Inference in Multi-parameter Models, Conditional Posterior, Local Conjugacy

CS772A: Probabilistic Machine Learning
Piyush Rai
Plan for today

- Wrapping up GPs
- Inference in multi-parameter models
 - Conditional posterior
 - Local conjugacy
 - An example: Bayesian matrix factorization (BMF)
Scalability of GPs

- Computational costs in some steps of GP models scale in the size of training data
- For example, prediction cost is $O(N)$
 \[p(y_*|y) = \mathcal{N}(\mu_*, \sigma_*^2) \quad \mu_* = k_*^\top C_N^{-1} y \quad \sigma_*^2 = \kappa(x_*, x_*) - k_*^\top C_N^{-1} k_* + \beta^{-1} \]
- GP models often require matrix inversions (e.g., in marg-lik computation when estimating hyperparameters) – takes \(O(N^3)\)
- Storage also requires \(O(N^2)\) since need to store the covariance matrix
- A lot of work on speeding up GPs\(^1\). Some prominent approaches include
 - Inducing Point Methods (condition predictions only on a small set of “learnable” points)
 - Divide-and-Conquer (learn GP on small subsets of data and aggregate predictions)
 - Kernel approximations

- Note that nearest neighbor methods and kernel methods also face similar issues
 - Many tricks to speed up kernel methods can be used for speeding up GPs too

\(^1\)When Gaussian Process Meets Big Data: A Review of Scalable GPs - Liu et al, 2018
GP: Some Comments

- GP is sometimes referred to as a **nonparametric** model because
 - Complexity (representation size) of the function f grows in the size of training data
 - To see this, note the form of the GP predictions, e.g., predictive mean in GP regression
 \[
 \mu_* = f(x_*) = k_*^T C_N^{-1} y = k_*^T \alpha = \sum_{n=1}^{N} \alpha_n k(x_*, x_n)
 \]
 - It implies that $f(.) = \sum_{n=1}^{N} \alpha_n k(., x_n)$ which means f is written in terms of all training examples
 - Thus the representation size of f depends on the number of training examples

- In contrast, a parametric model has a size that doesn’t grow with training data
 - E.g., a linear model learns a weight vector $\mathbf{w} \in \mathbb{R}^D$ (D parameters, size independent of N)

- Nonparametric models more flexible since their complexity is not limited beforehand
 - Note: Methods like nearest neighbors and kernel SVMs are also nonparametric (but not Bayesian)
Neural Networks and Gaussian Process

- An infinitely-wide single hidden layer NN with i.i.d. weights is equivalent to a GP
- Shown formally by (Neal\(^2\), 1994). Based on applying the central limit theorem

- This equivalence is useful for several reasons
 - Can use a GP instead of an infinitely wide Bayesian NN (which is impractical anyway)
 - With GPs, inference is easy (at least for regression and with known hyperparams)
 - A proof that GPs can also learn any function (just like infinitely wide neural nets - Hornik’s theorem)
 - Connection generalized to infinitely wide multiple hidden layer NN (Lee et al\(^3\), 2018)

\(^2\)Priors for infinite networks, Tech Report, 1994
\(^3\)Deep Neural Networks as Gaussian Processes (ICLR 2018)
GP: A Few Other Comments

- GPs can be thought of as **Bayesian analogues of kernel methods**
- Can get estimate in the uncertainty in the function and its predictions

- Can **learn the kernel** (by learning the hyperparameters of the kernels)
- Not limited to supervised learning problems
 - f could even define a mapping of low-dim latent variable z_n to an observation x_n
 $$x_n = f(z_n) + "noise"$$

- Many mature implementations of GP exist. You may check out
 - GPYtorch (PyTorch), GPFlow (Tensorflow)
 - GPML (MATLAB), GPsuff (MATLAB/Octave)
Coming up next

- Foray into models with several parameters
- Goal: Infer the posterior over all of them (not posterior for some, MLE-II for others)
- Idea of conditional/local posteriors in such problems
- Local conjugacy (which helps in computing conditional posteriors)
- Gibbs sampling (an algorithm that infer the joint posterior via conditional posteriors)
- An example: Bayesian matrix factorization (a model with many parameters)
- Conditional/local posterior, local conjugacy, etc are important ideas (will appear in many inference algorithms that we will see later)
Moving Beyond Simple Models..

- So far, our models usually had a “main” parameter and maybe a few hyperparams, e.g.,
 - For a Gaussian, infer the mean assuming variance known (or vice-versa)
 - Bayesian linear regression with weight vector \mathbf{w} and noise/prior precision hyperparams β, λ
 - GP regression with one function to be learned, and fixed hyperparams

- Easy posterior inference if the likelihood and prior are conjugate to each other

- Hyperparams were estimated via MLE-II (since full posterior is much harder)

- For non-conjugate models or models with many parameters, need posterior approx
 - Can use Laplace approx but it has limitations (unimodal posterior, model should be differentiable)

- We will now look at more general inference schemes for such “difficult” cases
 - Difficult = Models with many params/hyperparams, non-conjugacy, non-differ., etc
 - Will be intractable in general. We will study approx. inference methods to handle such cases
Multiparameter Models

- Multiparameter models consist of two or more unknowns, say θ_1 and θ_2
- Given some data y, some examples for the simple two parameter case

- Assume the likelihood model to be of the form $p(y|\theta_1, \theta_2)$
- Assume a joint prior distribution $p(\theta_1, \theta_2)$
- The joint posterior $p(\theta_1, \theta_2|y) \propto p(\theta_1, \theta_2)p(y|\theta_1, \theta_2)$
 - Easy if the joint prior is conjugate to the likelihood (e.g., NIW prior for Gaussian likelihood)
 - Otherwise needs more work, e.g., MLE-II, MCMC, VI, etc. (already saw MLE-II)
Multiparameter Models: Some Examples

- Multiparameter models arise in many situations, e.g.,
 - Probabilistic models with unknown hyperparams (e.g., Bayesian linear regression)
 - Joint analysis of data from multiple (and possibly related) groups: Hierarchical models
 - .. and in fact, pretty much in any non-toy example of probabilistic model
Another Example: Matrix Factorization/Completion

- Given: Data $R = \{r_{ij}\}$ of “interactions” (e.g., ratings)
 - Here $i = 1, 2, ..., N$ denotes users, $j = 1, 2, ..., M$ denotes items

Assume each item $j = 1, 2, ..., M$ modeled by an unknown parameter vector $\mathbf{v}_j \in \mathbb{R}^K$

Need to predict the rest using these

Many methods exist

Can assume zero mean Gaussian noise $\mathcal{N}(0, \beta^{-1})$ for real-valued ratings

Similar to assuming a low-rank structure on the ratings matrix

Likelihood

$$r_{ij} = \mathbf{u}_i^T \mathbf{v}_j + \epsilon_{ij}$$

$$p(r_{ij} | \mathbf{u}_i, \mathbf{v}_j) = \mathcal{N}(r_{ij} | \mathbf{u}_i^T \mathbf{v}_j, \beta^{-1})$$

$$p(\mathbf{u}_i) = \mathcal{N}(\mathbf{u}_i | 0, \lambda_u^{-1})$$

$$p(\mathbf{v}_j) = \mathcal{N}(\mathbf{v}_j | 0, \lambda_v^{-1})$$

Individual priors for each user and item

Posterior

$$p(\{\mathbf{u}_i\}_{i=1}^N, \{\mathbf{v}_j\}_{j=1}^M | R)$$

For simplicity, hyperparams $\beta, \lambda_u, \lambda_v$ are fixed or unknown but we may only want to do point estimation for them

Only a small fraction of user-item ratings are observed (say user-item index set Ω)

Assume each user $i = 1, 2, ..., N$ modeled by an unknown parameter vector $\mathbf{u}_i \in \mathbb{R}^K$ for some small K
Bayesian Matrix Factorization (BMF): The Posterior

- Our target posterior distribution for this model is

\[p(U, V|R) = \frac{p(R|U, V)p(U, V)}{\int \int p(R|U, V)p(U, V) dU dV} \]

\[= \frac{\prod_{(i,j) \in \Omega} p(r_{ij}|u_i, v_j) \prod_i p(u_i) \prod_j p(v_j)}{\int \ldots \int \prod_{(i,j) \in \Omega} p(r_{ij}|u_i, v_j) \prod_i p(u_i) \prod_j p(v_j) du_1 \ldots du_N dv_1 \ldots dv_M} \]

- Posterior still intractable since integrals here are intractable

- Need to approx. the posterior. One way is via conditional posteriors (CP), e.g.,

\[p(u_i|R, V, U_{-i}) \quad p(v_j|R, U, V_{-j}) \]

- CP of each unknown is conditioned on fixed values of all other unknowns
 - The different CPs can be computed in an alternating fashion (like ALT-OPT/EM)
 - Note: CP individually won’t give us joint posterior. Need to combine them

Due to conditional independence of the observations given params

Assume that the joint prior factorizes into individual priors

E.g., using MCMC, variational inference, EM, etc
Conditional Posterior and Local Conjugacy

- Conditional Posteriors are easy to compute for model that are \textit{locally conjugate}
 - Note: CP is sometimes also referred to as \textit{Complete Conditional} or \textit{Local Posterior}

- Consider a model with data X and K unknown params/h.p. $\Theta = (\theta_1, \theta_2, \ldots, \theta_K)$

- Suppose the joint posterior $p(\Theta|X) = \frac{p(\Theta)p(X|\Theta)}{p(X)}$ is intractable (like in BMF)

- Local Conjugacy: If we can compute each CP tractably

\[
p(\theta_k|X, \Theta_{-k}) = \frac{p(X|\theta_k, \Theta_{-k})p(\theta_k)}{\int p(X|\theta_k, \Theta_{-k})p(\theta_k)d\theta_k} \propto p(X|\theta_k, \Theta_{-k})p(\theta_k)
\]

- Important: In the above context, when considering the likelihood $p(X|\theta_k, \Theta_{-k})$
 - X actually refers to only that part of data X that depends on θ_k
 - Θ_{-k} refers to only those unknowns that “interact” with θ_k in generating that part of data
Approximating Joint Posterior via CPs

- With the conditional posterior based approximation, the target joint posterior

\[p(\Theta | X) = \frac{p(X | \Theta)p(\Theta)}{p(X)} \]

... is represented by several conditional posteriors \(p(\theta_k, |X, \Theta_{-k}) \), \(k = 1,2, ..., K \)

- Each CP is a distribution over one unknown \(\theta_k \), given all other unknowns

- Need a way to “combine” these CPs to get the overall posterior
 - MCMC (e.g., Gibbs sampling): Based on generating samples from the CPs
 - Variational Inference (VI): Based on cyclic estimation of each CP
 - Note: Expectation Maximization also computes CP of latent variables in its E step

- More on this when we discuss MCMC, VI, EM, etc
- But let’s look at Gibbs sampling (an MCMC algo) right away as it is fairly simple.

Will revisit Gibbs sampling again when discussing MCMC algos
Gibbs Sampling (Geman and Geman, 1982)

- A general algo to generate samples from multivar. distr. one component at a time
 - Not limited to sampling from intractable posteriors only
 - Sometimes can be used even if we can draw from the multivar distr. directly

- Assume we want to sample from a joint distribution $p(\theta_1, \theta_2, ..., \theta_K)$

- It generates one component θ_k at a time using its conditional $p(\theta_k | \Theta_{-k})$

- Each conditional is assumed to be available in closed form. An example below:

Suppose

\[
\theta \sim N_2(0, \Sigma) \quad \Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}
\]

Then

\[
\begin{align*}
\theta_1 | \theta_2 & \sim N(\rho \theta_2, [1 - \rho^2]) \\
\theta_2 | \theta_1 & \sim N(\rho \theta_1, [1 - \rho^2])
\end{align*}
\]

are the conditional distributions.

Note: If posterior, it will be conditioned on other stuff too (e.g., data, other param, etc)

This example is a toy illustration of sampling from a 2-dim Gaussian by sampling from 1-dim Gaussians

A sample based representation of a 2-dim Gaussian distribution

A 2-dim Gaussian

A 1-dim Gaussian

A 1-dim Gaussian

A 1-dim Gaussian
Gibbs Sampling (Geman and Geman, 1982)

- Can be used to get a sampling-based approx. of a multiparam. posterior
- Gibbs sampler iteratively draws random samples from CPs
- When run long enough, the sampler produces samples from the joint posterior
- For the simple two-param case $\theta = (\theta_1, \theta_2)$, the Gibb sampler looks like this
 - Initialize $\theta_2^{(0)}$
 - For $s = 1, 2, \ldots, S$
 - Draw a random sample for θ_1 as $\theta_1^{(s)} \sim p(\theta_1|X, \theta_2^{(s-1)})$
 - Draw a random sample for θ_2 as $\theta_2^{(s)} \sim p(\theta_2|X, \theta_1^{(s)})$

- These S random samples $\left(\theta_1^{(s)}, \theta_2^{(s)}\right)_{s=1}^{S}$ represent joint posterior $p(\theta_1, \theta_2|X)$
- This is just a high-level idea. More on this when we discuss MCMC
Back to Bayesian Matrix Factorization
Bayesian Matrix Factorization: The CPs

- BMF with Gaussian likelihood and Gaussian prior on each user/item params is not fully conjugate but has local conjugacy
- To see this, note that the conditional posterior (CP) for user parameter \mathbf{u}_i

$$p(\mathbf{u}_i|R, \mathbf{V}, \mathbf{U}_{-i}) \propto \prod_{j: (i,j) \in \Omega} p(r_{ij}|\mathbf{u}_i, \mathbf{v}_j)p(\mathbf{u}_i)$$

$$= \prod_{j: (i,j) \in \Omega} \mathcal{N}(r_{ij}|\mathbf{u}_i^\top \mathbf{v}_j, \beta^{-1})\mathcal{N}(\mathbf{u}_i|\mathbf{0}, \lambda_u^{-1}\mathbf{I}_K)$$

- The above is just like Bayesian linear regression, given \mathbf{R} and fixed \mathbf{V}
 - Weight vector is \mathbf{u}_i, training data is $\{(\mathbf{v}_j, r_{ij})\}_{j: (i,j) \in \Omega}$, given
 - Also have local conjugacy since likelihood and prior are conjugate (assuming hyperparams fixed)

- Likewise, the CP for the item parameter \mathbf{v}_j can be computed as

$$p(\mathbf{v}_j|R, \mathbf{U}) \propto \prod_{i: (i,j) \in \Omega} \mathcal{N}(r_{ij}|\mathbf{u}_i^\top \mathbf{v}_j, \beta^{-1})\mathcal{N}(\mathbf{v}_j|\mathbf{0}, \lambda_v^{-1}\mathbf{I}_K)$$
Bayesian Matrix Factorization: The CPs

- The CPs will have forms similar to solution of Bayesian linear regression

\[p(u_i|R, V) = \mathcal{N}(u_i | \mu_{u_i}, \Sigma_{u_i}) \]
\[p(v_j|R, U) = \mathcal{N}(v_j | \mu_{v_j}, \Sigma_{v_j}) \]

\[\Sigma_{u_i} = (\lambda_u I + \beta \sum_{j:(i,j) \in \Omega} v_j v_j^T)^{-1} \]
\[\mu_{u_i} = \Sigma_{u_i} (\beta \sum_{j:(i,j) \in \Omega} r_{ij} v_j) \]

\[\Sigma_{v_j} = (\lambda_v I + \beta \sum_{i:(i,j) \in \Omega} u_i u_i^T)^{-1} \]
\[\mu_{v_j} = \Sigma_{v_j} (\beta \sum_{i:(i,j) \in \Omega} r_{ij} u_i) \]

- These CPs can be updated in an alternating fashion until convergence
 - Many ways. One popular way is to use Gibbs sampling
 - Note: Hyperparameters can also be inferred by computing their CPs

- Can extend Gaussian BMF easily to other exp. family distr. while maintaining local conj.
 - Example: Poisson likelihood and gamma priors on user/item parameters

2. “Scalable recommendation with Poisson factorization” by Gopalan et al. (2013)
BMF: Making Predictions

- PPD for each missing entry of the matrix (assuming hyperparams known)

\[p(r_{ij}|R) = \int \int p(r_{ij}|u_i, v_j)p(u_i, v_j|R)du_idv_j \]

- In general, this is intractable and needs approximation
 - If using Gibbs sampling, we can use \(S \) samples \((u_i^{(s)}, v_j^{(s)})_{s=1}^S \) to compute mean of \(r_{ij} \)
 - For the Gaussian likelihood case, the mean can be computed as

\[\mathbb{E}[r_{ij}] \approx \frac{1}{S} \sum_{s=1}^S u_i^{(s)T} v_j^{(s)} \]

 (Monte-Carlo averaging)

- Comparison of Bayesian MF with others (from Salakhutdinov and Mnih (2008))

All other baselines are optimization based or point estimation based probabilistic models (PMF = probabilistic matrix factorization with point estimation)
Summary

- Local conjugacy is helpful even for complex prob. models with many params
 - CPs will have a closed form
 - Easy to implement Gibbs sampling can be used to get the (approx.) posterior
 - Many other approx. inference algos (like variational inference) benefit from local conjugacy

- Helps to choose likelihood and priors on each param as exp. family distr.
 - So if we can’t get a globally conjugate model, we can still get a model with local conjugacy

- Even if we can’t have local conjugacy, the notion of CPs is applicable
 - We can break the inference problem into estimating CPs (exactly if we have local conjugacy, or approximately if we don’t have local conjugacy)
 - Almost all approx. algorithms work by estimating CPs exactly or approximately
Coming Up

- Latent Variable Models
- Expectation Maximization