
Course Logistics and Introduction to 
Probabilistic Machine Learning

CS772A: Probabilistic Machine Learning

Piyush Rai



CS772A: PML

Course Logistics

▪ Course Name: Probabilistic Machine Learning – CS772A

▪ 2 classes each week
▪ Mon/Thur 18:00-19:30

▪ Venue: KD-101

▪ All material (readings etc) will be posted on course webpage (internal access)
▪ URL: https://web.cse.iitk.ac.in/users/piyush/courses/pml_autumn22/pml.html

▪Q/A and announcements on Piazza. Please sign up
▪ URL: https://piazza.com/iitk.ac.in/firstsemester2022/cs772a

▪ If  need to contact me by email (piyush@cse.iitk.ac.in), prefix subject line with “CS772” 

▪ Auditors are welcome
▪ However, can’t appear for quizzes/exams. Also, won’t be able to grade your homeworks
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https://web.cse.iitk.ac.in/users/piyush/courses/pml_autumn22/pml.html
https://piazza.com/iitk.ac.in/firstsemester2022/cs772a
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Workload and Grading Policy

▪ 4 homeworks (theory + programming): 40%
▪ Must be typeset in LaTeX. To be uploaded on Gradescope (login details will be shared)

▪ 2 quizzes: 10% (tentative dates: Aug 27, Oct 22)

▪Mid-sem exam: 20% (date as per DOAA schedule)

▪ End-sem exam: 30% (date as per DOAA schedule)

▪ (Optional) Research project (to be done in groups of 2): 20%
▪ If  opted, will be exempted from appearing in the mid-sem exam

▪ We may suggest some topics but the project has to be driven by you

▪ We will not be able to provide compute resources

▪ Advisable only if  you have strong prior experience of working on ML research projects
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Tentative dates for release of 

homeworks: Aug 11, Aug 

29, Sept 26, Oct 20

Each homework due roughly in 

2 weeks (excluding holidays, 

exam weeks)
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Textbooks and Readings

▪ Textbook: No official textbook required

▪ Some books that you may use as reference (freely available PDF)
▪ Kevin P. Murphy, Probabilistic Machine Learning: An Introduction (PML-1), The MIT Press, 2022.

▪ Kevin P. Murphy, Probabilistic Machine Learning: Advanced Topics(PML-2), The MIT Press, 2022.

▪ Christopher M. Bishop, Pattern Recognition and Machine Learning (PRML), Springer, 2007.

▪ Follow the suggested readings for each lecture (may also include some portions 
from these books), rather than trying to read these books in a linear fashion
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758 pages855 pages 1347 pages

Python code Python code Python code

All these books have 

accompanying 

Python code. You are 

encouraged to 

explore (we will also 

go through some)

https://github.com/probml/pyprobml/tree/master/notebooks/book1
https://github.com/probml/pyprobml/tree/master/notebooks/book1
https://github.com/probml/pyprobml/tree/master/notebooks/book1
https://github.com/probml/pyprobml/tree/master/notebooks/book2
https://github.com/probml/pyprobml/tree/master/notebooks/book1
https://github.com/ctgk/PRML
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Course Policies

▪ Policy on homeworks
▪ Homework solutions must be in your own words

▪ Must cite sources you have referred to or used in preparing your HW solutions

▪ No requests for deadline extension will entertained. Plan ahead of time

▪ Late submissions allowed up to 72 hours with 10% penalty per 24 hour delay

▪ Every student entitled for ONE late homework submission without penalty (use it wisely)

▪ Policy on collaboration/cheating
▪ Punishable as per institute's/department’s rules

▪ Plagiarism from other sources will also lead to strict punishment

▪ Both copying as well as helping someone copy will be equally punishable
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Course Goals

▪ Introduce you to the foundations of probabilistic machine learning (PML)

▪ Focus will be on learning core, general principles of PML

▪ How to set up a probabilistic model for a given ML problem

▪ How to quantify uncertainty in parameter estimates and predictions

▪ Estimation/inference algorithms to learn various unknowns in a model

▪ How to think about trade-offs (computational efficiency vs accuracy) 

▪Will also look at the above using specific examples of ML models

▪ Throughout the course, focus will also be on contemporary/latest advances
▪ PML is a fast-moving field, especially in the era of modern machine/deep learning
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Image source: Probabilistic Machine Learning – Advanced Topics (Murphy, 2022)

https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
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Why Probabilistic ML?
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Probabilistic ML because… Uncertainty Matters!
▪ ML models ingest data, give us predictions, trends in the data, etc

▪ The standard approach: Minimize a loss func. to find optimal parameters. Use them to predict

▪ In many applications, we also care about the parameter/predictive uncertainty
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መ𝜃 = arg min𝜃 ℓ(𝒟, 𝜃)
Single answer! No estimate 

of uncertainty about true 𝜃

May be unreliable and 

can overfit especially 

with limited training data

Desirable: An approach that 

reports large predictive 

uncertainty (variance) in 

regions where there is little/no 

training data

Regression Binary classification
Desirable: An approach 

that reports close to 

uniform class probability 

(0.5 in this case) for 

inputs faraway from 

training data or for out-

of-distribution inputs 

Training data

Healthcare applications, 

autonomous driving, etc.

Image source: Probabilistic Machine Learning – Advanced Topics (Murphy, 2022)

https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
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Types of Uncertainty: Model Uncertainty

▪Model uncertainty is due to not having enough training data

▪ Also called epistemic uncertainty. Usually reducible
▪ Vanishes with “sufficient” training data
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Same model class (linear models) 
but uncertainty about the weights

Uncertainty not just about the 
weights but also the model class

𝑝(𝜃|𝒟)

Distribution of model 

parameters conditioned 

on the training data

Also known as the 

“posterior distribution”

Hard to compute in 

general. Will study 

several methods to do it

A probabilistic way to 

express model uncertainty

Image credit: Balaji L, Dustin T, Jasper N. (NeurIPS 2020 tutorial)

Means uncertainty 

in model weights

An example posterior of a 

two-dim parameter vector 𝜃

Each model class itself will have

uncertainty(like left fig) since 

there isn’t enough training data

3 different model classes

considered here (with 

linear, polynomial, circular 

decision boundaries)

https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
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Model Uncertainty via Posterior: An Illustration

▪ Consider a linear classification model for 2-dim inputs

▪ Classifier weight will be a 2-dim vector 𝜃 = [𝜃1, 𝜃2]

▪ Its posterior will be some 2-dim distribution 𝑝(𝜃|𝒟)

▪ Sampling from this distribution will generate 2-dim vectors

▪ Each vector will correspond to a linear separator (right fig) 

▪ Thus posterior in this case is equivalent to a “collection” or 
“ensemble” of weights, each representing a different linear 
separator (will discuss later how to use such a “collection” 
when making predictions for a test input)
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Not every separator is 

equally important

Importance of separator 

𝜃(𝑖) is 𝑝(𝜃(𝑖)|𝒟)
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Types of Uncertainty: Data Uncertainty

▪Data uncertainty can be due to various reasons, e.g., 
▪ Intrinsic hardness of labeling, class overlap

▪ Labeling errors/disagreements (for difficult training inputs)

▪ Noisy or missing features

▪ Also called aleatoric uncertainty. Usually irreducible
▪ Won’t vanish even with infinite training data

▪ Note: Can sometimes vanish by adding more features

(figure on the right) or switching to a more complex model
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𝑝(𝑦|𝜃, 𝒙)
Usually specified by the distribution of 

data being modeled conditioned on 

model parameters and other inputs

A probabilistic way to 

express data uncertainty

Image source: “Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods” (H&W 2021)

Image source: “Improving machine classification using human uncertainty measurements” (Battleday et al, 2021)Image credit: Eric Nalisnick

https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://link.springer.com/content/pdf/10.1007/s10994-021-05946-3.pdf
https://openreview.net/pdf?id=rJl8BhRqF7
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A Key Principle of PML: Marginalization

▪ Consider training data 𝒟 = (𝐗, 𝐲)

▪ Consider a model 𝑚(e.g., a deep neural net) of the form 𝑝(𝑦|𝒙, 𝜃,𝑚)

▪ Let መ𝜃 denote the optimal weights of model 𝑚 by minimizing a loss fn. on 𝒟

▪ Standard prediction for a new test input 𝒙∗ : 𝑝 𝑦∗ 𝒙∗, መ𝜃,𝑚

▪ A more robust prediction can be obtained via marginalization
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𝑝(𝑦∗|𝒙∗, 𝒟,𝑚) = ∫ 𝑝 𝑦∗ 𝒙∗, 𝜃,𝑚 𝑝 𝜃 𝒟,𝑚 𝑑𝜃

For multi-class classification, 

this quantity will be a vector of 

predicted class probabilities

For multi-class classification, 

this too will be a vector of 

predicted class probabilities but 

its computation incorporates 

the uncertainty in 𝜃

Denotes data / 

aleatoric uncertainty
Denotes model weight / 

epistemic uncertainty

Prediction via marginalizing the

predictions by each value of 𝜃
over its posterior distribution

Predictions by different 𝜃’s not 

weighted equally but based on 

how likely each 𝜃 is given data 

𝒟,, i.e., 𝑝 𝜃 𝒟,𝑚

e.g., a deep net with 

softmax outputs

Will derive the expression 

shortly – just a simple 

application of product and 

chain rules of probability

Note:𝑚 is just a

model identifier; can 

ignore when writing

Posterior distribution 

of the weights

Uncertainty about 𝜃 ignored
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More on Marginalization

▪Marginalization (integral) is usually intractable and needs to be approximated

▪Marginalization can be done even over several choices of models
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𝑝(𝑦∗|𝒙∗, 𝒟,𝑚) = ∫ 𝑝 𝑦∗ 𝒙∗, 𝜃,𝑚 𝑝 𝜃 𝒟,𝑚 𝑑𝜃

𝑝(𝑦∗|𝒙∗, 𝒟) = σ𝑚=1
𝑀 𝑝 𝑦∗ 𝒙∗, 𝒟,𝑚 𝑝(𝑚|𝒟)

𝑝(𝑦∗|𝒙∗, 𝒟,𝑚) = ∫ 𝑝 𝑦∗ 𝒙∗, 𝜃,𝑚 𝑝 𝜃 𝒟,𝑚 𝑑𝜃

≈
1

𝑆
෍

𝑖=1

𝑆

𝑝 𝑦∗ 𝒙∗, 𝜃
(𝑖), 𝑚

Marginalization over all 

weights of a single model 𝑚

Marginalization over all finite 

choices 𝑚 = 1,2,… ,𝑀 of 

the model

Like a double averaging 

(over all model choices, and 

over all weights of each 

model choice)

Each 𝜃(𝑖) is drawn 

i.i.d. from the 

distribution 𝑝 𝜃 𝒟,𝑚

Above integral replaced by a 

“Monte-Carlo Averaging” 

Will look at these ideas 

in more depth later

For example, deep nets with 

different architectures

Haven’t yet told you how 

to compute this quantity 

but will see shortly
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Marginalization is like Ensemble-based Averaging

▪ Recall the approximation of the marginalization

▪ Akin to computing averaged prediction using ensemble of weights 𝜃(𝑖)
𝑖=1

𝑆

▪ Ensembling is a well-known classical technique for strong predictive performance
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𝑝 𝑦∗ 𝒙∗, 𝒟,𝑚 ≈
1

𝑆
෍

𝑖=1

𝑆

𝑝 𝑦∗ 𝒙∗, 𝜃
(𝑖), 𝑚

Tip: If  you can’t design/use a 

full-fledged, rigorous 

probabilistic model, consider 

using an ensemble* instead

We will also study ensembles 

later during this course

One way to get such an 

ensemble is to train the 

same model with 𝑆 different 

initializations

*Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles (Lakshminarayanan et al, 2017)

May not be as good as doing 

proper marginalization over 

the posterior but usually 

better than using a single 

estimate of the weights

𝜃(1) 𝜃(2) 𝜃(𝑆)

https://arxiv.org/pdf/1612.01474.pdf
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Probabilistic ML: 
The Basic Set-up

16
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Modeling Data Probabilistically: A Simplistic View

▪ Assume data 𝐗 = {𝒙1, 𝒙2, … , 𝒙𝑁} generated from a prob. model with params 𝜃

▪Note: Shaded nodes = observed; unshaded nodes = unknown/unobserved

▪ Goal: To estimate the unknowns (𝜃 in this case), given the observed data 𝐗
▪ Many ways to do this (point estimate or the posterior distribution of 𝜃)

▪ Can use the parameter estimates to make predictions, e.g.,
▪ Probability density of a new input 𝒙∗ under this model
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𝒙1, 𝒙2, … , 𝒙𝑁 ∼ 𝑝(𝒙|𝜃)
A plate diagram of 

this simplistic model

No outputs/labels in this problem;

just modeling the inputs (an 

unsupervised learning task)
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Basic Ingredients in Probabilistic ML

▪ Specification of prob. models requires two key ingredients: Likelihood and prior

▪ Likelihood 𝑝(𝒙|𝜃) or the “observation model” specifies how data is generated
▪ Measures data fit (or “loss”) w.r.t. the given 𝜃 (will see the reason formally later)

▪ Prior distribution 𝑝(𝜃) specifies how likely different parameter values are a priori
▪ Also corresponds to imposing a “regularizer” over 𝜃 (will see the reason formally later)

▪ Domain knowledge can help in the specification of the likelihood and the prior
▪ A key benefit of probabilistic modeling

18
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Parameter Estimation in Probabilistic Models

▪ A simple way: Find 𝜃 for which the observed data is most likely or most probable

▪ More desirable: Estimate the full posterior distribution over 𝜃 to get the uncertainty

▪ To make predictions, can use full posterior rather than a point estimate(MLE/MAP) 𝜃
▪ This is typically referred to as posterior averaging

19

This “point estimate”, called maximum 

likelihood estimate (MLE), however, 

does not provide us any information 

about uncertainty in 𝜃

Fully Bayesian inference. In general, an 

intractable problem (mainly because 

computing the marginal 𝑝(𝐗) is hard), 

except for some simple cases (will 

study how to solve such problems)

Just like loss function 

minimization approach

Log likelihood

Can also find a single best estimate of 𝜃
by finding the mode of the posterior, i.e., 
෠𝜃 = argmax

𝜃
log 𝑝(𝜃|𝐗), called the 

maximum-a-posteriori (MAP) estimate, 

but we won’t get uncertainty estimate

In this course, the use of the 

word “inference” would mean 

Bayesian inference, i.e., 

computing the (usually an 

approximate) posterior 

distribution of the model 

parameters.

At some other places, especially in 

deep learning community, the word 

“inference” usually refers to making 

prediction on the test inputs
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Posterior Averaging

▪ Can now use the posterior over params to compute “averaged prediction”, e.g.,

20

Posterior predictive distribution 

(PPD) obtained by doing an 

importance-weighted 

averaging over the posterior

Plug-in predictive distribution Tells us how important 

this value of 𝜃 is 

𝑝 𝒙∗ 𝐗 = ∫ 𝑝 𝒙∗ 𝜃 𝑝 𝜃 𝐗 𝑑𝜃

𝑝 𝒙∗ 𝐗 = ∫ 𝑝(𝒙∗, 𝜃|𝐗) 𝑑𝜃

= ∫ 𝑝 𝒙∗ 𝜃, 𝐗 𝑝(𝜃|𝐗) 𝑑𝜃

= ∫ 𝑝 𝒙∗ 𝜃 𝑝(𝜃|𝐗) 𝑑𝜃
Assuming observations 

are i.i.d. given 𝜃

An approximation 

of the PPD

≈
1

𝑆
෍

𝑖=1

𝑆

𝑝(𝒙∗|𝜃
𝑖 )

“Plug-in” because we 

plugged-in a single 

value of 𝜃 to

compute this

Note: The PPD will take 

different forms depending on 

the problem/model, e.g., for a 

discriminative supervised 

learning model, PPD will be of 

the form 𝑝(𝑦|𝒙, 𝒟) where 𝒟
is the labeled training data

Proof of the PPD expression

Past (training) dataFuture (test) data
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Bayesian Inference

▪ Bayesian inference can be seen in a sequential fashion

▪Our belief about 𝜃 keeps getting updated as we see more and more data
▪ Posterior keeps getting updates as more and more data is observed

▪ Note: Updates may not be straightforward and approximations may be needed

21
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Other Examples of 
Probabilistic Models of Data

22
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Modeling Data Probabilistically: With Latent Vars

▪ Can endow generative models of data with latent variables. For example:

▪ Such models are used in many problems, especially unsupervised learning: Gaussian 
mixture model, probabilistic PCA, topic models, deep generative models, etc.

▪ We will look at several of these in this course and way to learn such models

23

Each data point 𝒙𝑛 is 

associated with a 

latent variable 𝒛𝑛

The latent variable 𝒛𝑛 can be used to 

encode some property of 𝒙𝑛 (e.g., its 

cluster membership, or its low-dim 

representation, or missing parts of 𝒙𝑛)
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Modeling Data Probabilistically: Other Examples

▪ Can construct various other types of models of data for different problems

▪ Any node (even if  observed) we are uncertain about is modeled by a prob. distribution
▪ These nodes become the random variables of the model

▪ The full model is specified via a joint prob. distribution over all random variables

▪ The goal is to infer the distribution of unknowns of the model, given the observed data

24

A simple supervised 
learning model

A latent variable model 
for unsupervised learning

A latent variable model 
for supervised learning

A latent variable model 
for sequential data
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Use probabilistic ML 
also because..

25
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Helps in Sequential Decision-Making Problems

▪ Sequential decision-making: Information about uncertainty can “guide” us, e.g.,

▪ Applications in active learning, reinforcement learning, Bayesian optimization, etc

26

Given our current estimate of the 

regression function, which training 

input(s) should we add next to 

improve its estimate the most?

Uncertainty can help here: Acquire training 

inputs from regions where the function is 

most uncertain about its current predictions

Blue curve is the mean of the 

function, shaded region 

denotes the predictive 

uncertainty
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Can Learn Data Distribution and Generate Data

▪Often wish to learn the underlying probability distribution 𝑝(𝒙) of the data

▪ Useful for many tasks, e.g.,
▪ Outlier/novelty detection: Outliers will have low probability under 𝑝(𝒙)

▪ Can sample from this distribution to generate new “artificial” but realistic-looking data

27

Several models, such as generative 

adversarial networks (GAN), 

variational auto-encoders (VAE), 

denoising diffusion models, etc can 

do this

Pic credit: https://medium.com/analytics-vidhya/an-introduction-to-generative-deep-learning-792e93d1c6d4
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Can Better Handle OOD Data

▪Many modern deep neural networks (DNN) tend to be overconfident

▪ Especially true if  test data is “out-of-distribution (OOD)”

▪ PML models are robust and give better uncertainty estimates to flag OOD data

28

Low 
confidence

High 
confidence

Class 1

Class 2

Some OOD 
test data

Desirable confidence map Confidence map of a DNN

Model has high confidence for 

predictions on even inputs that 

are far away from training data 

Example of an 

overconfident model

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” (Liu et al, 2020)

https://papers.nips.cc/paper/2020/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf
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Can Construct Complex Models in Modular Ways

▪ Can combine multiple simple probabilistic models to learn complex patterns

▪ Can design models that can jointly learn from multiple datasets and share information 
across multiple datasets using shared parameters with a prior distribution

29

A combination of a mixture model for 

clustering and a probabilistic linear 

regression model: Result is a probabilistic 

nonlinear regression model

Can design a 

latent variable 

model to do this
Essentially a “mixture 

of experts” model

An example of transfer learning 

or multitask learning using a 

probabilistic approach

Example: Estimating the means 

of 𝑚 datasets, assuming the 

means are somewhat related. 

Can do this jointly rather than 

estimating independently

Easy to do it using a probabilistic 

approach with shared parameters (will 

see details later)
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Hyperparameter Estimation

▪ML models invariably have hyperparams, e.g., regularization/kernel h.p. in a 
linear/kernel regression, hyperparameters of a deep neural network, etc.

▪ Can specify the hyperparams as additional unknown of the probabilistic model

▪ Can now estimate them, e.g., using a point estimate or a posterior distribution
▪ To find point estimate of hyperparameters, we can write the probability of data as a function of 

hyperparameters and maximize this quantity w.r.t. the hyperparameters (details later)

▪ Posterior can also be estimated if  we specify a prior on the hyperparameters as well (details later)
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A way to find the point estimate of the 

hyperparameters by maximizing the marginal 

likelihood of data (more on this later)

ො𝛼 = argmax
𝛼

log 𝑝(𝐗|𝛼)

= argmax
𝛼

log ∫ 𝑝 𝐗 𝜃 𝑝 𝜃 𝛼 𝜃

The approach of using marginal 

likelihood for doing such thing has 

some issues; other quantities can be 

used such as “conditional” marginal 

likelihood* (more on this later)

*Bayesian Model Selection, the Marginal Likelihood, and Generalization (Lotfi et al, 2022)

https://arxiv.org/pdf/2202.11678.pdf
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Model Comparison

▪ Suppose we have a number of models 𝑚 = 1,2,… ,𝑀 to choose from

▪ The standard way to choose the best model is cross-validation 

▪ Can also compute the posterior probability of each candidate model, using Bayes rule

▪ If  all models are equally likely a priori (𝑝(𝑚) is uniform) then the best model can be 
selected as the one with largest marginal likelihood
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𝑝 𝑚 𝐗 =
𝑝 𝑚 𝑝(𝐗|𝑚)

𝑝(𝐗)

Marginal likelihood of model 𝑚

𝑝
(𝐗
|𝑚

)

This doesn’t require a 

separate validation set 

unlike cross-validation

Therefore also useful for doing 

model selection/comparison for 

unsupervised learning problems

May not be easy to do 

exactly but can compute it 

approximately
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Non-probabilistic ML Methods?

▪ Some non-probabilistic ML methods can give probabilistic answers via heuristics

▪ Doesn’t mean these methods are not useful/used but they don’t follow the PML 
paradigm, so we won’t study them in this course

▪ Some examples which you may have seen

▪ Converting distances from hyperplane (in hyperplane classifiers) to compute class probabilities

▪ Using class-frequencies in nearest neighbors to compute class probabilities

▪ Using class-frequencies at leaves of a Decision Tree to compute class probabilities

▪ Soft k-means clustering to compute probabilistic cluster memberships

32

Or methods like Platt 

Scaling used to get class

probabilities for SVMs
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Tentative Outline
▪ Basics of probabilistic modeling and inference

▪ Common probability distributions

▪ Basic point estimation (MLE and MAP)

▪ Bayesian inference (simple and not-so-simple cases)

▪ Probabilistic models for regression, classification, clustering, dimensionality reduction

▪ Gaussian Processes (probabilistic modeling meets kernels)

▪ Latent Variable Models (for i.i.d., sequential, and relational data)

▪ Approximate Bayesian inference (EM, variational inference, sampling, etc)

▪ Bayesian Deep Learning

▪ Misc topics, e.g., deep generative models, black-box inference, sequential decision-making, etc

33


