Maths Refresher

Piyush Rai

Introduction to Machine Learning (CS771A)

August 4, 2018
Basics of Linear Algebra
Vectors and Matrices

- Vectors (column vectors and row vectors) and their transposes
 \[
 \mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \quad \mathbf{a}^\top = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \quad \mathbf{b}^\top = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
 \]

- We will assume vectors of be column vectors (unless specified otherwise)
- Vector with all 0s except a single 1 is called elementary vector (or “one-hot” vector in ML)
- Matrix and its transpose (shown for 3×3 matrices)
 \[
 \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad \mathbf{A}^\top = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}
 \]

- For a symmetric matrix (must be square) $\mathbf{A} = \mathbf{A}^\top$
- Diagonal and identity matrices have nonzeros only along the diagonals
- Should know the basic rules of vector addition, matrix addition, etc (won’t list here)
Inner Product

- **Inner product** (or **dot product**) of two vectors \(\mathbf{a} \in \mathbb{R}^D \) and \(\mathbf{b} \in \mathbb{R}^D \) is a scalar

\[
c = \mathbf{a}^\top \mathbf{b} = \sum_{d=1}^{D} a_d b_d
\]

- Inner product is a measure of similarity of two vectors
- Inner product is zero if \(\mathbf{a} \) and \(\mathbf{b} \) are orthogonal to each other
- Inner product of two vector of unit length is the same as **cosine similarity**

- A more general form of inner product: \(c = \mathbf{a}^\top \mathbf{M} \mathbf{b} \) (here \(\mathbf{M} \) is \(D \times D \))
 - \(\mathbf{M} \) can be diagonal or full matrix
 - For identity \(\mathbf{M} \), it becomes the standard inner product

- Euclidean distance between two vectors can be also written in terms of an inner product

\[
d(\mathbf{a}, \mathbf{b}) = \sqrt{(\mathbf{a} - \mathbf{b})^\top (\mathbf{a} - \mathbf{b})} = \sqrt{\mathbf{a}^\top \mathbf{a} + \mathbf{b}^\top \mathbf{b} - 2 \mathbf{a}^\top \mathbf{b}}
\]
Orthogonal/Orthonormal Vectors and Matrices

- A set of vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_N$ is called **orthogonal** if
 \[\mathbf{a}_i^\top \mathbf{a}_j = 0 \quad \forall i \neq j \]

- Moreover, a set of orthogonal vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_N$ is called **orthonormal** if
 \[\mathbf{a}_i^\top \mathbf{a}_i = 1 \quad \forall i \]

- A **matrix** with orthonormal columns is called orthogonal

- For a square orthogonal matrix \mathbf{A}, we have $\mathbf{AA}^\top = \mathbf{A}^\top \mathbf{A} = \mathbf{I}$
Matrix-Vector/Matrix-Matrix Product as Inner Product

- Important to be conversant with these. Some basic operations worth keeping in mind.

\[
Ax = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
a_{11}^T x_1 \\
a_{21}^T x_2 \\
a_{31}^T x_3
\end{bmatrix}
\]

- We can ‘post-multiply’ a matrix by a column vector.

\[
x^T A = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix} = \begin{bmatrix}
x_1^T a_1 \\
x_2^T a_2 \\
x_3^T a_3
\end{bmatrix}
\]

- We can ‘pre-multiply’ a matrix by a row vector.

In general, we can multiply matrices A and B when the number of columns in A matches the number of rows in B:

\[
AB = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{bmatrix} = \begin{bmatrix}
a_{11}^T b_1 + a_{12}^T b_2 + a_{13}^T b_3 \\
a_{21}^T b_1 + a_{22}^T b_2 + a_{23}^T b_3 \\
a_{31}^T b_1 + a_{32}^T b_2 + a_{33}^T b_3
\end{bmatrix}
\]

- We routinely encounter such operations in many ML problems.
Outer Product

- **Outer product** of two vectors \(\mathbf{a} \in \mathbb{R}^D \) and \(\mathbf{b} \in \mathbb{R}^D \) is a matrix. For 3-dim vectors, we'll have

\[
\mathbf{C} = \mathbf{a} \mathbf{b}^\top = \begin{bmatrix}
a_1 b_1 & a_1 b_2 & a_1 b_3 \\
a_2 b_1 & a_2 b_2 & a_2 b_3 \\
a_3 b_1 & a_3 b_2 & a_3 b_3
\end{bmatrix}
\]

(note: \(\mathbf{C} \) is a rank-1 matrix)

- Matrix rank: Linearly indep. number of rows/columns
- Matrix multiplications can also be written as a sum of outer products (sum of rank-1 matrices)

\[
\mathbf{A} \mathbf{B}^\top = \sum_{k=1}^{K} \mathbf{a}_k \mathbf{b}_k^\top
\]

where \(\mathbf{a}_k \) and \(\mathbf{b}_k \) denote the \(k \)-th column of \(\mathbf{A} \) (size: \(D \times K \)) and \(\mathbf{B} \) (size: \(D \times K \)), respectively,
Linear Combination of Vectors as a Matrix-Vector Product

- Linear combination of a set of $D \times 1$ vectors b_1, b_2, \ldots, b_N is another vector of the same size:

$$c = \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_N b_N$$

- The α_n’s are scalar-valued combination weights.

- The above can also be compactly written in the matrix-vector product form $c = B\alpha$

where $B = [b_1, b_2, \ldots b_N]$ is a $D \times N$ matrix, and $\alpha = [\alpha_1, \alpha_2, \ldots, \alpha_N]^{\top}$ is an $N \times 1$ column vector.

- Note that c can be also seen as a linear transformation of α using B.

- Such matrix-vector product are very common in ML problems (especially in linear models).
Vector and Matrix Norms

- Roughly speaking, for a vector \mathbf{x}, the norm is its “length”
- Some common norms: ℓ_2 norm (Euclidean norm), ℓ_1 form, ℓ_∞ norm, ℓ_p norm ($p \geq 1$)

$$
\| \mathbf{x} \|_2 = \sqrt{\sum_{n=1}^{N} x_n^2}, \quad \| \mathbf{x} \|_1 = \sum_{n=1}^{N} |x_n|, \quad \| \mathbf{x} \|_\infty = \max_{1 \leq n \leq N} |x_n|, \quad \| \mathbf{x} \|_p = \left(\sum_{n=1}^{N} |x_n|^p \right)^{1/p}
$$

- Note: The square of ℓ_2 norm is the inner product of the vector with itself $\| \mathbf{x} \|_2^2 = \mathbf{x}^\top \mathbf{x}$
- Note: $\| \mathbf{x} \|_p$ for $p < 1$ technically not a norm (doesn’t satisfy all the formal properties of a norm)
 - Nevertheless it is often used in some ML problems (has some interesting properties)
- Norms for a matrix \mathbf{A} (say of size $N \times M$) can also be defined, e.g.,
 - Frobenius norm: $\| \mathbf{A} \|_F = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{M} A_{ij}^2} = \sqrt{\text{trace}(\mathbf{A}^\top \mathbf{A})}$
 - Many matrix norms can be written in terms of in terms of the singular values of \mathbf{A}
Hyperplanes

- An important concept in ML, especially for understanding classification problems
- Divides a vector space into two halves (positive and negative halfspaces)

Assuming 3-dim space, it can be defined by a vector $\mathbf{w} = [w_1, w_2, w_3]$ and scalar b

- \mathbf{w} is the vector pointing outward to the hyperplane
- b is the real-valued “bias” if the hyperplane doesn’t pass through the origin
Some other things you should know about..

• Eigenvalues, rank, etc. for matrices
• Trace of matrix
• Determinant of matrix (and relation to eigenvalues etc)
• Inverse of matrices
• Positive definite and positive semi-definite matrices (non-negative eigenvalues)
• “Matrix Cookbook” (will provide link) is a nice source of many properties of matrices
Multivariate Calculus and Optimization
Multivariate Calculus and Optimization

- Most of ML problems boil down to solving an optimization problem
- We will usually have to optimize a function \(f : \mathbb{R}^D \rightarrow \mathbb{R} \) w.r.t some variable \(w \in \mathbb{R}^D \)
- **Gradient** of \(f \) w.r.t. \(w \) denotes the direction of steepest change at \(w \), and is defined as

\[
\nabla f = \begin{bmatrix}
\frac{\partial f}{\partial w_1} \\
\vdots \\
\frac{\partial f}{\partial w_D}
\end{bmatrix}
\]

where \([\nabla f]_i = \frac{\partial f}{\partial w_i}\)

- For multivariate functions \(f : \mathbb{R}^D \rightarrow \mathbb{R}^M \), we can likewise define the **Jacobian** matrix

\[
J_f = \begin{bmatrix}
\frac{\partial f_1}{\partial w_1} & \cdots & \frac{\partial f_1}{\partial w_D} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_M}{\partial w_1} & \cdots & \frac{\partial f_M}{\partial w_D}
\end{bmatrix}
\]

where \([J_f]_{ij} = \frac{\partial f_i}{\partial w_j}\)

- Can also define second derivatives (called **Hessian**): derivative of gradient/Jacobian
Taking Derivatives

- Optimization in ML problems requires being able to take derivatives (i.e., doing Calculus)
- What makes it tricky is that usually we are no longer doing optimization w.r.t. a single scalar variable but w.r.t. vectors or sometimes even matrices (thus need vector/matrix calculus)
- For some functions, derivatives are easy (can even be done by hand)
- Perhaps the most common, easy ones include derivatives of linear and quadratic functions

\[
\nabla_w [x^T w] = x
\]

\[
\nabla_w [w^T X w] = (X + X^T)w \quad \text{(where } X \text{ is } D \times D \text{ matrix)}
\]

\[
\nabla_w [w^T X w] = 2Xw \quad \text{(if } X \text{ is symmetric matrix)}
\]

- The “Matrix Cookbook” contains many derivative formulas (you can use that as a reference even if you don’t know how to compute derivative by hand)
- For more complicated functions, thankfully there exist tool that allow automatic differentiation
- But you should still have a good understanding of derivatives and be familiar with at least some basic results like the above (and some others from the Matrix Cookbook)
Convex Functions

- Convex functions have a unique optima
- Optimizing convex functions is usually easier than optimizing non-convex ones
- More on this when we look at optimization for ML later during the semester
Basics of Probability
and Probability Distributions
Informally, a random variable (r.v.) X denotes possible outcomes of an event. Can be **discrete** (i.e., finite many possible outcomes) or **continuous**

- Some examples of **discrete r.v.**
 - A random variable $X \in \{0, 1\}$ denoting outcomes of a coin-toss
 - A random variable $X \in \{1, 2, \ldots, 6\}$ denoting outcome of a dice roll

- Some examples of **continuous r.v.**
 - A random variable $X \in (0, 1)$ denoting the bias of a coin
 - A random variable X denoting heights of students in CS771A
 - A random variable X denoting time to get to your hall from the department
Discrete Random Variables

- For a discrete r.v. X, $p(x)$ denotes the probability that $p(X = x)$
- $p(x)$ is called the **probability mass function** (PMF)

$$
p(x) \geq 0
$$

$$
p(x) \leq 1
$$

$$
\sum_x p(x) = 1
$$
Continuous Random Variables

- For a continuous r.v. X, a probability $p(X = x)$ is meaningless.
- Instead we use $p(X = x)$ or $p(x)$ to denote the probability density at $X = x$.
- For a continuous r.v. X, we can only talk about probability within an interval $X \in (x, x + \delta x)$.
 - $p(x)\delta x$ is the probability that $X \in (x, x + \delta x)$ as $\delta x \to 0$.

The probability density $p(x)$ satisfies the following:

$$p(x) \geq 0 \quad \text{and} \quad \int_{x} p(x)dx = 1 \quad \text{(note: for continuous r.v., } p(x) \text{ can be } > 1)$$
A word about notation..

- $p(.)$ can mean different things depending on the context
 - $p(X)$ denotes the distribution (PMF/PDF) of an r.v. X
 - $p(X = x)$ or $p(x)$ denotes the **probability** or **probability density** at point x
- Actual meaning should be clear from the context (but be careful)
- Exercise the same care when $p(.)$ is a specific distribution (Bernoulli, Beta, Gaussian, etc.)
- The following means **drawing a random sample** from the distribution $p(X)$

 $$x \sim p(X)$$
Joint Probability Distribution

Joint probability distribution $p(X, Y)$ models probability of co-occurrence of two r.v. X, Y

For discrete r.v., the joint PMF $p(X, Y)$ is like a table (that sums to 1)

\[
\sum_x \sum_y p(X = x, Y = y) = 1
\]

For continuous r.v., we have joint PDF $p(X, Y)$

\[
\int_x \int_y p(X = x, Y = y) dx dy = 1
\]
Marginal Probability Distribution

- Intuitively, the probability distribution of one r.v. regardless of the value the other r.v. takes.
- For discrete r.v.'s: $p(X) = \sum_y p(X, Y = y)$, \hspace{1cm} $p(Y) = \sum_x p(X = x, Y)$
- For discrete r.v. it is the sum of the PMF table along the rows/columns.
- For continuous r.v.: $p(X) = \int_y p(X, Y = y)dy$, \hspace{1cm} $p(Y) = \int_x p(X = x, Y)dx$
- Note: Marginalization is also called “integrating out” (especially in Bayesian learning).
Conditional Probability Distribution

- Probability distribution of one r.v. given the value of the other r.v.
- Conditional probability $p(X|Y = y)$ or $p(Y|X = x)$: like taking a slice of $p(X, Y)$
- For a discrete distribution:

- For a continuous distribution\(^1\):

\(^1\)Picture courtesy: Computer vision: models, learning and inference (Simon Price)
Some Basic Rules

Sum rule: Gives the marginal probability distribution from joint probability distribution

- For discrete r.v.: \(p(X) = \sum_Y p(X, Y) \)
- For continuous r.v.: \(p(X) = \int_Y p(X, Y) \, dY \)

Product rule: \(p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y) \)

Bayes rule: Gives conditional probability

\[
p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}
\]

- For discrete r.v.: \(p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_Y p(X|Y)p(Y)} \)
- For continuous r.v.: \(p(Y|X) = \frac{p(X|Y)p(Y)}{\int_Y p(X|Y)p(Y) \, dY} \)

Also remember the **chain rule**

\[
p(X_1, X_2, \ldots, X_N) = p(X_1)p(X_2|X_1) \cdots p(X_N|X_1, \ldots, X_{N-1})
\]
CDF and Quantiles

- Cumulative distribution function (CDF): \(F(x) = p(X \leq x) \)

- \(\alpha \leq 1 \) quantile is defined as the \(x_\alpha \) s.t.

\[
p(X \leq x_\alpha) = \alpha
\]
Independence

- X and Y are independent ($X \perp \perp Y$) when knowing one tells nothing about the other

\[
p(X|Y = y) = p(X) \\
p(Y|X = x) = p(Y) \\
p(X, Y) = p(X)p(Y)
\]

- $X \perp \perp Y$ is also called **marginal independence**

- **Conditional independence** ($X \perp \perp Y|Z$): independence given the value of another r.v. Z

\[
p(X, Y|Z = z) = p(X|Z = z)p(Y|Z = z)
\]
Expectation

- **Expectation** or **mean** μ of an r.v. with PMF/PDF $p(X)$

\[
\mathbb{E}[X] = \sum_x x p(x) \quad \text{(for discrete distributions)}
\]

\[
\mathbb{E}[X] = \int_x x p(x) dx \quad \text{(for continuous distributions)}
\]

- **Note:** The definition applies to **functions of r.v.** too (e.g., $\mathbb{E}[f(X)]$)

- **Note:** Expectations are always w.r.t. the underlying probability distribution of the random variable involved, so sometimes we'll write this explicitly as $\mathbb{E}_p(.)$, unless it is clear from the context

- **Linearity of expectation**

\[
\mathbb{E}[\alpha f(X) + \beta g(Y)] = \alpha \mathbb{E}[f(X)] + \beta \mathbb{E}[g(Y)]
\]

(a very useful property, true even if X and Y are not independent)

- **Rule of iterated/total expectation**

\[
\mathbb{E}_{p(X)}[X] = \mathbb{E}_{p(Y)}[\mathbb{E}_{p(X|Y)}[X|Y]]
\]
Variance and Covariance

- **Variance** σ^2 (or “spread” around mean μ) of an r.v. with PMF/PDF $p(X)$
 \[
 \text{var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2
 \]

- **Standard deviation**: $\text{std}[X] = \sqrt{\text{var}[X]} = \sigma$

- For two scalar r.v.’s x and y, the **covariance** is defined by
 \[
 \text{cov}[x, y] = \mathbb{E} \{ (x - \mathbb{E}[x]) (y - \mathbb{E}[y]) \} = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]
 \]

- For vector r.v. x and y, the **covariance matrix** is defined as
 \[
 \text{cov}[x, y] = \mathbb{E} \left[\{ x - \mathbb{E}[x] \} \{ y^T - \mathbb{E}[y^T] \} \right] = \mathbb{E}[xy^T] - \mathbb{E}[x]\mathbb{E}[y^T]
 \]

- Cov. of components of a vector r.v. x: $\text{cov}[x] = \text{cov}[x, x]$

- **Note**: The definitions apply to functions of r.v. too (e.g., $\text{var}[f(X)]$)

- **Note**: Variance of sum of independent r.v.’s: $\text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$
KL Divergence

- Kullback-Leibler divergence between two probability distributions $p(X)$ and $q(X)$

\[
KL(p\|q) = \int p(X) \log \frac{p(X)}{q(X)} dX = -\int p(X) \log \frac{q(X)}{p(X)} dX \quad \text{(for continuous distributions)}
\]

\[
KL(p\|q) = \sum_{k=1}^{K} p(X = k) \log \frac{p(X = k)}{q(X = k)} \quad \text{(for discrete distributions)}
\]

- It is non-negative, i.e., $KL(p\|q) \geq 0$, and zero if and only if $p(X)$ and $q(X)$ are the same

- For some distributions, e.g., Gaussians, KL divergence has a closed form expression

- KL divergence is not symmetric, i.e., $KL(p\|q) \neq KL(q\|p)$
Entropy

- Entropy of a continuous/discrete distribution $p(X)$

\[H(p) = - \int p(X) \log p(X) dX \]

\[H(p) = - \sum_{k=1}^{K} p(X = k) \log p(X = k) \]

- In general, a peaky distribution would have a smaller entropy than a flat distribution

- Note that the KL divergence can be written in terms of expectation and entropy terms

\[KL(p||q) = \mathbb{E}_{p(X)}[- \log q(X)] - H(p) \]

- Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.
Transformation of Random Variables

Suppose \(y = f(x) = Ax + b \) be a linear function of an r.v. \(x \)

Suppose \(\mathbb{E}[x] = \mu \) and \(\text{cov}[x] = \Sigma \)

- **Expectation of \(y \)**
 \[
 \mathbb{E}[y] = \mathbb{E}[Ax + b] = A\mu + b
 \]

- **Covariance of \(y \)**
 \[
 \text{cov}[y] = \text{cov}[Ax + b] = A\Sigma A^T
 \]

Likewise if \(y = f(x) = a^T x + b \) is a scalar-valued linear function of an r.v. \(x \):

- \(\mathbb{E}[y] = \mathbb{E}[a^T x + b] = a^T \mu + b \)
- \(\text{var}[y] = \text{var}[a^T x + b] = a^T \Sigma a \)

Another very useful property worth remembering
Common Probability Distributions

Important: We will use these extensively to model data as well as parameters

Some **discrete distributions** and what they can model:
- **Bernoulli:** Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss
- **Binomial:** Bounded non-negative integers, e.g., # of heads in \(n \) coin tosses
- **Multinomial:** One of \(K (>2) \) possibilities, e.g., outcome of a dice roll
- **Poisson:** Non-negative integers, e.g., # of words in a document
- .. and many others

Some **continuous distributions** and what they can model:
- **Uniform:** numbers defined over a fixed range
- **Beta:** numbers between 0 and 1, e.g., probability of head for a biased coin
- **Gamma:** Positive unbounded real numbers
- **Dirichlet:** vectors that sum of 1 (fraction of data points in different clusters)
- **Gaussian:** real-valued numbers or real-valued vectors
- .. and many others
Discrete Distributions
Bernoulli Distribution

- Distribution over a binary r.v. \(x \in \{0, 1\} \), like a coin-toss outcome
- Defined by a probability parameter \(p \in (0, 1) \)

\[
P(x = 1) = p
\]

- Distribution defined as: \(\text{Bernoulli}(x; p) = p^x(1 - p)^{1-x} \)

- Mean: \(\mathbb{E}[x] = p \)
- Variance: \(\text{var}[x] = p(1 - p) \)
Binomial Distribution

- Distribution over number of successes \(m \) (an r.v.) in a number of trials
- Defined by two parameters: total number of trials \(N \) and probability of each success \(p \in (0, 1) \)
- Can think of Binomial as multiple independent Bernoulli trials
- Distribution defined as
 \[
 \text{Binomial}(m; N, p) = \binom{N}{m} p^m (1 - p)^{N-m}
 \]

- Mean: \(\mathbb{E}[m] = Np \)
- Variance: \(\text{var}[m] = Np(1 - p) \)
Multinoulli Distribution

- Also known as the **categorical distribution** (models categorical variables)
- Think of a random assignment of an item to one of K bins - a K dim. binary r.v. x with single 1 (i.e., $\sum_{k=1}^{K} x_k = 1$): **Modeled by a multinoulli**

\[
\begin{bmatrix}
0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0
\end{bmatrix}
\]

- Let vector $p = [p_1, p_2, \ldots, p_K]$ define the probability of going to each bin
 - $p_k \in (0, 1)$ is the probability that $x_k = 1$ (assigned to bin k)
 - $\sum_{k=1}^{K} p_k = 1$

- The multinoulli is defined as: $\text{Multinoulli}(\mathbf{x}; \mathbf{p}) = \prod_{k=1}^{K} p_k^{x_k}$
- Mean: $\mathbb{E}[x_k] = p_k$
- Variance: $\text{var}[x_k] = p_k(1 - p_k)$
Multinomial Distribution

- Think of repeating the Multinoulli N times
- Like distributing N items to K bins. Suppose x_k is count in bin k

 $$0 \leq x_k \leq N \quad \forall \ k = 1, \ldots, K, \quad \sum_{k=1}^{K} x_k = N$$

- Assume probability of going to each bin: $\mathbf{p} = [p_1, p_2, \ldots, p_K]$
- Multinomial models the bin allocations via a discrete vector \mathbf{x} of size K

 $$[x_1 \ x_2 \ \ldots \ x_{k-1} \ x_k \ x_{k-1} \ldots \ x_K]$$

- Distribution defined as

 $$\text{Multinomial}(\mathbf{x}; N, \mathbf{p}) = \binom{N}{x_1 \, x_2 \ldots \, x_K} \prod_{k=1}^{K} p_k^{x_k}$$

- Mean: $\mathbb{E}[x_k] = Np_k$
- Variance: $\text{var}[x_k] = Np_k(1 - p_k)$
- Note: For $N = 1$, multinomial is the same as multinoulli
Poisson Distribution

- Used to model a non-negative integer (count) r.v. \(k \)
- Examples: number of words in a document, number of events in a fixed interval of time, etc.
- Defined by a positive rate parameter \(\lambda \)
- Distribution defined as
 \[
 \text{Poisson}(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!} \quad k = 0, 1, 2, \ldots
 \]

- Mean: \(\mathbb{E}[k] = \lambda \)
- Variance: \(\text{var}[k] = \lambda \)
The Empirical Distribution

- Given a set of points ϕ_1, \ldots, ϕ_K, the empirical distribution is a discrete distribution defined as

$$p_{emp}(A) = \frac{1}{K} \sum_{k=1}^{K} \delta_{\phi_k}(A)$$

where $\delta_{\phi}(.)$ is the dirac function located at ϕ, s.t.

$$\delta_{\phi}(A) = \begin{cases}
1 & \text{if } \phi \in A \\
0 & \text{if } \phi \notin A
\end{cases}$$

- The “weighted” version of the empirical distribution is

$$p_{emp}(A) = \sum_{k=1}^{K} w_k \delta_{\phi_k}(A) \quad \text{(where } \sum_{k=1}^{K} w_k = 1)$$

and the weights and points $(w_k, \phi_k)_{k=1}^{K}$ together define this discrete distribution.
Continuous Distributions
Uniform Distribution

- Models a continuous r.v. x distributed uniformly over a finite interval $[a, b]$

$$\text{Uniform}(x; a, b) = \frac{1}{b - a}$$

- Mean: $E[x] = \frac{(b+a)}{2}$
- Variance: $\text{var}[x] = \frac{(b-a)^2}{12}$
Beta Distribution

- Used to model an r.v. \(p \) between 0 and 1 (e.g., a probability)
- Defined by two shape parameters \(\alpha \) and \(\beta \)

\[
\text{Beta}(p; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1}(1 - p)^{\beta-1}
\]

- Mean: \(\mathbb{E}[p] = \frac{\alpha}{\alpha + \beta} \)
- Variance: \(\text{var}[p] = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \)

- Often used to model the probability parameter of a Bernoulli or Binomial (also conjugate to these distributions)
Gamma Distribution

- Used to model positive real-valued r.v. x
- Defined by a **shape parameters** k and a **scale parameter** θ

\[
\text{Gamma}(x; k, \theta) = \frac{x^{k-1}e^{-\frac{x}{\theta}}}{\theta^k \Gamma(k)}
\]

- Mean: $\mathbb{E}[x] = k\theta$
- Variance: $\text{var}[x] = k\theta^2$
- Often used to model the rate parameter of Poisson or exponential distribution (conjugate to both), or to model the inverse variance (precision) of a Gaussian (conjugate to Gaussian if mean known)

Note: There is another equivalent parameterization of gamma in terms of **shape** and **rate** parameters ($\text{rate} = 1/\text{scale}$). Another related distribution: Inverse gamma.
Dirichlet Distribution

- Used to model non-negative r.v. vectors $\mathbf{p} = [p_1, \ldots, p_K]$ that sum to 1

 $$0 \leq p_k \leq 1, \quad \forall k = 1, \ldots, K \quad \text{and} \quad \sum_{k=1}^{K} p_k = 1$$

- Equivalent to a distribution over the $K-1$ dimensional simplex

- Defined by a K size vector $\alpha = [\alpha_1, \ldots, \alpha_K]$ of positive reals

- Distribution defined as

 $$\text{Dirichlet}(\mathbf{p}; \alpha) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} p_k^{\alpha_k-1}$$

- Often used to model the probability vector parameters of Multinoulli/Multinomial distribution

- Dirichlet is conjugate to Multinoulli/Multinomial

- **Note**: Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of Gamma r.v.’s gives an r.v. that is Dirichlet distributed.
Dirichlet Distribution

- For \(p = [p_1, p_2, \ldots, p_K] \) drawn from \(\text{Dirichlet}(\alpha_1, \alpha_2, \ldots, \alpha_K) \)
 - Mean: \(\mathbb{E}[p_k] = \frac{\alpha_k}{\sum_{k=1}^{K} \alpha_k} \)
 - Variance: \(\text{var}[p_k] = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)} \) where \(\alpha_0 = \sum_{k=1}^{K} \alpha_k \)

- Note: \(p \) is a point on \((K - 1)\)-simplex
- Note: \(\alpha_0 = \sum_{k=1}^{K} \alpha_k \) controls how peaked the distribution is
- Note: \(\alpha_k \)'s control where the peak(s) occur

Plot of a 3 dim. Dirichlet (2 dim. simplex) for various values of \(\alpha \):
Now comes the Gaussian (Normal) distribution..
Univariate Gaussian Distribution

- Distribution over real-valued scalar r.v. x
- Defined by a scalar **mean** μ and a scalar **variance** σ^2
- Distribution defined as
 $$N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Mean: $\mathbb{E}[x] = \mu$
- Variance: $\text{var}[x] = \sigma^2$
- Precision (inverse variance) $\beta = 1/\sigma^2$
Multivariate Gaussian Distribution

- Distribution over a multivariate r.v. vector $x \in \mathbb{R}^D$ of real numbers
- Defined by a **mean vector** $\mu \in \mathbb{R}^D$ and a $D \times D$ **covariance matrix** Σ

\[
\mathcal{N}(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)}
\]

- The covariance matrix Σ must be symmetric and positive definite
 - All eigenvalues are positive
 - $z^\top \Sigma z > 0$ for any real vector z
- Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the **precision matrix** $\Lambda = \Sigma^{-1}$
Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full.

[Image of covariance matrices with examples]

- Spherical covariances: $\mu = \begin{bmatrix} 2.0 \\ 1.0 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 0.5 & 0.0 \\ 0.0 & 0.5 \end{bmatrix}$
- Diagonal covariances: $\mu = \begin{bmatrix} -2.0 \\ 2.0 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 0.3 & 0.0 \\ 0.0 & 1.8 \end{bmatrix}$
- Full covariances: $\mu = \begin{bmatrix} 1.0 \\ 0.0 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 0.8 & 0.7 \\ 0.7 & 1.3 \end{bmatrix}$

- $\mu = \begin{bmatrix} 2.0 \\ -1.6 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 2.0 & 0.0 \\ 0.0 & 2.0 \end{bmatrix}$
- $\mu = \begin{bmatrix} 0.0 \\ 2.0 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 4.0 & 0.0 \\ 0.0 & 1.8 \end{bmatrix}$
- $\mu = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 3.9 & 0.0 \\ 0.0 & -0.5 \end{bmatrix}$

- $\mu = \begin{bmatrix} 0.0 \\ -0.5 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 2.0 & -0.5 \\ -0.5 & 1.1 \end{bmatrix}$
Some nice properties of the Gaussian distribution..
Multivariate Gaussian: Marginals and Conditionals

- Given \(x \) having multivariate Gaussian distribution \(\mathcal{N}(x|\mu, \Sigma) \) with \(\Lambda = \Sigma^{-1} \). Suppose

\[
\begin{align*}
x &= \begin{pmatrix} x_a \\ x_b \end{pmatrix}, & \mu &= \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix} \\
\Sigma &= \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}, & \Lambda &= \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}
\end{align*}
\]

- The marginal distribution is simply

\[
p(x_a) = \mathcal{N}(x_a|\mu_a, \Sigma_{aa})
\]

- The conditional distribution is given by

\[
p(x_a|x_b) = \mathcal{N}(x|\mu_{a|b}, \Lambda_{aa}^{-1})
\]

\[
\mu_{a|b} = \mu_a - \Lambda_{aa}^{-1}\Lambda_{ab}(x_b - \mu_b)
\]

Thus marginals and conditionals of Gaussians are Gaussians
Multivariate Gaussian: Marginals and Conditionals

- Given the conditional of an r.v. y and marginal of r.v. x, y is conditioned on

\[
p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})
\]
\[
p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})
\]

- Marginal of y and “reverse” conditional are given by

\[
p(x|y) = \mathcal{N}(x|\Sigma\{A^T L(y - b) + \Lambda \mu\}, \Sigma)
\]
\[
p(y) = \mathcal{N}(y|A\mu + b, L^{-1} + AA^{-1}A^T)
\]

where $\Sigma = (\Lambda + A^T LA)^{-1}$

- Note that the “reverse conditional” $p(x|y)$ is basically the posterior of x is the prior is $p(x)$

- Also note that the marginal $p(y)$ is the predictive distribution of y after integrating out x

- Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very handy for computing marginal likelihoods.
Gaussians: Product of Gaussians

Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian

\[N(x; \mu, \Sigma) N(x; \nu, P) = \frac{1}{Z} N(x; \omega, T), \]

where

\[T = (\Sigma^{-1} + P^{-1})^{-1} \]
\[\omega = T(\Sigma^{-1} \mu + P^{-1} \nu) \]
\[Z^{-1} = N(\mu; \nu, \Sigma + P) = N(\nu; \mu, \Sigma + P) \]
Given a \(x \in \mathbb{R}^d \) with a multivariate Gaussian distribution
\[
\mathcal{N}(x; \mu, \Sigma)
\]
Consider a linear transform of \(x \) into \(y \in \mathbb{R}^D \)
\[
y = Ax + b
\]
where \(A \) is \(D \times d \) and \(b \in \mathbb{R}^D \)
\(y \in \mathbb{R}^D \) will have a multivariate Gaussian distribution
\[
\mathcal{N}(y; A\mu + b, A\Sigma A^\top)
\]
Some Other Important Distributions

- **Wishart** Distribution and **Inverse Wishart** (IW) Distribution: Used to model $D \times D$ p.s.d. matrices
 - Wishart often used as a conjugate prior for modeling precision matrices, IW for covariance matrices
 - For $D = 1$, Wishart is the same as gamma dist., IW is the same as inverse gamma (IG) dist.

- **Normal-Wishart** Distribution: Used to model mean and precision matrix of a multivar. Gaussian
 - **Normal-Inverse Wishart** (NIW): Used to model mean and cov. matrix of a multivar. Gaussian
 - For $D = 1$, the corresponding distr. are Normal-Gamma and Normal-Inverse Gamma (NIG)

- **Student-t** Distribution (a more robust version of Normal distribution)
 - Can be thought of as a mixture of infinite many Gaussians with different precisions (or a single Gaussian with its precision/precision matrix given a gamma/Wishart prior and integrated out)

Please refer to PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more details