Inference in Multi-parameter Models,
Conditional Posterior, Local Conjugacy

CS772A: Probabilistic Machine Learning
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Plan for today

* Wrapping up GPs

" [nference in multi-parameter models
= Conditional posterior
" [ ocal conjugacy
" An example: Bayesian matrix factorization (BMF)
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Scalability of GPs

= Computational costs in some steps of GP models scale in the size of training data

» For example, prediction cost is O(N) ggﬁgaﬁnfrgmg Cy
p(y.ly) = N (., o) u, =kICyly o =k(x,x.) —KICy'k, + B!

* GP models often require matrix inversions (e.g., in marg-lik computation when
estimating hyperparameters) — takes O(N3)

= Storage also requires O(N?) since need to store the covariance matrix
M < N pseudo-inputs

= A lot of work on speeding up GPst. Some prominent approaches include 31 pseudo-outputs
* [nducing Point Methods (condition predictions only on a small set of “learnable” points)
= Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)
= Kernel approximations

= Note that nearest neighbor methods and kernel methods also face similar issues
* Many tricks to speed up kernel methods can be used for speeding up GPs too

1When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018
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GP: Some Comments

" GP is sometimes referred to as a nonparametric model because
= Complexity (representation size) of the function f grows in the size of training data
= To see this, note the form of the GP predictions, e.g., predictive mean in GP regression

N
e = f(x) = ke Culy =k ' =Y  ank(xs, Xn
N

n=1
= |t impli S | IS written | ini
implies that £(.) = > _, ank(., xn) Which means f is written in terms of all training examples

= Thus the representation size of f depends on the number of training examples

" |n contrast, a parametric model has a size that doesn’t grow with training data
= £.g. alinear model learns a weight vector w € R? (D parameters, size independent of N)

» Nonparametric models more flexible since their complexity is not limited beforehand

* Note: Methods like nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)
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Neural Networks and Gaussian Process

" An infinitely-wide single hidden layer NN with i.i.d. weights is equivalent to a GP
= Shown formally by (Neal?, 1994). Based on applying the central limit theorem

Sum of infinite many
Yn ii.d. random variables

(thus W Gaussian and so
is any finite collection of ‘1".1:'

" This equivalence is useful for several reasons
= Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)
= With GPs, inference is easy (at least for regression and with known hyperparams)
= A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik's theorem)

= Connection generalized to infinitely wide multiple hidden layer NN (Lee et al®, 2018)
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2Priors for infinite networks, Tech Report, 1994
3Deep Neural Networks as Gaussian Processes (ICLR 2018)



GP: A Few Other Comments

" GPs can be thought of as Bayesian analogues of kernel methods

= Can get estimate in the uncertainty in the function and its predictions

Draws from the GP Posterior (Translates into a Posterior Predictive)

X
* Can learn the kernel (by learning the hyperparameters of the kernels)

= Not limited to supervised learning problems

= f could even define a mapping of low-dim latent variable z,, to an observation x,,

_ n . n
xn — f(zn) + nhoise GP latent variable model for dimensionality reduction
(like a kernel version of probabilistic PCA)

= Many mature implementations of GP exist. You may check out
= GPyTorch (PyTorch), GPFlow (Tensorflow)
= GPML (MATLAB), GPsuff (MATLAB/Octave) CS772A: PML



Coming up next

" Foray into models with several parameters

» Goal: Infer the posterior over all of them (not posterior for some, MLE-II for others)
" |dea of conditional/local posteriors in such problems

" | ocal conjugacy (which helps in computing conditional posteriors)

" Gibbs sampling (an algorithm that infer the joint posterior via conditional posteriors)
* An example: Bayesian matrix factorization (a model with many parameters)

= Conditional/local posterior, local conjugacy, etc are important ideas (will appear in many
inference algorithms that we will see later)
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Moving Beyond Simple Models..

" 50 far, our models usually had a "main” parameter and maybe a few hyperparams, e.g.,

* For a Gaussian, infer the mean assuming variance known (or vice-versa)
= Bayesian linear regression with weight vector w and noise/prior precision hyperparams 3, A
» GP regression with one function to be learned, and fixed hyperparams

" Fasy posterior inference if the likelihood and prior are conjugate to each other
" Hyperparams were estimated via MLE-Il (since full posterior is much harder)

" For non-conjugate models or models with many parameters, need posterior approx
= Can use Laplace approx but it has limitations (unimodal posterior, model should be differentiable)

= We will now look at more general inference schemes for such “difficult” cases
= Difficult = Models with many params/hyperparams, non-conjugacy, non-differ., etc

= Will be intractable in general. We will study approx. inference methods to handle such cases
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Multiparameter Models

» Multiparameter models consist of two or more unknowns, say 81 and 6,

" Given some data y, some examples for the simple two parameter case

Unknown hyperparams

@ which 8; depends on

Unknown hyperparams which 64
and the likelihood depends on

= Assume the likelihood model to be of the form p(y|64, 05)

This prior may still be conditioned

u ASSUI’ﬂe a JOIﬂt priOF dlStl’IbUtIOﬂ p(gl’ 02) on some fixed hyperparams
= The joint posterior p(84, 85|y) « p(84,60,)p(y|04,65)

= Fasy if the joint prior is conjugate to the likelihood (e.g., NIW prior for Gaussian likelihood)
= Otherwise needs more work, e.g., MLE-Il, MCMC, VI, etc. (already saw MLE-II)
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Multiparameter Models: Some Examples

» Multiparameter models arise in many situations, e.g.,
» Probabilistic models with unknown hyperparams (e.g., Bayesian linear regression)
" Joint analysis of data from multiple (and possibly related) groups: Hierarchical models

L, p 39
C{ P y, = response variable of student / in school j
- \ / N %= feature vector of student/in school j
w; = regression model for school |

2
()-_

.
o
/f: O

parameters of the shared
K, 2, = Gaussian prior N'(p,..X,,.)
on all the J regression models

. J

" . and in fact, pretty much in any non-toy example of probabilistic model
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Another Example: Matrix Factorization/Completion

= Given: Data R

" Herei = 1,2, ...,

Assume each item j = 1,2,.

{ri;j} of "interactions” (e.g., ratings)

modeled by an unknown parameter

vector v; € RK

Only a small fraction of user-item
ratings are observed (say user-
item index set )

Need to predict the
rest using these

Many methods exist

Assume each user i = 1,2,.
modeled by an unknown
parameter vector u; € RK for
some small K

e
g
g
"
/8
G

N denotes users, j = 1,2, ...,

IIIEIE

M denotes items

Similar to assuming a Can assume zero mean
low-rank structure on the Gaussian noise N(0, 1)
ratings matrix for real-valued ratings

T —
rij — ui 'Uj + Eij Likelihood

p(rijlu,v;) = N(ryjlulv, 1)

Individual
priors for
each
user and
item

p(u;) = N (u;]0,4;7)
p(vj) = N(v;]0,4,1)

p({ui}i=1, {v;}j=1|R)

Posterior For simplicity, hyperparams S, 4., 4,

are fixed or unknown but we may only
want to do point estimation for them

CS772A: PML



Bayesian Matrix Factorization (BMF): The Posterior

» Qur target posterior distribution for this model is
p(R'U V)p(U V) Due to conditional

independence of the Assume that the joint prior

f f p(R|U, V)p(U, V)dUdV observations given params factorizes into individual priors
[ 1 jyea p(rijlui, vj)TT; p(ui) I'1; p(v;)
FPeewf [1i jea P(rilui, v;) I1; p(ui) I 1; p(vj)dus ... dundvy ... dvy

p(U,V|R) =

= Posterior still intractable since integrals here are intractable
* Need to approx. the posterior. One way is via conditional posteriors (CP), e.g.,

All of U except u; All of V except v;

p(u;|R,V,U_3) p(vi|R,UV_;)

= CP of each unknown is conditioned on fixed values of all other unknowns
E.g., using MCMC,

" The different CPs can be computed in an alternating fashion (like ALT-OPT/EM) | variational inference,

EM, etc
= Note: CP individually won't give us joint posterior. Need to combine thent ... o,



Conditional Posterior and Local Conjugacy

= Conditional Posteriors are easy to compute for model that are locally conjugate
= Note: CP is sometimes also referred to as Complete Conditional or Local Posterior

= Consider a model with data X and K unknown params/h.p. @ = (64, 05, ..., 0x)

» Suppose the joint posterior p(0|X) = POIDXIO) i intractable (like in BMF)

p(X) — .
This is the notion of local

" | ocal Conjugacy: If we can compute each CP tractably< rossiiei te likelinood conjugacy as opposed to
O_y is assumed known p(X|6y, ©_x) and prior p(8y,) | full/joint conjugacy
while computing this CP are conjugate to each other

pP(X[0k, © k) p(bk)
T o(X10s. 6 )p(6) P O IP(0k)

» Important: In the above context, when considering the likelihood p(X |0, ©_%)
» X actually refers to only that part of data X that depends on 8, In the likelihood model

P(9k|x: e—k) —

" O_j refers to only those unknowns that “interact” with 8, in generating that part of data
CS772A: PML



Approximating Joint Posterior via CPs

= \With the conditional posterior based approximation, the target joint posterior
p(X[©)p(©)

p(X)
. is represented by several conditional posteriors p(6y, |X,0_x). k =1,2,...,K

p(©[X) =

= fach CP is a distribution over one unknown 8y, , given all other unknowns

" Need a way to “‘combine” these CPs to get the overall posterior
= MCMC (e.g., Gibbs sampling): Based on generating samples from the CPs
= Variational Inference (VI): Based on cyclic estimation of each CP
» Note: Expectation Maximization also computes CP of latent variables in its E step

= More on this when we discuss MCMC, VI, EM, etc e e MO o

= But let's look at Gibbs sampling (an MCMC algo) right away as it is fairly simple |



Gibbs Sampling (Geman and Geman, 1982)

= A general algo to generate samples from multivar. distr. one component at a time
= Not limited to sampling from intractable posteriors only
= Sometimes can be used even if we can draw from the multivar distr. directly

Note: If posterior, it will be conditioned on other stuff
too (e.g., data, other param, etc)

» Assume we want to sample from a joint distribution p(64, 85, ..., Ox)

" [t generates one component 6, at a time using its conditional p(64|©_)
" Fach conditional is assumed to be available in closed form. An example below:

Su ppose A 2-dim Gaussian This e_xample is a toy illustratipn of
i sampling from a 2-dim Gaussian
6 ~ N>(0,X) ), = [ /1 ] of B 2 by sampling from 1-dim Gaussians
P 0, °| :
5 ¢ .
Then o . A
th |("’2 ~ N (/'02- [1 = /’2]) A 1-dim Gaussian A samplg based r‘epreslen‘tanln ;.(,.‘ /
0a|6; ~ N ( 0 [1 . )2]) of a 2-dim Gaussian distribution
i PO / A 1-dim Gaussian i e»
are the conditional distributions. 01

CS772A: PML



Gibbs Sampling (Geman and Geman, 1982)

» Can be used to get a sampling-based approx. of a multiparam. posterior

" Gibbs sampler iteratively draws random samples from CPs

= \When run long enough, the sampler produces samples from the joint posterior
= For the simple two-param case 8 = (04, 0,), the Gibb sampler looks like this

s (0)
[

mltla'lze 62 This CP uses the most recent | ) s
sFors=1,2,..,S value of @5 0

(s) (s—1)
* Draw a random sample for 6, as 6, ~ p(64]X, 0," ) P s e et et

= Draw a random sample for 8, as 92(5) ~p(6,]X, 01(5)) value of B4 e
) ) = .
" [hese § random samples (6,7, 0, represent joint posterior p(84, 6,]X)
s=1

®* This is just a high-level idea. More on this when we discuss MCMC
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Back to Bayesian Matrix Factorization
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Bayesian Matrix Factorization: The CPs

» BMF with Gaussian likelihood and Gaussian prior on each user/item params is not fully
conjugate but has local conjugacy

" To see this, note that the conditional posterior (CP) for user parameter u;
Only depends on the

P(U:'|R, V, U—f') X H P(!’;j\uh VJ')P(U;) ratings of user i. Also This is due to the

' f th |
doesn't depend on U_; structure of the problem

J:(i,j))EQ and the u;'s being
independent a priori
T ol "
— H N (rij|lu; vj, B~ )N (ui|0, A, "Ik)
J:(i,j)ER

" The above is just like Bayesian linear regression, given R and fixed V
= Weight vector is u;, training data is {(v}, i) }j.¢i,j)eq. given
= Also have local conjugacy since likelihood and prior are conjugate (assuming hyperparams fixed)

" | ikewise, the CP for the item parameter V; can be computed as | Another Bayesian linear

regression problem with

p(v;|R,U) H N (rjlu v, B~HN(v;|0, 27 k) Welght vector v;

i:(1,J)EQ CS772A: PML



Bayesian Matrix Factorization: The CPs

" The CPs will have forms similar to solution of Bayesian linear regression

p(ui|R, V) = N(uilp,, u;) p(vjIR,U) = N(vjlp, , 2v)
Ty =Nl + B peavivi )7 L. =M+ B8 j)equit] )77
l'l'u,' = Z”i(’B Zj:(i,j)EQ rUvj) ’J‘VJ — zVJ (/8 Zi:(i,j)EQ rqu)

" These CPs can be updated in an alternating fashion until convergence

= Many ways. One popular way is to use Gibbs sampling
» Note: Hyperparameters can also be inferred by computing their CPs'

= Can extend Gaussian BMF easily to other exp. family distr. while maintaining local conj.
» Example: Poisson likelihood and gamma priors on user/item parameters?

"Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo” by Salakhutdinov and Mnih (2008)
2"Scalable recommendation with Poisson factorization” by Gopalan et al(2013) CS772A: PML



BMF: Making Predictions

» PPD for each missing entry of the matrix (assuming hyperparams known)
p(rsIR) = [ [ b, vi)p(us v IR)duidy,

" |n general, this is intractable and needs approximation

" [f using Gibbs sampling, we can use S samples (ulgs),vj(s))g:l to compute mean of 1y;
= For the Gaussian likelihood case, the mean can be computed as

Can also compute the variance
in the predicted r;j; using these

S
1 T i
E[rj] = = Z u'® vj.s) (Monte-Carlo averaging)
S samples (think how) S 1

= Comparison of Bayesian MF with others (from Salakhutdinov and Mnih (2008))

All other baselines are optimization based
or point estimation based probabilistic
models (PMF = probabilistic matrix
factorization with point estimation)
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summary

" | ocal conjugacy is helpful even for complex prob. models with many params
= CPs will have a closed form
» Fasy to implement Gibbs sampling can be used to get the (approx.) posterior
= Many other approx. inference algos (like variational inference) benetfit from local conjugacy

" Helps to choose likelihood and priors on each param as exp. family distr,
= S0 if we can't get a globally conjugate model, we can still get a model with local conjugacy

" bven it we can't have local conjugacy, the notion of CPs is applicable

= We can break the inference problem into estimating CPs (exactly if we have local
conjugacy, or approximately if we don't have local conjugacy)

= Almost all approx. algorithms work by estimating CPs exactly or approximately
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Coming Up

= | gtent Variable Models

" Expectation Maximization
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