Inference in Multi-parameter Models, Conditional Posterior, Local Conjugacy

CS772A: Probabilistic Machine Learning Piyush Rai

Plan for today

- Wrapping up GPs
- Inference in multi-parameter models
 - Conditional posterior
 - Local conjugacy
 - An example: Bayesian matrix factorization (BMF)

Scalability of GPs

- Computational costs in some steps of GP models scale in the size of training data
- For example, prediction cost is O(N) $p(y_*|y) = \mathcal{N}(\mu_*, \sigma_*^2)$ $\mu_* = \mathbf{k}_*^{\mathsf{T}} \mathbf{C}_N^{-1} \mathbf{y}$ $\sigma_*^2 = \kappa(x_*, x_*) - \mathbf{k}_*^{\mathsf{T}} \mathbf{C}_N^{-1} \mathbf{k}_* + \beta^{-1}$
- GP models often require matrix inversions (e.g., in marg-lik computation when estimating hyperparameters) takes $O(N^3)$
- Storage also requires $O(N^2)$ since need to store the covariance matrix
- A lot of work on speeding up GPs^1 . Some prominent approaches include $M \ll N$ pseudo-inputs and pseudo-outputs and pseudo-outputs
 - Inducing Point Methods (condition predictions only on a small set of "learnable" points)
 - Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)
 - Kernel approximations
- Note that nearest neighbor methods and kernel methods also face similar issues
 - Many tricks to speed up kernel methods can be used for speeding up GPs too

GP: Some Comments

- GP is sometimes referred to as a nonparametric model because
 - Complexity (representation size) of the function f grows in the size of training data
 - To see this, note the form of the GP predictions, e.g., predictive mean in GP regression

$$\mu_* = f(\mathbf{x}_*) = \mathbf{k}_*^{\top} \mathbf{C}_N^{-1} \mathbf{y} = \mathbf{k}_*^{\top} \boldsymbol{\alpha} = \sum_{n=1}^N \alpha_n k(\mathbf{x}_*, \mathbf{x}_n)$$

- It implies that $f(.) = \sum_{n=1}^{N} \alpha_n k(., \mathbf{x}_n)$ which means f is written in terms of all training examples
- Thus the representation size of f depends on the number of training examples
- In contrast, a parametric model has a size that doesn't grow with training data
 - E.g., a linear model learns a weight vector $w \in \mathbb{R}^D$ (*D* parameters, size independent of *N*)
- Nonparametric models more flexible since their complexity is not limited beforehand
 - Note: Methods like nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)

Neural Networks and Gaussian Process

- An infinitely-wide single hidden layer NN with i.i.d. weights is <u>equivalent</u> to a GP
- Shown formally by (Neal², 1994). Based on applying the central limit theorem

- This equivalence is useful for several reasons
 - Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)
 - With GPs, inference is easy (at least for regression and with known hyperparams)
 - A proof that GPs can also learn any function (just like infinitely wide neural nets Hornik's theorem)

Connection generalized to infinitely wide multiple hidden layer NN (Lee et al³, 2018)
²Priors for infinite networks, Tech Report, 1994
³Deep Neural Networks as Gaussian Processes (ICLR 2018)

GP: A Few Other Comments

- GPs can be thought of as Bayesian analogues of kernel methods
- Can get estimate in the uncertainty in the function and its predictions

Draws from the GP Posterior (Translates into a Posterior Predictive)

- Can learn the kernel (by learning the hyperparameters of the kernels)
- Not limited to supervised learning problems
 - f could even define a mapping of low-dim latent variable z_n to an observation x_n

 $x_n = f(z_n) + "noise"$ GP latent variable model for dimensionality reduction (like a kernel version of probabilistic PCA)

- Many mature implementations of GP exist. You may check out
 - GPyTorch (PyTorch), GPFlow (Tensorflow)
 - GPML (MATLAB), GPsuff (MATLAB/Octave)

Coming up next

- Foray into models with several parameters
- Goal: Infer the posterior over all of them (not posterior for some, MLE-II for others)
- Idea of conditional/local posteriors in such problems
- Local conjugacy (which helps in computing conditional posteriors)
- Gibbs sampling (an algorithm that infer the joint posterior via conditional posteriors)
- An example: **Bayesian matrix factorization** (a model with many parameters)
- Conditional/local posterior, local conjugacy, etc are important ideas (will appear in many inference algorithms that we will see later)

Moving Beyond Simple Models..

- So far, our models usually had a "main" parameter and maybe a few hyperparams, e.g.,
 - For a Gaussian, infer the mean assuming variance known (or vice-versa)
 - Bayesian linear regression with weight vector w and noise/prior precision hyperparams eta,λ
 - GP regression with one function to be learned, and fixed hyperparams
- Easy posterior inference if the likelihood and prior are conjugate to each other
- Hyperparams were estimated via MLE-II (since full posterior is much harder)
- For non-conjugate models or models with many parameters, need posterior approx
 - Can use Laplace approx but it has limitations (unimodal posterior, model should be <u>differentiable</u>)
- We will now look at more general inference schemes for such "difficult" cases
 - Difficult = Models with many params/hyperparams, non-conjugacy, non-differ., etc
 - Will be intractable in general. We will study approx. inference methods to handle such cases

Multiparameter Models

- Multiparameter models consist of two or more unknowns, say $heta_1$ and $heta_2$
- ullet Given some data $oldsymbol{y}$, some examples for the simple two parameter case

- Assume the likelihood model to be of the form $p(y| heta_1, heta_2)$
- Assume a joint prior distribution $p(\theta_1, \theta_2)$ This prior may still be conditioned on some fixed hyperparams
- The joint posterior $p(\theta_1, \theta_2 | \mathbf{y}) \propto p(\theta_1, \theta_2) p(\mathbf{y} | \theta_1, \theta_2)$
 - Easy if the joint prior is conjugate to the likelihood (e.g., NIW prior for Gaussian likelihood)
 - Otherwise needs more work, e.g., MLE-II, MCMC, VI, etc. (already saw MLE-II)

Multiparameter Models: Some Examples

- Multiparameter models arise in many situations, e.g.,
 - Probabilistic models with unknown hyperparams (e.g., Bayesian linear regression)
 - Joint analysis of data from multiple (and possibly related) groups: Hierarchical models

.. and in fact, pretty much in any non-toy example of probabilistic model

Another Example: Matrix Factorization/Completion

- Given: Data $\mathbf{R} = \{r_{ij}\}$ of "interactions" (e.g., ratings)
 - Here i = 1, 2, ..., N denotes users, j = 1, 2, ..., M denotes items

Bayesian Matrix Factorization (BMF): The Posterior¹²

Our target posterior distribution for this model is

 $p(\mathbf{U}, \mathbf{V}|\mathbf{R}) = \frac{p(\mathbf{R}|\mathbf{U}, \mathbf{V})p(\mathbf{U}, \mathbf{V})}{\int \int p(\mathbf{R}|\mathbf{U}, \mathbf{V})p(\mathbf{U}, \mathbf{V})d\mathbf{U}d\mathbf{V}} \qquad \text{Due to conditional independence of the observations given params} \qquad \text{Assume that the joint prior factorizes into individual priors}$ $= \frac{\prod_{(i,j)\in\Omega} p(r_{ij}|\mathbf{u}_i, \mathbf{v}_j)\prod_i p(\mathbf{u}_i) \prod_j p(\mathbf{v}_j)}{\int \dots \int \prod_{(i,j)\in\Omega} p(r_{ij}|\mathbf{u}_i, \mathbf{v}_j) \prod_i p(\mathbf{u}_i) \prod_j p(\mathbf{v}_j)d\mathbf{u}_1 \dots d\mathbf{u}_N d\mathbf{v}_1 \dots d\mathbf{v}_M}$

- Posterior still intractable since integrals here are intractable
- Need to approx. the posterior. One way is via conditional posteriors (CP), e.g., $p(u_i | \mathbf{R}, \mathbf{V}, \mathbf{U}_{-i}) \xrightarrow{\text{All of } \mathbf{U} \text{ except } u_i} p(v_j | \mathbf{R}, \mathbf{U}, \mathbf{V}_{-j})$
- CP of each unknown is conditioned on fixed values of all other unknowns
 E.g., using MCMC
 - The different CPs can be computed in an alternating fashion (like ALT-OPT/EM) variational inference, variationa
- Note: CP individually won't give us joint posterior. Need to combine them CS7

Conditional Posterior and Local Conjugacy

- Conditional Posteriors are easy to compute for model that are locally conjugate
 - Note: CP is sometimes also referred to as Complete Conditional or Local Posterior
- Consider a model with data **X** and K unknown params/h.p. $\Theta = (\theta_1, \theta_2, \dots, \theta_K)$
- Suppose the joint posterior $p(\Theta|X) = \frac{p(\Theta)p(X|\Theta)}{p(X)}$ is intractable (like in BMF)

• Local Conjugacy: If we can compute each CP tractably θ_{-k} is assumed known while computing this CP $p(\theta_k | \mathbf{X}, \Theta_{-k}) = \frac{p(\mathbf{X} | \theta_k, \Theta_{-k}) p(\theta_k)}{\int p(\mathbf{X} | \theta_k, \Theta_{-k}) p(\theta_k) d\theta_k} \propto p(\mathbf{X} | \theta_k, \Theta_{-k}) p(\theta_k)$ This is the notion of local conjugacy as opposed to full/joint conjugacy $p(\theta_k | \mathbf{X}, \Theta_{-k}) = \frac{p(\mathbf{X} | \theta_k, \Theta_{-k}) p(\theta_k)}{\int p(\mathbf{X} | \theta_k, \Theta_{-k}) p(\theta_k) d\theta_k} \propto p(\mathbf{X} | \theta_k, \Theta_{-k}) p(\theta_k)$

- Important: In the above context, when considering the likelihood $p(\pmb{X}| \pmb{ heta}_k, \pmb{\Theta}_{-k})_{/}$
 - **X** actually refers to only that part of data **X** that depends on $heta_k$
 - Θ_{-k} refers to only those unknowns that "interact" with θ_k in generating that part of data

In the likelihood model

Approximating Joint Posterior via CPs

• With the conditional posterior based approximation, the target joint posterior

$$p(\Theta|\mathbf{X}) = rac{p(\mathbf{X}|\Theta)p(\Theta)}{p(\mathbf{X})}$$

... is represented by <u>several</u> conditional posteriors $p(\theta_k, | X, \Theta_{-k}), k = 1, 2, ..., K$

14

Will revisit Gibbs sampling again

when discussing MCMC algos

- \blacksquare Each CP is a distribution over one unknown θ_k , given all other unknowns
- Need a way to "combine" these CPs to get the overall posterior
 - MCMC (e.g., Gibbs sampling): Based on generating samples from the CPs
 - Variational Inference (VI): Based on cyclic estimation of each CP
 - Note: Expectation Maximization also computes CP of latent variables in its E step
- More on this when we discuss MCMC, VI, EM, etc
- But let's look at Gibbs sampling (an MCMC algo) right away as it is fairly simple.

Gibbs Sampling (Geman and Geman, 1982)

- A general algo to generate samples from multivar. distr. <u>one component at a time</u>
 - Not limited to sampling from intractable posteriors only
 - Sometimes can be used even if we can draw from the multivar distr. directly

Note: If posterior, it will be conditioned on other stuff too (e.g., data, other param, etc)

15

- Assume we want to sample from a joint distribution $p(\theta_1, \theta_2, ..., \theta_K)$
- It generates one component θ_k at a time using its conditional $p(\theta_k | \Theta_{-k})$
- Each conditional is assumed to be available in closed form. An example below:

Gibbs Sampling (Geman and Geman, 1982)

- Can be used to get a sampling-based approx. of a multiparam. posterior
- Gibbs sampler iteratively draws random samples from CPs
- When run long enough, the sampler produces samples from the joint posterior
- For the simple two-param case \$\theta\$ = \$(\theta_1, \theta_2)\$, the Gibb sampler looks like this
 Initialize \$\theta_2^{(0)}\$

value of θ_2

- For *s* = 1,2,...,*S*
 - Draw a random sample for θ_1 as $\theta_1^{(s)} \sim p(\theta_1 | X, \theta_2^{(s-1)})$ This CP uses the most recent
 - Draw a random sample for θ_2 as $\theta_2^{(s)} \sim p(\theta_2 | X, \theta_1^{(s)}) \leq \frac{1}{2}$ value of θ_1
- These *S* random samples $(\theta_1^{(s)}, \theta_1^{(s)})_{s=1}^S$ represent joint posterior $p(\theta_1, \theta_2|X)$
- This is just a high-level idea. More on this when we discuss MCMC

Back to Bayesian Matrix Factorization

Bayesian Matrix Factorization: The CPs

- BMF with Gaussian likelihood and Gaussian prior on each user/item params is not fully conjugate but has local conjugacy
- To see this, note that the conditional posterior (CP) for user parameter $oldsymbol{u}_i$

- The above is just like Bayesian linear regression, given R and fixed V
 - Weight vector is \boldsymbol{u}_i , training data is $\{(\boldsymbol{v}_j,r_{ij})\}_{j:(i,j)\in\Omega}$, given
 - Also have local conjugacy since likelihood and prior are conjugate (assuming hyperparams fixed)
- Likewise, the CP for the item parameter \boldsymbol{v}_j can be computed as $p(\boldsymbol{v}_j | \mathbf{R}, \mathbf{U}) \propto \prod_{i:(i,j) \in \Omega} \mathcal{N}(r_{ij} | \boldsymbol{u}_i^\top \boldsymbol{v}_j, \beta^{-1}) \mathcal{N}(\boldsymbol{v}_j | \mathbf{0}, \lambda_v^{-1} \mathbf{I}_K)$ Another Bayesian linear regression problem with weight vector \boldsymbol{v}_j

Bayesian Matrix Factorization: The CPs

The CPs will have forms similar to solution of Bayesian linear regression

$$p(\boldsymbol{u}_{i}|\boldsymbol{\mathsf{R}},\boldsymbol{\mathsf{V}}) = \mathcal{N}(\boldsymbol{u}_{i}|\boldsymbol{\mu}_{u_{i}},\boldsymbol{\Sigma}_{u_{i}}) \qquad p(\boldsymbol{v}_{j}|\boldsymbol{\mathsf{R}},\boldsymbol{\mathsf{U}}) = \mathcal{N}(\boldsymbol{v}_{j}|\boldsymbol{\mu}_{v_{j}},\boldsymbol{\Sigma}_{v_{j}})$$

$$\boldsymbol{\Sigma}_{u_{i}} = (\lambda_{u}\boldsymbol{\mathsf{I}} + \beta \sum_{j:(i,j)\in\Omega} \boldsymbol{v}_{j}\boldsymbol{v}_{j}^{\top})^{-1} \qquad \boldsymbol{\Sigma}_{v_{j}} = (\lambda_{v}\boldsymbol{\mathsf{I}} + \beta \sum_{i:(i,j)\in\Omega} \boldsymbol{u}_{i}\boldsymbol{u}_{i}^{\top})^{-1}$$

$$\boldsymbol{\mu}_{u_{i}} = \boldsymbol{\Sigma}_{u_{i}}(\beta \sum_{j:(i,j)\in\Omega} r_{ij}\boldsymbol{v}_{j}) \qquad \boldsymbol{\mu}_{v_{j}} = \boldsymbol{\Sigma}_{v_{j}}(\beta \sum_{i:(i,j)\in\Omega} r_{ij}\boldsymbol{u}_{i})$$

- These CPs can be updated in an alternating fashion until convergence
 - Many ways. One popular way is to use Gibbs sampling
 - Note: Hyperparameters can also be inferred by computing their CPs¹
- Can extend Gaussian BMF easily to other exp. family distr. while maintaining local conj.
 - Example: Poisson likelihood and gamma priors on user/item parameters²

¹"Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo" by Salakhutdinov and Mnih (2008)

 $^{2}\mbox{``Scalable recommendation with Poisson factorization"}$ by Gopalan et al (2013)

BMF: Making Predictions

PPD for each missing entry of the matrix (assuming hyperparams known)

$$p(r_{ij}|\mathbf{R}) = \int \int p(r_{ij}|\boldsymbol{u}_i, \boldsymbol{v}_j) p(\boldsymbol{u}_i, \boldsymbol{v}_j|\mathbf{R}) d\boldsymbol{u}_i d\boldsymbol{v}_j$$

- In general, this is intractable and needs approximation
 - If using Gibbs sampling, we can use S samples $(u_i^{(s)}, v_i^{(s)})_{s=1}^S$ to compute mean of r_{ij}
 - For the Gaussian likelihood case, the mean can be computed as

Can also compute the variance in the predicted r_{ii} using these S samples (think how)

Comparison of Bayesian MF with others (from Salakhutdinov and Mnih (2008))

All other baselines are optimization based or point estimation based probabilistic models (PMF = probabilistic matrixfactorization with point estimation)

Summary

- Local conjugacy is helpful even for complex prob. models with many params
 - CPs will have a closed form
 - Easy to implement Gibbs sampling can be used to get the (approx.) posterior
 - Many other approx. inference algos (like variational inference) benefit from local conjugacy
- Helps to choose likelihood and priors on each param as exp. family distr.
 - So if we can't get a globally conjugate model, we can still get a model with local conjugacy
- Even if we can't have local conjugacy, the notion of CPs is applicable
 - We can break the inference problem into estimating CPs (exactly if we have local conjugacy, or approximately if we don't have local conjugacy)
 - Almost all approx. algorithms work by estimating CPs exactly or approximately

Coming Up

- Latent Variable Models
- Expectation Maximization

