
Maths Refresher

Piyush Rai

Introduction to Machine Learning (CS771A)

August 4, 2018

Intro to Machine Learning (CS771A) Maths Refresher 1



Basics of Linear Algebra
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Vectors and Matrices

Vectors (column vectors and row vectors) and their transposes

a =

a1a2
a3

 , a> =
[
a1 a2 a3

]
, b =

[
b1 b2 b3

]
, b> =

b1b2
b3


We will assume vectors of be column vectors (unless specified otherwise)

Vector with all 0s except a single 1 is called elementary vector (or “one-hot” vector in ML)

Matrix and its transpose (shown for 3× 3 matrices)

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , A> =

a11 a21 a31
a12 a22 a32
a13 a23 a33


For a symmetric matrix (must be square) A = A>

Diagonal and identity matrices have nonzeros only along the diagonals

Should know the basic rules of vector addition, matrix addition, etc (won’t list here)
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Inner Product

Inner product (or dot product) of two vectors a ∈ RD and b ∈ RD is a scalar

c = a>b =
D∑

d=1

adbd

Inner product is a measure of similarity of two vectors

Inner product is zero if a and b are orthogonal to each other

Inner product of two vector of unit length is the same as cosine similarity

A more general form of inner product: c = a>Mb (here M is D × D)

M can be diagonal or full matrix

For identity M, it becomes the standard inner product

Euclidean distance between two vectors can be also written in terms of an inner product

d(a,b) =
√

(a − b)>(a − b) =

√
a>a + b>b − 2a>b
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Orthogonal/Orthonormal Vectors and Matrices

A set of vectors a1, a2, . . . , aN is called orthogonal if

a>i aj = 0 ∀i 6= j

Moreover, a set of orthogonal vectors a1, a2, . . . , aN is called orthonormal if

a>i ai = 1 ∀i

A matrix with orthonormal columns is called orthogonal

For a square orthogonal matrix A, we have AA> = A>A = I
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Matrix-Vector/Matrix-Matrix Product as Inner Product

Important to be conversant with these. Some basic operations worth keeping in mind

We routinely encounter such operations in many ML problems
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Outer Product

Outer product of of two vectors a ∈ RD and b ∈ RD is a matrix. For 3-dim vectors, we’ll have

C = ab> =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

 (note: C is a rank-1 matrix)

Matrix rank: Linearly indep. number of rows/columns

Matrix multiplications can also be written as a sum of outer products (sum of rank-1 matrices)

AB> =
K∑

k=1

akb>k

where ak and bk denote the k-th column of A (size: D × K ) and B (size: D × K ), respectively,
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Linear Combination of Vectors as a Matrix-Vector Product

Linear combination of a set of D × 1 vectors b1,b2, . . . ,bN is another vector of the same size

c = α1b1 + α2b2 + . . . αNbN

The αn’s are scalar-valued combination weights

The above can also be compactly written in the matrix-vector product form c = Bα

= Bc
*

where B = [b1,b2, . . .bN ] is a D×N matrix, and α = [α1, α2, . . . , αN ]> is an N × 1 column vector

Note that c can be also seen as a linear transformation of α using B

Such matrix-vector product are very common in ML problems (especially in linear models)
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Vector and Matrix Norms

Roughly speaking, for a vector x , the norm is its “length”

Some common norms: `2 norm (Euclidean norm), `1 form, `∞ norm, `p norm (p ≥ 1)

||x ||2 =

√√√√ N∑
n=1

x2n , ||x ||1 =
N∑

n=1

|xn|, ||x ||∞ = max
1≤n≤N

|xn|, ||x ||p =

(
N∑

n=1

|xn|p
)1/p

Note: The square of `2 norm is the inner product of the vector with itself ||x ||22 = x>x

Note: ||x ||p for p < 1 technically not a norm (doesn’t satisfy all the formal properties of a norm)

Nevertheless it is often used in some ML problems (has some interesting properties)

Norms for a matrix A (say of size N ×M) can also be defined, e.g.,

Frobenius norm: ||A||F =
√∑N

i=1

∑M
j=1 A

2
ij =

√
trace(A>A)

Many matrix norms can be written in terms of in terms of the singular values of A
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Hyperplanes

An important concept in ML, especially for understanding classification problems

Divides a vector space into two halves (positive and negative halfspaces)
Positive Halfspace

Negative Halfspace

Assuming 3-dim space, it can be defined by a vector w = [w1,w2,w3] and scalar b

w is the vector pointing outward to the hyperplane

b is the real-valued “bias” if the hyperplane doesn’t pass through the origin
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Some other things you should know about..

Eigenvalues, rank, etc. for matrices

Trace of matrix

Determiant of matrix (and relation to eigenvalues etc)

Inverse of matrices

Positive definite and positive semi-definite matrices (non-negative eigenvalues)

“Matrix Cookbook” (will provide link) is a nice source of many properties of matrices
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Multivariate Calculus and Optimization
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Multivariate Calculus and Optimization

Most of ML problems boil down to solving an optimization problem

We will usually have to optimize a function f : RD → R w.r.t some variable w ∈ RD

Gradient of f w.r.t. w denotes the direction of steepest change at w , and is defined as

∇f =


∂f
∂w1

...
∂f
∂wD

 where [∇f ]i =
∂f

∂wi

For multivariate functions f : RD → RM , we can likewise define the Jacobian matrix

Jf =


∂f1
∂w1

· · · ∂f1
∂wD

...
. . .

...
∂fM
∂w1

· · · ∂fM
∂wD

 where [Jf ]ij =
∂fi
∂wj

Can also define second derivatives (called Hessian): derivative of gradient/Jacobian
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Taking Derivatives

Optimization in ML problems requires being able to take derivatives (i.e., doing Calculus)

What makes it tricky is that usually we are no longer doing optimization w.r.t. a single scalar
variable but w.r.t. vectors or sometimes even matrices (thus need vector/matrix calculus)

For some functions, derivatives are easy (can even be done by hand)

Perhaps the most common, easy ones include derivatives of linear and quadratic functions

∇w [x>w ] = x
∇w [w>Xw ] = (X + X>)w (where X is D × D matrix)

∇w [w>Xw ] = 2Xw (if X is symmetric matrix)

The “Matrix Cookbook” contains many derivative formulas (you can use that as a reference even if
you don’t know how to compute derivative by hand)

For more complicated functions, thankfully there exist tool that allow automatic differentiation

But you should still have a good understanding of derivatives and be familiar with at least some
basic results like the above (and some others from the Matrix Cookbook)
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Convex Functions

Convex functions have a unique optima

A Convex Function A Non-convex Function

Optimizing convex functions is usually easier than optimizing non-convex ones

More on this when we look at optimization for ML later during the semester

Intro to Machine Learning (CS771A) Maths Refresher 15



Basics of Probability
and Probability Distributions
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Random Variables

Informally, a random variable (r.v.) X denotes possible outcomes of an event

Can be discrete (i.e., finite many possible outcomes) or continuous

Some examples of discrete r.v.

A random variable X ∈ {0, 1} denoting outcomes of a coin-toss
A random variable X ∈ {1, 2, . . . , 6} denoteing outcome of a dice roll

Some examples of continuous r.v.

A random variable X ∈ (0, 1) denoting the bias of a coin
A random variable X denoting heights of students in CS771A
A random variable X denoting time to get to your hall from the department
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Discrete Random Variables

For a discrete r.v. X , p(x) denotes the probability that p(X = x)

p(x) is called the probability mass function (PMF)

p(x) ≥ 0

p(x) ≤ 1∑
x

p(x) = 1
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Continuous Random Variables

For a continuous r.v. X , a probability p(X = x) is meaningless

Instead we use p(X = x) or p(x) to denote the probability density at X = x

For a continuous r.v. X , we can only talk about probability within an interval X ∈ (x , x + δx)

p(x)δx is the probability that X ∈ (x , x + δx) as δx → 0

The probability density p(x) satisfies the following

p(x) ≥ 0 and

∫
x

p(x)dx = 1 (note: for continuous r.v., p(x) can be > 1)
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A word about notation..

p(.) can mean different things depending on the context

p(X ) denotes the distribution (PMF/PDF) of an r.v. X

p(X = x) or p(x) denotes the probability or probability density at point x

Actual meaning should be clear from the context (but be careful)

Exercise the same care when p(.) is a specific distribution (Bernoulli, Beta, Gaussian, etc.)

The following means drawing a random sample from the distribution p(X )

x ∼ p(X )
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Joint Probability Distribution

Joint probability distribution p(X ,Y ) models probability of co-occurrence of two r.v. X , Y

For discrete r.v., the joint PMF p(X ,Y ) is like a table (that sums to 1)∑
x

∑
y

p(X = x ,Y = y) = 1

For continuous r.v., we have joint PDF p(X ,Y )∫
x

∫
y

p(X = x ,Y = y)dxdy = 1
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Marginal Probability Distribution

Intuitively, the probability distribution of one r.v. regardless of the value the other r.v. takes

For discrete r.v.’s: p(X ) =
∑

y p(X ,Y = y), p(Y ) =
∑

x p(X = x ,Y )

For discrete r.v. it is the sum of the PMF table along the rows/columns

For continuous r.v.: p(X ) =
∫
y
p(X ,Y = y)dy , p(Y ) =

∫
x
p(X = x ,Y )dx

Note: Marginalization is also called “integrating out” (especially in Bayesian learning)
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Conditional Probability Distribution

- Probability distribution of one r.v. given the value of the other r.v.

- Conditional probability p(X |Y = y) or p(Y |X = x): like taking a slice of p(X ,Y )

- For a discrete distribution:

- For a continuous distribution1:

1
Picture courtesy: Computer vision: models, learning and inference (Simon Price)
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Some Basic Rules

Sum rule: Gives the marginal probability distribution from joint probability distribution

For discrete r.v.: p(X ) =
∑

Y p(X ,Y )

For continuous r.v.: p(X ) =
∫
Y
p(X ,Y )dY

Product rule: p(X ,Y ) = p(Y |X )p(X ) = p(X |Y )p(Y )

Bayes rule: Gives conditional probability

p(Y |X ) =
p(X |Y )p(Y )

p(X )

For discrete r.v.: p(Y |X ) = p(X |Y )p(Y )∑
Y p(X |Y )p(Y )

For continuous r.v.: p(Y |X ) = p(X |Y )p(Y )∫
Y p(X |Y )p(Y )dY

Also remember the chain rule

p(X1,X2, . . . ,XN) = p(X1)p(X2|X1) . . . p(XN |X1, . . . ,XN−1)
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CDF and Quantiles

Cumulative distribution function (CDF): F (x) = p(X ≤ x)

α ≤ 1 quantile is defined as the xα s.t.

p(X ≤ xα) = α
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Independence

X and Y are independent (X ⊥⊥ Y ) when knowing one tells nothing about the other

p(X |Y = y) = p(X )

p(Y |X = x) = p(Y )

p(X ,Y ) = p(X )p(Y )

X ⊥⊥ Y is also called marginal independence

Conditional independence (X ⊥⊥ Y |Z ): independence given the value of another r.v. Z

p(X ,Y |Z = z) = p(X |Z = z)p(Y |Z = z)
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Expectation

Expectation or mean µ of an r.v. with PMF/PDF p(X )

E[X ] =
∑
x

xp(x) (for discrete distributions)

E[X ] =

∫
x

xp(x)dx (for continuous distributions)

Note: The definition applies to functions of r.v. too (e.g., E[f (X )])

Note: Expectations are always w.r.t. the underlying probability distribution of the random variable
involved, so sometimes we’ll write this explicitly as Ep()[.], unless it is clear from the context

Linearity of expectation

E[αf (X ) + βg(Y )] = αE[f (X )] + βE[g(Y )]

(a very useful property, true even if X and Y are not independent)

Rule of iterated/total expectation

Ep(X )[X ] = Ep(Y )[Ep(X |Y )[X |Y ]]

Intro to Machine Learning (CS771A) Maths Refresher 27



Variance and Covariance

Variance σ2 (or “spread” around mean µ) of an r.v. with PMF/PDF p(X )

var[X ] = E[(X − µ)2] = E[X 2]− µ2

Standard deviation: std[X ] =
√

var[X ] = σ

For two scalar r.v.’s x and y , the covariance is defined by

cov[x , y ] = E [{x − E[x ]}{y − E[y ]}] = E[xy ]− E[x ]E[y ]

For vector r.v. x and y , the covariance matrix is defined as

cov[x , y ] = E
[
{x − E[x ]}{yT − E[yT ]}

]
= E[xyT ]− E[x ]E[y>]

Cov. of components of a vector r.v. x : cov[x ] = cov[x , x ]

Note: The definitions apply to functions of r.v. too (e.g., var[f (X )])

Note: Variance of sum of independent r.v.’s: var[X + Y ] = var[X ] + var[Y ]
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KL Divergence

KullbackLeibler divergence between two probability distributions p(X ) and q(X )

KL(p||q) =

∫
p(X ) log

p(X )

q(X )
dX = −

∫
p(X ) log

q(X )

p(X )
dX (for continuous distributions)

KL(p||q) =
K∑

k=1

p(X = k) log
p(X = k)

q(X = k)
(for discrete distributions)

It is non-negative, i.e., KL(p||q) ≥ 0, and zero if and only if p(X ) and q(X ) are the same

For some distributions, e.g., Gaussians, KL divergence has a closed form expression

KL divergence is not symmetric, i.e., KL(p||q) 6= KL(q||p)

Intro to Machine Learning (CS771A) Maths Refresher 29



Entropy

Entropy of a continuous/discrete distribution p(X )

H(p) = −
∫

p(X ) log p(X )dX

H(p) = −
K∑

k=1

p(X = k) log p(X = k)

In general, a peaky distribution would have a smaller entropy than a flat distribution

Note that the KL divergence can be written in terms of expetation and entropy terms

KL(p||q) = Ep(X )[− log q(X )]− H(p)

Some other definition to keep in mind: conditional entropy, joint entropy, mutual information, etc.
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Transformation of Random Variables

Suppose y = f (x) = Ax + b be a linear function of an r.v. x

Suppose E[x ] = µ and cov[x ] = Σ

Expectation of y
E[y ] = E[Ax + b] = Aµ + b

Covariance of y
cov[y ] = cov[Ax + b] = AΣAT

Likewise if y = f (x) = aTx + b is a scalar-valued linear function of an r.v. x :

E[y ] = E[aTx + b] = aTµ + b

var[y ] = var[aTx + b] = aTΣa

Another very useful property worth remembering
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Common Probability Distributions

Important: We will use these extensively to model data as well as parameters

Some discrete distributions and what they can model:

Bernoulli: Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss

Binomial: Bounded non-negative integers, e.g., # of heads in n coin tosses

Multinomial: One of K (>2) possibilities, e.g., outcome of a dice roll

Poisson: Non-negative integers, e.g., # of words in a document

.. and many others

Some continuous distributions and what they can model:

Uniform: numbers defined over a fixed range

Beta: numbers between 0 and 1, e.g., probability of head for a biased coin

Gamma: Positive unbounded real numbers

Dirichlet: vectors that sum of 1 (fraction of data points in different clusters)

Gaussian: real-valued numbers or real-valued vectors

.. and many others
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Discrete Distributions
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Bernoulli Distribution

Distribution over a binary r.v. x ∈ {0, 1}, like a coin-toss outcome

Defined by a probability parameter p ∈ (0, 1)

P(x = 1) = p

Distribution defined as: Bernoulli(x ; p) = px(1− p)1−x

Mean: E[x ] = p

Variance: var[x ] = p(1− p)

Intro to Machine Learning (CS771A) Maths Refresher 34



Binomial Distribution

Distribution over number of successes m (an r.v.) in a number of trials

Defined by two parameters: total number of trials (N) and probability of each success p ∈ (0, 1)

Can think of Binomial as multiple independent Bernoulli trials

Distribution defined as
Binomial(m;N, p) =

(
N

m

)
pm(1− p)N−m

Mean: E[m] = Np

Variance: var[m] = Np(1− p)
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Multinoulli Distribution

Also known as the categorical distribution (models categorical variables)

Think of a random assignment of an item to one of K bins - a K dim. binary r.v. x with single 1
(i.e.,

∑K
k=1 xk = 1): Modeled by a multinoulli

[0 0 0 . . . 0 1 0 0]︸ ︷︷ ︸
length = K

Let vector p = [p1, p2, . . . , pK ] define the probability of going to each bin

pk ∈ (0, 1) is the probability that xk = 1 (assigned to bin k)∑K
k=1 pk = 1

The multinoulli is defined as: Multinoulli(x ; p) =
∏K

k=1 p
xk
k

Mean: E[xk ] = pk

Variance: var[xk ] = pk(1− pk)
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Multinomial Distribution

Think of repeating the Multinoulli N times

Like distributing N items to K bins. Suppose xk is count in bin k

0 ≤ xk ≤ N ∀ k = 1, . . . ,K ,
K∑

k=1

xk = N

Assume probability of going to each bin: p = [p1, p2, . . . , pK ]

Multonomial models the bin allocations via a discrete vector x of size K

[x1 x2 . . . xk−1 xk xk−1 . . . xK ]

Distribution defined as

Multinomial(x ;N,p) =

(
N

x1x2 . . . xK

) K∏
k=1

pxkk

Mean: E[xk ] = Npk

Variance: var[xk ] = Npk(1− pk)

Note: For N = 1, multinomial is the same as multinoulli
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Poisson Distribution

Used to model a non-negative integer (count) r.v. k

Examples: number of words in a document, number of events in a fixed interval of time, etc.

Defined by a positive rate parameter λ

Distribution defined as
Poisson(k ;λ) =

λke−λ

k!
k = 0, 1, 2, . . .

Mean: E[k] = λ

Variance: var[k] = λ
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The Empirical Distribution

Given a set of points φ1, . . . , φK , the empirical distribution is a discrete distribution defined as

pemp(A) =
1

K

K∑
k=1

δφk
(A)

where δφ(.) is the dirac function located at φ, s.t.

δφ(A) =

{
1 if φ ∈ A

0 if φ ∈ A

The “weighted” version of the empirical distribution is

pemp(A) =
K∑

k=1

wkδφk
(A) (where

K∑
k=1

wk = 1)

and the weights and points (wk , φk)Kk=1 together define this discrete distribution
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Continuous Distributions
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Uniform Distribution

Models a continuous r.v. x distributed uniformly over a finite interval [a, b]

Uniform(x ; a, b) =
1

b − a

Mean: E[x ] = (b+a)
2

Variance: var[x ] = (b−a)2
12
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Beta Distribution

Used to model an r.v. p between 0 and 1 (e.g., a probability)

Defined by two shape parameters α and β

Beta(p;α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

Mean: E[p] = α
α+β

Variance: var[p] = αβ
(α+β)2(α+β+1)

Often used to model the probability parameter of a Bernoulli or Binomial (also conjugate to these
distributions)
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Gamma Distribution

Used to model positive real-valued r.v. x

Defined by a shape parameters k and a scale parameter θ

Gamma(x ; k , θ) =
xk−1e−

x
θ

θkΓ(k)

Mean: E[x ] = kθ

Variance: var[x ] = kθ2

Often used to model the rate parameter of Poisson or exponential distribution (conjugate to both),
or to model the inverse variance (precision) of a Gaussian (conjuate to Gaussian if mean known)

Note: There is another equivalent parameterization of gamma in terms of shape and rate parameters (rate = 1/scale). Another related distribution: Inverse gamma.
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Dirichlet Distribution

Used to model non-negative r.v. vectors p = [p1, . . . , pK ] that sum to 1

0 ≤ pk ≤ 1, ∀k = 1, . . . ,K and
K∑

k=1

pk = 1

Equivalent to a distribution over the K − 1 dimensional simplex

Defined by a K size vector α = [α1, . . . , αK ] of positive reals

Distribution defined as
Dirichlet(p;α) =

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

pαk−1
k

Often used to model the probability vector parameters of Multinoulli/Multinomial distribution

Dirichlet is conjugate to Multinoulli/Multinomial

Note: Dirichlet can be seen as a generalization of the Beta distribution. Normalizing a bunch of
Gamma r.v.’s gives an r.v. that is Dirichlet distributed.
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Dirichlet Distribution

- For p = [p1, p2, . . . , pK ] drawn from Dirichlet(α1, α2, . . . , αK )

Mean: E[pk ] = αk∑K
k=1 αk

Variance: var[pk ] = αk (α0−αk

α2
0(α0+1)

where α0 =
∑K

k=1 αk

- Note: p is a point on (K − 1)-simplex

- Note: α0 =
∑K

k=1 αk controls how peaked the distribution is

- Note: αk ’s control where the peak(s) occur

Plot of a 3 dim. Dirichlet (2 dim. simplex) for various values of α:
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Now comes the
Gaussian (Normal) distribution..
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Univariate Gaussian Distribution

Distribution over real-valued scalar r.v. x

Defined by a scalar mean µ and a scalar variance σ2

Distribution defined as
N (x ;µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2

Mean: E[x ] = µ

Variance: var[x ] = σ2

Precision (inverse variance) β = 1/σ2
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Multivariate Gaussian Distribution

Distribution over a multivariate r.v. vector x ∈ RD of real numbers

Defined by a mean vector µ ∈ RD and a D × D covariance matrix Σ

N (x ;µ,Σ) =
1√

(2π)D |Σ|
e−

1
2 (x−µ)>Σ−1(x−µ)

The covariance matrix Σ must be symmetric and positive definite

All eigenvalues are positive

z>Σz > 0 for any real vector z
Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix, i.e., the
precision matrix Λ = Σ−1
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Multivariate Gaussian: The Covariance Matrix

The covariance matrix can be spherical, diagonal, or full

Picture courtesy: Computer vision: models, learning and inference (Simon Price)
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Some nice properties of the
Gaussian distribution..
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Multivariate Gaussian: Marginals and Conditionals

Given x having multivariate Gaussian distribution N (x |µ,Σ) with Λ = Σ−1. Suppose

The marginal distribution is simply

p(xa) = N (xa|µa,Σaa)

The conditional distribution is given by

Thus marginals and conditionals
of Gaussians are Gaussians
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Multivariate Gaussian: Marginals and Conditionals

Given the conditional of an r.v. y and marginal of r.v. x , y is conditioned on

Marginal of y and “reverse” conditional are given by

where Σ = (Λ + A>LA)−1

Note that the “reverse conditional” p(x |y) is basically the posterior of x is the prior is p(x)

Also note that the marginal p(y) is the predictive distribution of y after integrating out x

Very useful property for probabilistic models with Gaussian likelihoods and/or priors. Also very
handly for computing marginal likelihoods.
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Gaussians: Product of Gaussians

Pointwise multiplication of two Gaussians is another (unnormalized) Gaussian
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Multivariate Gaussian: Linear Transformations

Given a x ∈ Rd with a multivariate Gaussian distribution

N (x ;µ,Σ)

Consider a linear transform of x into y ∈ RD

y = Ax + b

where A is D × d and b ∈ RD

y ∈ RD will have a multivariate Gaussian distribution

N (y ; Aµ + b,AΣA>)
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Some Other Important Distributions

Wishart Distribution and Inverse Wishart (IW) Distribution: Used to model D × D p.s.d. matrices

Wishart often used as a conjugate prior for modeling precision matrices, IW for covariance matrices

For D = 1, Wishart is the same as gamma dist., IW is the same as inverse gamma (IG) dist.

Normal-Wishart Distribution: Used to model mean and precision matrix of a multivar. Gaussian

Normal-Inverse Wishart (NIW): : Used to model mean and cov. matrix of a multivar. Gaussian

For D = 1, the corresponding distr. are Normal-Gamma and Normal-Inverse Gamma (NIG)

Student-t Distribution (a more robust version of Normal distribution)

Can be thought of as a mixture of infinite many Gaussians with different precisions (or a single
Gaussian with its precision/precision matrix given a gamma/Wishart prior and integrated out)

Please refer to PRML (Bishop) Chapter 2 + Appendix B, or MLAPP (Murphy) Chapter 2 for more
details
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