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Inferring the Posterior Distribution (fully Bayesian Inference)

@ Inferring the full posterior is straightforward if the hyperparams 8 and A to be known /fixed
e Basically, the conjugacy helps here (Gaussian prior is conjugate to Gaussian likelihood)
@ The posterior over the weight vector w (with 8 and A known)

PlyX, w, B)p(w|A)
Xy BN = =0 3N
P(wIX,y, 5, A) PyIX, B, )

e Computing P(w|X,y, 5, A) (like Bernoulli-Beta case, doing it only upto proportionality constant)
P(w|X,y, B,) o< P(w|A)P(y|X, w, 5)

o After some algebra, this gets simplified into the following (proof on the next two slides)

P(w|X,y,B8,A) = WN(p,X) (The posterior must be Gaussian due to conjugacy)
N
where £ = (B3 xpx, +Alp) "t = (BX X+ Alp)?
n=1

T
Il

N
Z(53 yoxn) = (X y) = (X X+ S10) "Xy
n=1
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The “Completing The Square” Trick for Gaussian Posterior

@ Plugging in the respective distributions for p(w|\) and p(y|X, w, 3), we will get

p(w|X,y, B, A) < p(w|\)p(y|X, w, B)

N (w[0, X" D) N (y[Xw, 57 Iw)
exp (7%w‘ w)exp (—g(y - XW)T(y — Xw))

A B, T TyT TyT
exp | ——w wfg(y y+w X Xw—-2w X y)
exp |:—§WTW - g(WTXTXW — 2WTXTy)}

exp [—% (WT(AID + BXTX)W — Z,BWTXTy)]

@ We will now try to bring the exponent into a quadratic form to see if it corresponds to some
Gaussian. So basically, we will use the “complete the square” trick
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The “Completing The Square” Trick for Gaussian Posterior

@ So we had.. p(w|X,y, 8, ) x exp [—% (WT(,\lD + AXTX)w — 25waTy)]
@ Let's see if we can bring the above posterior into the form of the following Gaussian
N(w|p, T) o< exp [7%(w —p) = (w— u)} = exp [7%(WTZ_1W —ow' 2 lu+p'E 1u)]
@ Let's multlply and divide p(w|X,y, B, \) o exp [—% (WT(AID +BXTX)w — 25WTXTy)] by exp [7%HTZ’1/J,]
@ This gives the following up to a prop. constant (remember w71 is constant w.r.t. w):

1 _
p(w|X,y, B, A) o exp [75 (w" o + X X)w — 28w X Ty + uTE 1#)]

@ Finally comparing with the expression of A'(w|u, X) we can see that
T = (Ap+8X'X)7!
T o= X'y = p=X(BX y)=X'X+ %ID)‘ley
@ Note: The above expression for the posterior can also be directly obtained using properties of

Gaussian distributions (Refer to the maths refresher slides on “reverse conditionals”, or MLAPP
4.3-4.4)
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