied due to form of updates

▪ In some cases†, EM usually converges faster (and often like second-order methods)

▪ E.g., Example: Mixture of Gaussians with when the data is reasonably well-clustered

▪ EM applies even when the explicit summing over/integrating out is expensive/intractable

▪ EM also provides the conditional posterior over the latent variables Z (from E step)
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†Optimization with EM and Expectation-Conjugate-Gradient (Salakhutdinov et al, 2003), On Convergence Properties of the EM Algorithm for Gaussian Mixtures (Xu and Jordan, 1996), 

Statistical guarantees for the EM algorithm: From population to sample-based analysis (Balakrishnan et al, 2017)
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Some Applications of EM

▪ Mixture Models (each data-point comes from one of 𝐾 mixture components)

▪ Examples: Mixture of Gaussians, Mixture of Experts, etc

▪ Latent variable models for dimensionality reduction or representation learning

▪ Probabilistic PCA, Factor Analysis, Variational Autoencoders, etc

▪ Problems models with missing features/labels (treated as latent variables)

▪ An example of problem with missing labels: Semi-supervised learning

▪ Hyperparameter estimation in probabilistic models (an alternative to MLE-II)

▪ MLE-II estimates hyperparams by maximizing the marginal likelihood, e.g.,

▪ With EM, can treat 𝒘 as latent var, and 𝜆, 𝛽 as “parameters”

▪ E step will estimate the CP of 𝑤 given current estimates of 𝜆, 𝛽

▪ M step will re-estimate 𝜆, 𝛽 by maximizing the expected CLL
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መ𝜆, መ𝛽 = argmax𝜆,𝛽 𝑝 𝒚 𝑿, 𝜆, 𝛽 = argmax𝜆,𝛽න𝑝 𝒚 𝒘,𝑿, 𝛽 𝑝 𝒘 𝜆 𝑑𝒘
For a Bayesian linear 

regression model

Expectations w.r.t.

the CP of 𝒘
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EM: Some Comments

▪ The E and M steps may not always be possible to perform exactly. Some reasons

▪ The conditional posterior of latent variables 𝑝(𝑍|𝑋, Θ) may not be easy to compute

▪ Will need to approximate 𝑝(𝑍|𝑋, Θ) using methods such as MCMC or variational inference

▪ Even if  𝑝(𝑍|𝑋, Θ) is easy, the expected CLL may not be easy to compute

▪ Maximization of the expected CLL may not be possible in closed form

▪ EM works even if  the M step is only solved approximately (Generalized EM)

▪ If  M step has multiple parameters whose updates depend on each other, they are 
updated in an alternating fashion - called Expectation Conditional Maximization (ECM)

▪ Other advanced probabilistic inference algos are based on ideas similar to EM

▪ E.g., Variational Bayes (VB) inference, a.k.a. Variational Inference (VI)
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Can often be approximated 

by Monte-Carlo using 

sample from the CP of 𝑍

Results in 

Monte-Carlo EM


