Inference in Multi-parameter Models, Conditional Posterior, Local Conjugacy

CS772A: Probabilistic Machine Learning

Piyush Rai

Plan for today

- Wrapping up GPs
- Inference in multi-parameter models
- Conditional posterior
- Local conjugacy
- An example: Bayesian matrix factorization (BMF)

Scalability of GPs

- Computational costs in some steps of GP models scale in the size of training data
- For example, prediction cost is $O(N)$

$O(N)$ cost assuming C_{N}
is already inverted

$$
p\left(y_{*} \mid \boldsymbol{y}\right)=\mathcal{N}\left(\mu_{*}, \sigma_{*}^{2}\right) \quad \mu_{*}=\mathbf{k}_{*}^{\top} \mathbf{C}_{N}^{-1} \boldsymbol{y} \quad \sigma_{*}^{2}=\kappa\left(x_{*}, x_{*}\right)-\mathbf{k}_{*}^{\top} \mathbf{C}_{N}^{-1} \mathbf{k}_{*}+\beta^{-1}
$$

- GP models often require matrix inversions (e.g., in marg-lik computation when estimating hyperparameters) - takes $O\left(N^{3}\right)$
- Storage also requires $O\left(N^{2}\right)$ since need to store the covariance matrix
- A lot of work on speeding up GPs¹. Some prominent approaches include
- Inducing Point Methods (condition predictions only on a small set of "learnable" points)
- Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)
- Kernel approximations
- Note that nearest neighbor methods and kernel methods also face similar issues
- Many tricks to speed up kernel methods can be used for speeding up GPs too

GP: Some Comments

- GP is sometimes referred to as a nonparametric model because
- Complexity (representation size) of the function f grows in the size of training data
- To see this, note the form of the GP predictions, e.g., predictive mean in GP regression

$$
\mu_{*}=f\left(\boldsymbol{x}_{*}\right)=\mathbf{k}_{*}^{\top} \mathbf{C}_{N}^{-1} \boldsymbol{y}=\mathbf{k}_{*}^{\top} \alpha=\sum_{n=1}^{N} \alpha_{n} k\left(\boldsymbol{x}_{*}, \boldsymbol{x}_{n}\right)
$$

- It implies that $f()=.\sum_{n=1}^{N} \alpha_{n} k\left(., x_{n}\right)$ which means f is written in terms of all training examples
- Thus the representation size of f depends on the number of training examples
- In contrast, a parametric model has a size that doesn't grow with training data
- E.g., a linear model learns a weight vector $\boldsymbol{w} \in \mathbb{R}^{D}$ (D parameters, size independent of N)
- Nonparametric models more flexible since their complexity is not limited beforehand
- Note: Methods like nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)

Neural Networks and Gaussian Process

- An infinitely-wide single hidden layer NN with i.i.d. weights is equivalent to a GP
- Shown formally by (Neal², 1994). Based on applying the central limit theorem

- This equivalence is useful for several reasons
- Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)
- With GPs, inference is easy (at least for regression and with known hyperparams)
- A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik's theorem)
- Connection generalized to infinitely wide multiple hidden layer NN (Lee et al ${ }^{3}$, 2018)

GP: A Few Other Comments

- GPs can be thought of as Bayesian analogues of kernel methods
- Can get estimate in the uncertainty in the function and its predictions
$\mathrm{f}(\mathrm{x})$ Draws from the GP Posterior (Translates into a Posterior Predictive)
- Can learn the kernel (by learning the hyperparameters of the kernels)
- Not limited to supervised learning problems
- f could even define a mapping of low-dim latent variable z_{n} to an observation x_{n}

$$
\boldsymbol{x}_{n}=f\left(\boldsymbol{z}_{n}\right)+\text { "noise" } \sqrt{\begin{array}{l}
\text { GP latent variable model for dimensionality reduction } \\
\text { like a kernel version of probabilistic PCA) }
\end{array}}
$$

- Many mature implementations of GP exist. You may check out
- GPyTorch (PyTorch), GPFlow (Tensorflow)
- GPML (MATLAB), GPsuff (MATLAB/Octave)

Coming up next

- Foray into models with several parameters
- Goal: Infer the posterior over all of them (not posterior for some, MLE-II for others)
- Idea of conditional/local posteriors in such problems
- Local conjugacy (which helps in computing conditional posteriors)
- Gibbs sampling (an algorithm that infer the joint posterior via conditional posteriors)
- An example: Bayesian matrix factorization (a model with many parameters)
- Conditional/local posterior, local conjugacy, etc are important ideas (will appear in many inference algorithms that we will see later)

Moving Beyond Simple Models..

- So far, our models usually had a "main" parameter and maybe a few hyperparams, e.g.,
- For a Gaussian, infer the mean assuming variance known (or vice-versa)
- Bayesian linear regression with weight vector \boldsymbol{w} and noise/prior precision hyperparams $\beta, \boldsymbol{\lambda}$
- GP regression with one function to be learned, and fixed hyperparams
- Easy posterior inference if the likelihood and prior are conjugate to each other
- Hyperparams were estimated via MLE-II (since full posterior is much harder)
- For non-conjugate models or models with many parameters, need posterior approx
- Can use Laplace approx but it has limitations (unimodal posterior, model should be differentiable)
- We will now look at more general inference schemes for such "difficult" cases
- Difficult = Models with many params/hyperparams, non-conjugacy, non-differ., etc
- Will be intractable in general. We will study approx. inference methods to handle such cases

Multiparameter Models

- Multiparameter models consist of two or more unknowns, say θ_{1} and θ_{2}
- Given some data \boldsymbol{y}, some examples for the simple two parameter case

- Assume the likelihood model to be of the form $p\left(\boldsymbol{y} \mid \theta_{1}, \theta_{2}\right)$
- Assume a joint prior distribution $p\left(\theta_{1}, \theta_{2}\right)$ This pior may still be conditioned
- The joint posterior $p\left(\theta_{1}, \theta_{2} \mid \boldsymbol{y}\right) \propto p\left(\theta_{1}, \theta_{2}\right) p\left(\boldsymbol{y} \mid \theta_{1}, \theta_{2}\right)$
- Easy if the joint prior is conjugate to the likelihood (e.g., NIW prior for Gaussian likelihood)
- Otherwise needs more work, e.g., MLE-II, MCMC, VI, etc. (already saw MLE-II)

Multiparameter Models: Some Examples

- Multiparameter models arise in many situations, e.g.,
- Probabilistic models with unknown hyperparams (e.g., Bayesian linear regression)
- Joint analysis of data from multiple (and possibly related) groups: Hierarchical models

- .. and in fact, pretty much in any non-toy example of probabilistic model

Another Example: Matrix Factorization/Completion ${ }^{11}$

- Given: Data $\boldsymbol{R}=\left\{r_{i j}\right\}$ of "interactions" (e.g., ratings)
- Here $i=1,2, \ldots, N$ denotes users, $j=1,2, \ldots, M$ denotes items

Bayesian Matrix Factorization (BMF): The Posterior ${ }^{12}$

- Our target posterior distribution for this model is

$$
\begin{aligned}
& p(\mathbf{U}, \mathbf{V} \mid \mathbf{R})=\frac{p(\mathbf{R} \mid \mathbf{U}, \mathbf{V}) p(\mathbf{U}, \mathbf{V})}{\iint p(\mathbf{R} \mid \mathbf{U}, \mathbf{V}) p(\mathbf{U}, \mathbf{V}) d \mathbf{U} d \mathbf{V}} \\
& \prod_{(i, j) \in \Omega} p\left(r_{i j} \mid \boldsymbol{u}_{i}, \boldsymbol{v}_{j}\right) \prod_{i} p\left(\boldsymbol{u}_{i}\right) \prod_{j} p\left(\boldsymbol{v}_{j}\right) \\
& =\frac{\int \ldots \int \prod_{(i, j) \in \Omega} p\left(r_{i j} \mid \boldsymbol{u}_{i}, \boldsymbol{v}_{j}\right) \prod_{i} p\left(\boldsymbol{u}_{i}\right) \prod_{j} p\left(\boldsymbol{v}_{j}\right) d \boldsymbol{u}_{1} \ldots d \boldsymbol{u}_{N} d \boldsymbol{v}_{1} \ldots d \boldsymbol{v}_{M}}{\int \ldots}
\end{aligned}
$$

- Posterior still intractable since integrals here are intractable
- Need to approx. the posterior. One way is via conditional posteriors (CP), e.g.,
- CP of each unknown is conditioned on fixed values of all other unknowns
- The different CPs can be computed in an alternating fashion (like ALT-OPT/EM)
- Note: CP individually won't give us joint posterior. Need to combine themI csit2A: PML

Conditional Posterior and Local Conjugacy

- Conditional Posteriors are easy to compute for model that are locally conjugate
- Note: CP is sometimes also referred to as Complete Conditional or Local Posterior
- Consider a model with data \boldsymbol{X} and K unknown params/h.p. $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{K}\right)$
- Suppose the joint posterior $p(\Theta \mid \boldsymbol{X})=\frac{p(\Theta) p(\boldsymbol{X} \mid \Theta)}{p(\boldsymbol{X})}$ is intractable (like in BMF)
- Local Conjugacy: If we can compute each CP tractably

$$
p\left(\theta_{k} \mid \mathbf{X}, \Theta_{-k}\right)=\frac{p\left(\mathbf{X} \mid \theta_{k}, \Theta_{-k}\right) p\left(\theta_{k}\right)}{\int p\left(\mathbf{X} \mid \theta_{k}, \Theta_{-k}\right) p\left(\theta_{k}\right) d \theta_{k}} \propto p\left(\mathbf{X} \mid \theta_{k}, \Theta_{-k}\right) p\left(\theta_{k}\right)
$$

- Important: In the above context, when considering the likelihood $p\left(\boldsymbol{X} \mid \theta_{k}, \Theta_{-k}\right)$
- \boldsymbol{X} actually refers to only that part of data \boldsymbol{X} that depends on $\theta_{k} \quad$ In the likelihood model
- Θ_{-k} refers to only those unknowns that "interact" with θ_{k} in generating that part of data

Approximating Joint Posterior via CPs

- With the conditional posterior based approximation, the target joint posterior

$$
p(\Theta \mid \mathbf{X})=\frac{p(\mathbf{X} \mid \Theta) p(\Theta)}{p(\mathbf{X})}
$$

\ldots is represented by several conditional posteriors $p\left(\theta_{k}, \mid \boldsymbol{X}, \Theta_{-k}\right), k=1,2, \ldots, K$

- Each CP is a distribution over one unknown θ_{k}, given all other unknowns
- Need a way to "combine" these CPs to get the overall posterior
- MCMC (e.g., Gibbs sampling): Based on generating samples from the CPs
- Variational Inference (VI): Based on cyclic estimation of each CP
- Note: Expectation Maximization also computes CP of latent variables in its E step
- More on this when we discuss MCMC, VI, EM, etc

Will revisit Gibbs sampling again when discussing MCMC algos

- But let's look at Gibbs sampling (an MCMC aldo) right away as it is fairly simp les puma

Gibbs Sampling (Geman and Geman, 1982)

- A general algo to generate samples from multivar. distr. one component at a time
- Not limited to sampling from intractable posteriors only
- Sometimes can be used even if we can draw from the multivar distr. directly

Note: If posterior, it will be conditioned on other stuff too (e.g., data, other param, etc)

- Assume we want to sample from a joint distribution $p\left(\theta_{1}, \theta_{2}, \ldots, \theta_{K}\right)$
- It generates one component θ_{k} at a time using its conditional $p\left(\theta_{k} \mid \Theta_{-k}\right)$
- Each conditional is assumed to be available in closed form. An example below:

Suppose
A 2-dim Gaussian

$$
\theta \sim N_{2}(0, \Sigma) \quad \Sigma=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]
$$

Then

$$
\begin{aligned}
\theta_{1} \mid \theta_{2} & \sim N\left(\rho \theta_{2},\left[1-\rho^{2}\right]\right) \curvearrowright \text { A 1-dim Gaussian } \\
\theta_{2} \mid \theta_{1} & \sim N\left(\rho \theta_{1},\left[1-\rho^{2}\right]\right) \sqrt{\text { A 1-dim Gaussian }}
\end{aligned}
$$

are the conditional distributions.

Gibbs Sampling (Geman and Geman, 1982)

- Can be used to get a sampling-based approx. of a multiparam. posterior
- Gibbs sampler iteratively draws random samples from CPs
- When run long enough, the sampler produces samples from the joint posterior
- For the simple two-param case $\theta=\left(\theta_{1}, \theta_{2}\right)$, the Gibb sampler looks like this
- Initialize $\theta_{2}^{(0)}$
- For $s=1,2, \ldots, S$

- Draw a random sample for θ_{1} as $\theta_{1}^{(s)} \sim p\left(\theta_{1} \mid X, \theta_{2}^{(s-1)}\right)$
- Draw a random sample for θ_{2} as $\theta_{2}^{(s)} \sim p\left(\theta_{2} \mid X, \theta_{1}^{(s)}\right)$

- These S random samples $\left(\theta_{1}^{(s)}, \theta_{1}^{(s)}\right)_{s=1}^{S}$ represent joint posterior $p\left(\theta_{1}, \theta_{2} \mid X\right)$
- This is just a high-level idea. More on this when we discuss MCMC

Back to Bayesian Matrix Factorization

Bayesian Matrix Factorization: The CPs

- BMF with Gaussian likelihood and Gaussian prior on each user/item params is not fully conjugate but has local conjugacy
- To see this, note that the conditional posterior (CP) for user parameter \boldsymbol{u}_{i}

$$
\begin{aligned}
& =\prod_{j:(i, j) \in \Omega} \mathcal{N}\left(r_{i j} \mid \boldsymbol{u}_{i}^{\top} \boldsymbol{v}_{j}, \beta^{-1}\right) \mathcal{N}\left(\boldsymbol{u}_{i} \mid \mathbf{0}, \lambda_{u}^{-1} \mathbf{I}_{K}\right) \\
& \text { independent a priori }
\end{aligned}
$$

- The above is just like Bayesian linear regression, given \boldsymbol{R} and fixed \mathbf{V}
- Weight vector is \boldsymbol{u}_{i}, training data is $\left\{\left(\boldsymbol{v}_{j}, r_{i j}\right)\right\}_{j:(i, j) \in \Omega}$, given
- Also have local conjugacy since likelihood and prior are conjugate (assuming hyperparams fixed)
- Likewise, the CP for the item parameter \boldsymbol{v}_{j} can be computed as

$$
p\left(\boldsymbol{v}_{j} \mid \mathbf{R}, \mathbf{U}\right) \propto \prod \mathcal{N}\left(r_{i j} \mid \boldsymbol{u}_{i}^{\top} \boldsymbol{v}_{j}, \beta^{-1}\right) \mathcal{N}\left(\boldsymbol{v}_{j} \mid \mathbf{0}, \lambda_{v}^{-1} \mathbf{I}_{K}\right)
$$

Bayesian Matrix Factorization: The CPs

- The CPs will have forms similar to solution of Bayesian linear regression

$$
\begin{array}{rlrl}
p\left(\boldsymbol{u}_{i} \mid \mathbf{R}, \mathbf{V}\right) & =\mathcal{N}\left(\boldsymbol{u}_{i} \mid \boldsymbol{\mu}_{u_{i}}, \boldsymbol{\Sigma}_{u_{i}}\right) & p\left(\boldsymbol{v}_{j} \mid \mathbf{R}, \mathbf{U}\right)=\mathcal{N}\left(\boldsymbol{v}_{j} \mid \boldsymbol{\mu}_{v_{j}}, \boldsymbol{\Sigma}_{v_{j}}\right) \\
\boldsymbol{\Sigma}_{u_{i}}=\left(\lambda_{u} \mathbf{I}+\beta \sum_{j:(i, j) \in \Omega} \mathbf{v}_{j} \boldsymbol{v}_{j}^{\top}\right)^{-1} & \boldsymbol{\Sigma}_{v_{j}}=\left(\lambda_{v} \mathbf{I}+\beta \sum_{i:(i, j) \in \Omega} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}\right)^{-1} \\
\boldsymbol{\mu}_{u_{i}}=\boldsymbol{\Sigma}_{u_{i}}\left(\beta \sum_{j:(i, j) \in \Omega} r_{i j} \boldsymbol{v}_{j}\right) & \boldsymbol{\mu}_{v_{j}}=\boldsymbol{\Sigma}_{v_{j}}\left(\beta \sum_{i:(i, j) \in \Omega} r_{i j} \boldsymbol{u}_{i}\right)
\end{array}
$$

- These CPs can be updated in an alternating fashion until convergence
- Many ways. One popular way is to use Gibbs sampling
- Note: Hyperparameters can also be inferred by computing their CPs ${ }^{1}$
- Can extend Gaussian BMF easily to other exp. family distr. while maintaining local conj.
- Example: Poisson likelihood and gamma priors on user/item parameters²

BMF: Making Predictions

- PPD for each missing entry of the matrix (assuming hyperparams known)

$$
p\left(r_{i j} \mid \mathbf{R}\right)=\iint p\left(r_{i j} \mid \boldsymbol{u}_{i}, \boldsymbol{v}_{j}\right) p\left(\boldsymbol{u}_{i}, \boldsymbol{v}_{j} \mid \mathbf{R}\right) d \boldsymbol{u}_{i} d \boldsymbol{v}_{j}
$$

- In general, this is intractable and needs approximation
- If using Gibbs sampling, we can use S samples $\left(u_{i}^{(s)}, v_{j}^{(s)}\right)_{s=1}^{S}$ to compute mean of $r_{i j}$
- For the Gaussian likelihood case, the mean can be computed as

$$
\begin{array}{|l}
\hline \text { Can also compute the variance } \\
\text { in the predicted } r_{i j} \text { using these } \\
S \text { samples (think how) }
\end{array} \quad \mathbb{E}\left[r_{i j}\right] \approx \frac{1}{S} \sum_{s=1}^{S} \boldsymbol{u}_{i}^{(s)^{\top}} \boldsymbol{v}_{j}^{(s)} \quad \text { (Monte-Carlo averaging) }
$$

- Comparison of Bayesian MF with others (from Salakhutdinov and Mnih (2008))

Summary

- Local conjugacy is helpful even for complex prob. models with many params
- CPs will have a closed form
- Easy to implement Gibbs sampling can be used to get the (approx.) posterior
- Many other approx. inference algos (like variational inference) benefit from local conjugacy
- Helps to choose likelihood and priors on each param as exp. family distr.
- So if we can't get a globally conjugate model, we can still get a model with local conjugacy
- Even if we can't have local conjugacy, the notion of CPs is applicable
- We can break the inference problem into estimating CPs (exactly if we have local conjugacy, or approximately if we don't have local conjugacy)
- Almost all approx. algorithms work by estimating CPs exactly or approximately

Coming Up

- Latent Variable Models
- Expectation Maximization

