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Plan for today

▪ Wrapping up GPs

▪ Inference in multi-parameter models
▪ Conditional posterior

▪ Local conjugacy

▪ An example: Bayesian matrix factorization (BMF)
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Scalability of GPs

▪ Computational costs in some steps of GP models scale in the size of training data

▪ For example, prediction cost is 𝑂(𝑁)

▪ GP models often require matrix inversions (e.g., in marg-lik computation when 
estimating hyperparameters) – takes 𝑂(𝑁3)

▪ Storage also requires 𝑂(𝑁2) since need to store the covariance matrix

▪ A lot of work on speeding up GPs1. Some prominent approaches include

▪ Inducing Point Methods (condition predictions only on a small set of “learnable” points)

▪ Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)

▪ Kernel approximations

▪Note that nearest neighbor methods and kernel methods also face similar issues 
▪ Many tricks to speed up kernel methods can be used for speeding up GPs too
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𝑝 𝑦∗ 𝒚 = 𝒩(𝜇∗, 𝜎∗
2) 𝜇∗ = 𝐤∗

⊤𝐂𝑁
−1𝒚 𝜎∗

2 = 𝜅 𝑥∗, 𝑥∗ − 𝐤∗
⊤𝐂𝑁

−1𝐤∗ + 𝛽−1

𝑂(𝑁) cost assuming C𝑁
is already inverted

1When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018

𝑀 ≪ 𝑁 pseudo-inputs 

and pseudo-outputs
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GP: Some Comments

▪ GP is sometimes referred to as a nonparametric model because
▪ Complexity (representation size) of the function 𝑓 grows in the size of training data

▪ To see this, note the form of the GP predictions, e.g., predictive mean in GP regression

▪ It implies that                                 which means 𝑓 is written in terms of all training examples

▪ Thus the representation size of 𝑓 depends on the number of training examples

▪ In contrast, a parametric model has a size that doesn’t grow with training data
▪ E.g., a linear model learns a weight vector 𝒘 ∈ ℝ𝐷 (𝐷 parameters, size independent of 𝑁)

▪ Nonparametric models more flexible since their complexity is not limited beforehand
▪ Note: Methods like nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)
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Neural Networks and Gaussian Process

▪ An infinitely-wide single hidden layer NN with i.i.d. weights is equivalent to a GP

▪ Shown formally by (Neal2, 1994). Based on applying the central limit theorem

▪ This equivalence is useful for several reasons
▪ Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)

▪ With GPs, inference is easy (at least for regression and with known hyperparams)

▪ A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik’s theorem)

▪ Connection generalized to infinitely wide multiple hidden layer NN (Lee et al3, 2018)

5

2Priors for infinite networks, Tech Report, 1994 
3Deep Neural Networks as Gaussian Processes (ICLR 2018)



CS772A: PML

GP: A Few Other Comments

▪ GPs can be thought of as Bayesian analogues of kernel methods 

▪ Can get estimate in the uncertainty in the function and its predictions

▪ Can learn the kernel (by learning the hyperparameters of the kernels)

▪ Not limited to supervised learning problems
▪ 𝑓 could even define a mapping of low-dim latent variable 𝑧𝑛 to an observation 𝑥𝑛

▪ Many mature implementations of GP exist. You may check out
▪ GPyTorch (PyTorch), GPFlow (Tensorflow)

▪ GPML (MATLAB), GPsuff (MATLAB/Octave) 
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𝒙𝑛 = 𝑓 𝒛𝑛 + "noise" GP latent variable model for dimensionality reduction 

(like a kernel version of probabilistic PCA)
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Coming up next

▪ Foray into models with several parameters

▪ Goal: Infer the posterior over all of them (not posterior for some, MLE-II for others)

▪ Idea of conditional/local posteriors in such problems

▪ Local conjugacy (which helps in computing conditional posteriors)

▪ Gibbs sampling (an algorithm that infer the joint posterior via conditional posteriors)

▪ An example: Bayesian matrix factorization (a model with many parameters)

▪ Conditional/local posterior, local conjugacy, etc are important ideas (will appear in many 
inference algorithms that we will see later)
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Moving Beyond Simple Models..

▪ So far, our models usually had a “main” parameter and maybe a few hyperparams, e.g.,
▪ For a Gaussian, infer the mean assuming variance known (or vice-versa)

▪ Bayesian linear regression with weight vector 𝒘 and noise/prior precision hyperparams 𝛽, 𝜆

▪ GP regression with one function to be learned, and fixed hyperparams

▪ Easy posterior inference if  the likelihood and prior are conjugate to each other

▪ Hyperparams were estimated via MLE-II (since full posterior is much harder)

▪ For non-conjugate models or models with many parameters, need posterior approx
▪ Can use Laplace approx but it has limitations (unimodal posterior, model should be differentiable)

▪ We will now look at more general inference schemes for such “difficult” cases

▪ Difficult = Models with many params/hyperparams, non-conjugacy, non-differ., etc

▪ Will be intractable in general. We will study approx. inference methods to handle such cases
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Multiparameter Models

▪Multiparameter models consist of two or more unknowns, say 𝜃1 and 𝜃2
▪ Given some data 𝒚, some examples for the simple two parameter case

▪ Assume the likelihood model to be of the form 𝑝(𝒚|𝜃1, 𝜃2)

▪ Assume a joint prior distribution 𝑝 𝜃1, 𝜃2
▪ The joint posterior 𝑝 𝜃1, 𝜃2|𝒚 ∝ 𝑝 𝜃1, 𝜃2 𝑝(𝒚|𝜃1, 𝜃2)

▪ Easy if  the joint prior is conjugate to the likelihood (e.g., NIW prior for Gaussian likelihood)

▪ Otherwise needs more work, e.g., MLE-II, MCMC, VI, etc. (already saw MLE-II)
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This prior may still be conditioned 

on some fixed hyperparams

Unknown hyperparams which 𝜃1
and the likelihood depends on

Unknown hyperparams

which 𝜃1 depends on
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Multiparameter Models: Some Examples

▪Multiparameter models arise in many situations, e.g.,
▪ Probabilistic models with unknown hyperparams (e.g., Bayesian linear regression)

▪ Joint analysis of data from multiple (and possibly related) groups: Hierarchical models

▪ .. and in fact, pretty much in any non-toy example of probabilistic model
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Another Example: Matrix Factorization/Completion

▪ Given: Data 𝑹 = {𝑟𝑖𝑗} of “interactions” (e.g., ratings)

▪ Here 𝑖 = 1,2,… ,𝑁 denotes users, 𝑗 = 1,2,… ,𝑀 denotes items 
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Only a small fraction of user-item 

ratings are observed (say user-

item index set Ω)

Need to predict the 

rest using these

𝑟𝑖𝑗 = 𝒖𝑖
⊤𝒗𝑗 + 𝜖𝑖𝑗

Many methods exist

Assume each user 𝑖 = 1,2,… ,𝑁
modeled by an unknown 

parameter vector 𝒖𝑖 ∈ ℝ𝐾 for 

some small 𝐾

Assume each item 𝑗 = 1,2,… ,𝑀
modeled by an unknown parameter 

vector 𝒗𝑗 ∈ ℝ𝐾

Similar to assuming a 

low-rank structure on the 

ratings matrix

Can assume zero mean 

Gaussian noise 𝒩(0, 𝛽−1)
for real-valued ratings

𝑝 𝑟𝑖𝑗 𝒖𝑖 , 𝒗𝑗 = 𝒩(𝑟𝑖𝑗|𝒖𝑖
⊤𝒗𝑗 , 𝛽

−1)

𝑝(𝒖𝑖) = 𝒩(𝒖𝑖|𝟎, 𝜆𝑢
−1)

𝑝(𝒗𝑗) = 𝒩(𝒗𝑗|𝟎, 𝜆𝑣
−1)

Likelihood

Individual 

priors for 

each 

user and 

item

𝑝({𝒖𝑖}𝑖=1
𝑁 , {𝒗𝑗}𝑗=1

𝑀 |𝑹)

Posterior For simplicity, hyperparams 𝛽, 𝜆𝑢, 𝜆𝑣
are fixed or unknown but we may only 

want to do point estimation for them
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Bayesian Matrix Factorization (BMF): The Posterior

▪Our target posterior distribution for this model is

▪ Posterior still intractable since integrals here are intractable

▪Need to approx. the posterior. One way is via conditional posteriors (CP), e.g.,

▪ CP of each unknown is conditioned on fixed values of all other unknowns 
▪ The different CPs can be computed in an alternating fashion (like ALT-OPT/EM)

▪Note: CP individually won’t give us joint posterior. Need to combine them
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Due to conditional 

independence of the 

observations given params

Assume that the joint prior 

factorizes into individual priors

𝑝(𝒖𝑖|𝑹, 𝑽, 𝑼−𝑖) 𝑝(𝒗𝑗|𝑹, 𝑼, 𝑽−𝑗)
All of 𝑼 except 𝒖𝑖 All of 𝑽 except 𝒗𝑗

E.g., using MCMC, 

variational inference, 

EM, etc
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Conditional Posterior and Local Conjugacy

▪ Conditional Posteriors are easy to compute for model that are locally conjugate

▪ Note: CP is sometimes also referred to as Complete Conditional or Local Posterior

▪ Consider a model with data 𝑿 and 𝐾 unknown params/h.p. Θ = (𝜃1, 𝜃2, … , 𝜃𝐾)

▪ Suppose the joint posterior 𝑝 Θ 𝑿 =
𝑝 Θ 𝑝(𝑿|Θ)

𝑝(𝑿)
is intractable (like in BMF)

▪ Local Conjugacy: If  we can compute each CP tractably

▪ Important: In the above context, when considering the likelihood 𝑝(𝑿|𝜃𝑘 , Θ−𝑘)
▪ 𝑿 actually refers to only that part of data 𝑿 that depends on 𝜃𝑘
▪ Θ−𝑘 refers to only those unknowns that “interact” with 𝜃𝑘 in generating that part of  data
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Θ−𝑘 is assumed known 

while computing this CP

In the likelihood model

Possible if  the likelihood 

𝑝(𝑿|𝜃𝑘, Θ−𝑘) and prior 𝑝 𝜃𝑘
are conjugate to each other

This is the notion of local 

conjugacy as opposed to 

full/joint conjugacy
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Approximating Joint Posterior via CPs

▪With the conditional posterior based approximation, the target joint posterior

… is represented by several conditional posteriors 𝑝 𝜃𝑘 , 𝑿, Θ−𝑘 , 𝑘 = 1,2, … , 𝐾

▪ Each CP is a distribution over one unknown 𝜃𝑘 , given all other unknowns

▪Need a way to “combine” these CPs to get the overall posterior
▪ MCMC (e.g., Gibbs sampling): Based on generating samples from the CPs

▪ Variational Inference (VI): Based on cyclic estimation of each CP 

▪ Note: Expectation Maximization also computes CP of latent variables in its E step

▪More on this when we discuss MCMC, VI, EM, etc

▪ But let’s look at Gibbs sampling (an MCMC algo) right away as it is fairly simple

14

Will revisit Gibbs sampling again 

when discussing MCMC algos
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Gibbs Sampling (Geman and Geman, 1982) 

▪ A general algo to generate samples from multivar. distr. one component at a time
▪ Not limited to sampling from intractable posteriors only

▪ Sometimes can be used even if  we can draw from the multivar distr. directly

▪ Assume we want to sample from a joint distribution 𝑝 𝜃1, 𝜃2, … , 𝜃𝐾

▪ It generates one component 𝜃𝑘 at a time using its conditional 𝑝(𝜃𝑘|Θ−𝑘)

▪ Each conditional is assumed to be available in closed form. An example below:
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Note: If  posterior, it will be conditioned on other stuff 

too (e.g., data, other param, etc)

A 2-dim Gaussian

A 1-dim Gaussian

A 1-dim Gaussian

This example is a toy illustration of 

sampling from a 2-dim Gaussian 

by sampling from 1-dim Gaussians

A sample based representation 

of a 2-dim Gaussian distribution
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Gibbs Sampling (Geman and Geman, 1982)

▪ Can be used to get a sampling-based approx. of a multiparam. posterior

▪ Gibbs sampler iteratively draws random samples from CPs

▪When run long enough, the sampler produces samples from the joint posterior

▪ For the simple two-param case 𝜃 = (𝜃1, 𝜃2), the Gibb sampler looks like this

▪ Initialize 𝜃2
(0)

▪ For 𝑠 = 1,2,… , 𝑆

▪ Draw a random sample for 𝜃1 as 𝜃1
(𝑠)

∼ 𝑝(𝜃1|𝑋, 𝜃2
(𝑠−1)

)

▪ Draw a random sample for 𝜃2 as 𝜃2
(𝑠)

∼ 𝑝(𝜃2|𝑋, 𝜃1
(𝑠)

)

▪ These 𝑆 random samples 𝜃1
𝑠
, 𝜃1

𝑠

𝑠=1

𝑆
represent joint posterior 𝑝(𝜃1, 𝜃2|𝑋)

▪ This is just a high-level idea. More on this when we discuss MCMC
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This CP uses the most recent 

value of 𝜃2

This CP uses the most recent 

value of 𝜃1
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Back to Bayesian Matrix Factorization
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Bayesian Matrix Factorization: The CPs

▪ BMF with Gaussian likelihood and Gaussian prior on each user/item params is not fully 
conjugate but has local conjugacy

▪ To see this, note that the conditional posterior (CP) for user parameter 𝒖𝑖

▪ The above is just like Bayesian linear regression, given 𝑹 and fixed 𝐕
▪ Weight vector is 𝒖𝑖 , training data is {(𝒗𝑗 , 𝑟𝑖𝑗)}𝑗: 𝑖,𝑗 ∈Ω, given

▪ Also have local conjugacy since likelihood and prior are conjugate (assuming hyperparams fixed) 

▪ Likewise, the CP for the item parameter 𝒗𝑗 can be computed as 
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=

Only depends on the 

ratings of user 𝑖. Also 

doesn’t depend on 𝐔−𝑖

Another Bayesian linear 

regression problem with 

weight vector 𝒗𝑗

This is due to the 

structure of the problem 

and the 𝒖𝑖’s being 

independent a priori
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Bayesian Matrix Factorization: The CPs

▪ The CPs will have forms similar to solution of Bayesian linear regression

▪ These CPs can be updated in an alternating fashion until convergence
▪ Many ways. One popular way is to use Gibbs sampling

▪ Note: Hyperparameters can also be inferred by computing their CPs1

▪ Can extend Gaussian BMF easily to other exp. family distr. while maintaining local conj.
▪ Example: Poisson likelihood and gamma priors on user/item parameters2
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1“Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo” by Salakhutdinov and Mnih (2008)

2“Scalable recommendation with Poisson factorization” by Gopalan et al(2013)
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BMF: Making Predictions

▪ PPD for each missing entry of the matrix (assuming hyperparams known)

▪ In general, this is intractable and needs approximation

▪ If  using Gibbs sampling, we can use 𝑆 samples (𝑢𝑖
𝑠
, 𝑣𝑗

(𝑠)
)𝑠=1
𝑆 to compute mean of 𝑟𝑖𝑗

▪ For the Gaussian likelihood case, the mean can be computed as

▪ Comparison of Bayesian MF with others (from Salakhutdinov and Mnih (2008))
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Can also compute the variance 

in the predicted 𝑟𝑖𝑗 using these 

𝑆 samples (think how)

All other baselines are optimization based 

or point estimation based probabilistic 

models (PMF = probabilistic matrix 

factorization with point estimation)
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Summary

▪ Local conjugacy is helpful even for complex prob. models with many params
▪ CPs will have a closed form

▪ Easy to implement Gibbs sampling can be used to get the (approx.) posterior

▪ Many other approx. inference algos (like variational inference) benefit from local conjugacy

▪Helps to choose likelihood and priors on each param as exp. family distr.
▪ So if  we can’t get a globally conjugate model, we can still get a model with local conjugacy

▪ Even if  we can’t have local conjugacy, the notion of CPs is applicable
▪ We can break the inference problem into estimating CPs (exactly if  we have local 

conjugacy, or approximately if  we don’t have local conjugacy)

▪ Almost all approx. algorithms work by estimating CPs exactly or approximately
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Coming Up

▪ Latent Variable Models

▪ Expectation Maximization
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