Autoencoders, Extensions, and Applications

Piyush Rai

IIT Kanpur

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Introduction to Autoencoders
- Autoencoder Variants and Extensions
- Some Applications of Autoencoders
- Autoencoders for Recommender Systems

- Similar to the standard feedforward neural network with a key difference:
 - Unsupervised. No "label" at the output layer; Output layer simply tries to "recreate" the input

3

- Similar to the standard feedforward neural network with a key difference:
 - Unsupervised. No "label" at the output layer; Output layer simply tries to "recreate" the input

• Defined by two (possibly nonlinear) mapping functions: Encoding function f, Decoding function g

3

- Similar to the standard feedforward neural network with a key difference:
 - Unsupervised. No "label" at the output layer; Output layer simply tries to "recreate" the input

- Defined by two (possibly nonlinear) mapping functions: Encoding function f, Decoding function g
- h = f(x) denotes an encoding (possibly nonlinear) for the input x

3

- Similar to the standard feedforward neural network with a key difference:
 - Unsupervised. No "label" at the output layer; Output layer simply tries to "recreate" the input

- Defined by two (possibly nonlinear) mapping functions: Encoding function f, Decoding function g
- h = f(x) denotes an encoding (possibly nonlinear) for the input x
- $\hat{x} = g(h) = g(f(x))$ denotes the reconstruction (or the "decoding") for the input x

- Similar to the standard feedforward neural network with a key difference:
 - Unsupervised. No "label" at the output layer; Output layer simply tries to "recreate" the input

- Defined by two (possibly nonlinear) mapping functions: Encoding function f, Decoding function g
- h = f(x) denotes an encoding (possibly nonlinear) for the input x
- $\hat{x} = g(h) = g(f(x))$ denotes the reconstruction (or the "decoding") for the input x
- For an Autoencoder, f and g are learned with a goal to minimize the difference between \hat{x} and x

Autoencoder for Feature Learning

• The learned code h = f(x) can be used as a new feature representation of the input x

• Therefore autoencoders can also be used for "feature learning"

イロト 不得 トイヨト イヨト ニヨー

Autoencoder for Feature Learning

• The learned code h = f(x) can be used as a new feature representation of the input x

- Therefore autoencoders can also be used for "feature learning"
- Note: Size of the hidden units (encoding) can also be larger than the input

イロト 不得 トイヨト イヨト ニヨー

- Let's assume a $D \times 1$ input $\pmb{x} \in \mathbb{R}^D$, and a single hidden layer with $K \times 1$ code $\pmb{h} \in \mathbb{R}^K$
- We can then define a simple linear autoencoder as

$$h = f(x) = Wx + b$$

$$\hat{x} = g(h) = W^*h + c$$

where f is defined by $\mathbf{W} \in \mathbb{R}^{K \times D}$ and $\mathbf{b} \in \mathbb{R}^{K \times 1}$

イロト イポト イヨト イヨト ヨー わらで

- Let's assume a $D \times 1$ input $\pmb{x} \in \mathbb{R}^D$, and a single hidden layer with $K \times 1$ code $\pmb{h} \in \mathbb{R}^K$
- We can then define a simple linear autoencoder as

$$h = f(x) = Wx + b$$

$$\hat{x} = g(h) = W^*h + c$$

where f is defined by $\mathbf{W} \in \mathbb{R}^{K \times D}$ and $\mathbf{b} \in \mathbb{R}^{K \times 1}$, g is defined by $\mathbf{W}^* \in \mathbb{R}^{D \times K}$ and $\mathbf{c} \in \mathbb{R}^{D \times 1}$

- Let's assume a $D \times 1$ input $\boldsymbol{x} \in \mathbb{R}^{D}$, and a single hidden layer with $K \times 1$ code $\boldsymbol{h} \in \mathbb{R}^{K}$
- We can then define a simple linear autoencoder as

$$h = f(x) = Wx + b$$

$$\hat{x} = g(h) = W^*h + c$$

where f is defined by $\mathbf{W} \in \mathbb{R}^{K \times D}$ and $\mathbf{b} \in \mathbb{R}^{K \times 1}$, g is defined by $\mathbf{W}^* \in \mathbb{R}^{D \times K}$ and $\mathbf{c} \in \mathbb{R}^{D \times 1}$

3

- Let's assume a $D \times 1$ input $\pmb{x} \in \mathbb{R}^D$, and a single hidden layer with $K \times 1$ code $\pmb{h} \in \mathbb{R}^K$
- We can then define a simple linear autoencoder as

$$h = f(x) = Wx + b$$

$$\hat{x} = g(h) = W^*h + c$$

where f is defined by $\mathbf{W} \in \mathbb{R}^{K \times D}$ and $\mathbf{b} \in \mathbb{R}^{K \times 1}$, g is defined by $\mathbf{W}^* \in \mathbb{R}^{D \times K}$ and $\mathbf{c} \in \mathbb{R}^{D \times 1}$

• Note: If we learn f, g to minimize the squared error $||\hat{x} - x||^2$ then the linear autoencoder with $\mathbf{W}^* = \mathbf{W}^\top$ is optimal

- Let's assume a $D \times 1$ input $\pmb{x} \in \mathbb{R}^D$, and a single hidden layer with $K \times 1$ code $\pmb{h} \in \mathbb{R}^K$
- We can then define a simple linear autoencoder as

$$h = f(x) = Wx + b$$

$$\hat{x} = g(h) = W^*h + c$$

where f is defined by $\mathbf{W} \in \mathbb{R}^{K \times D}$ and $\mathbf{b} \in \mathbb{R}^{K \times 1}$, g is defined by $\mathbf{W}^* \in \mathbb{R}^{D \times K}$ and $\mathbf{c} \in \mathbb{R}^{D \times 1}$

• Note: If we learn f, g to minimize the squared error $||\hat{x} - x||^2$ then the linear autoencoder with $\mathbf{W}^* = \mathbf{W}^\top$ is optimal, and is equivalent to Principal Component Analysis (PCA)

イロト 不同ト 不良ト 不良ト 二良一

= 990

• W: $K \times D$ matrix of weights of edges between input and hidden layer

DQC

3

- W: $K \times D$ matrix of weights of edges between input and hidden layer
 - W_{kd} is the weight of edge connecting input layer node d to hidden layer node k

э

- W: $K \times D$ matrix of weights of edges between input and hidden layer
 - W_{kd} is the weight of edge connecting input layer node d to hidden layer node k
- \mathbf{W}^* : $D \times K$ matrix of weights of edges between hidden and output layer

DQC

-

- W: $K \times D$ matrix of weights of edges between input and hidden layer
 - W_{kd} is the weight of edge connecting input layer node d to hidden layer node k
- \mathbf{W}^* : $D \times K$ matrix of weights of edges between hidden and output layer
 - W_{dk}^* is the weight of edge connecting hidden layer node k to output layer node d

- W: $K \times D$ matrix of weights of edges between input and hidden layer
 - W_{kd} is the weight of edge connecting input layer node d to hidden layer node k
- \mathbf{W}^* : $D \times K$ matrix of weights of edges between hidden and output layer
 - W_{dk}^* is the weight of edge connecting hidden layer node k to output layer node d
- If $\mathbf{W}^* = \mathbf{W}^{\top}$, the autoencoder architecture is said to have "tied weights"

Nonlinear Autoencoders

- The hidden nodes can also be nonlinear transforms of the inputs, e.g.,
 - Can define h as a linear transform of x followed by a nonlinearity (e.g., sigmoid, ReLU)

$$h = sigmoid(Wx + b)$$

where the nonlinearity sigmoid(z) = $\frac{1}{1+\exp(-z)}$ squashes the real-valued z to lie between 0 and 1

Nonlinear Autoencoders

- The hidden nodes can also be nonlinear transforms of the inputs, e.g.,
 - Can define h as a linear transform of x followed by a nonlinearity (e.g., sigmoid, ReLU)

$$h = sigmoid(Wx + b)$$

where the nonlinearity sigmoid(z) = $\frac{1}{1+\exp(-z)}$ squashes the real-valued z to lie between 0 and 1

• Most commonly used autoencoders use such nonlinear transforms

Nonlinear Autoencoders

- The hidden nodes can also be nonlinear transforms of the inputs, e.g.,
 - Can define h as a linear transform of x followed by a nonlinearity (e.g., sigmoid, ReLU)

$$h = sigmoid(Wx + b)$$

where the nonlinearity sigmoid $(z) = \frac{1}{1 + \exp(-z)}$ squashes the real-valued z to lie between 0 and 1

- Most commonly used autoencoders use such nonlinear transforms
- Note: If inputs $\mathbf{x} \in \{0,1\}^D$ are binary, it may be more appropriate to also define $\hat{\mathbf{x}}$ as

 $\hat{\boldsymbol{x}} = \operatorname{sigmoid}(\boldsymbol{W}^* \boldsymbol{h} + \boldsymbol{c})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What's Learned by an Autoencoder?

• Figure below: The $K \times D$ matrix **W** learned on digits data. Each tiny block visualizes a row of **W**

						9							
						3							
0													
	Ð												
					H.								
J.	U	e	X	2	1	2	11	2	-	4	5	-	1

∃ \0<</p>(>

What's Learned by an Autoencoder?

• Figure below: The $K \times D$ matrix **W** learned on digits data. Each tiny block visualizes a row of **W**

				5				
				3				
0								
	Ð							
			H.					
Ň								

• Thus W captures the possible "patterns" in the training data (akin to the K basis vectors in PCA)

3

What's Learned by an Autoencoder?

• Figure below: The $K \times D$ matrix **W** learned on digits data. Each tiny block visualizes a row of **W**

				5				
				3				
0								
	Ð							
			H.					
ŵ,								
								1

- Thus W captures the possible "patterns" in the training data (akin to the K basis vectors in PCA)
- For any input x, the encoding h tells us how much each of these K features in present in x

◆ロト ◆掃 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の Q ()

• To train the autoencoder, we need to define a loss function $\ell(\hat{x}, x)$

<ロト <回ト < 三ト < 三ト = 三 の Q ()

- To train the autoencoder, we need to define a loss function $\ell(\hat{x}, x)$
- The loss function (a function of parameters W, b, W^*, c) can be defined using various ways

<ロト <回ト < 三ト < 三ト = 三 の Q ()

- To train the autoencoder, we need to define a loss function $\ell(\hat{x}, x)$
- The loss function (a function of parameters W, b, W^*, c) can be defined using various ways
- In general, it is defined in terms of the difference between \hat{x} and x (reconstruction error)

- To train the autoencoder, we need to define a loss function $\ell(\hat{\pmb{x}}, \pmb{x})$
- The loss function (a function of parameters W, b, W^*, c) can be defined using various ways
- In general, it is defined in terms of the difference between \hat{x} and x (reconstruction error)
- For a single input $\boldsymbol{x} = [x_1, \dots, x_D]$ and its reconstruction $\hat{\boldsymbol{x}} = [\hat{x}_1, \dots, \hat{x}_D]$

$$\ell(\hat{\boldsymbol{x}}, \boldsymbol{x}) = \sum_{d=1}^{D} (\hat{x}_d - x_d)^2$$
 (squared loss; used if input are real-valued)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- To train the autoencoder, we need to define a loss function $\ell(\hat{x}, x)$
- The loss function (a function of parameters W, b, W^*, c) can be defined using various ways
- In general, it is defined in terms of the difference between \hat{x} and x (reconstruction error)
- For a single input $\boldsymbol{x} = [x_1, \dots, x_D]$ and its reconstruction $\hat{\boldsymbol{x}} = [\hat{x}_1, \dots, \hat{x}_D]$

$$\ell(\hat{\boldsymbol{x}}, \boldsymbol{x}) = \sum_{d=1}^{D} (\hat{x}_d - x_d)^2 \qquad (\text{squared loss; used if input are real-valued})$$

$$\ell(\hat{\boldsymbol{x}}, \boldsymbol{x}) = -\sum_{d=1}^{D} [x_d \log(\hat{x}_d) + (1 - x_d) \log(1 - \hat{x}_d)] \qquad (\text{cross-entropy loss; used if input are binary})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- To train the autoencoder, we need to define a loss function $\ell(\hat{\pmb{x}}, \pmb{x})$
- The loss function (a function of parameters W, b, W^*, c) can be defined using various ways
- In general, it is defined in terms of the difference between \hat{x} and x (reconstruction error)
- For a single input $\pmb{x} = [x_1, \dots, x_D]$ and its reconstruction $\hat{\pmb{x}} = [\hat{x}_1, \dots, \hat{x}_D]$

$$\ell(\hat{\mathbf{x}}, \mathbf{x}) = \sum_{d=1}^{D} (\hat{x}_d - x_d)^2 \qquad (\text{squared loss; used if input are real-valued})$$

$$\ell(\hat{\mathbf{x}}, \mathbf{x}) = -\sum_{d=1}^{D} [x_d \log(\hat{x}_d) + (1 - x_d) \log(1 - \hat{x}_d)] \qquad (\text{cross-entropy loss; used if input are binary})$$

• We find (W, b, W*, c) by minimizing the reconstruction error (summed over all training data)

- To train the autoencoder, we need to define a loss function $\ell(\hat{\pmb{x}}, \pmb{x})$
- The loss function (a function of parameters W, b, W^*, c) can be defined using various ways
- In general, it is defined in terms of the difference between \hat{x} and x (reconstruction error)
- For a single input $\boldsymbol{x} = [x_1, \dots, x_D]$ and its reconstruction $\hat{\boldsymbol{x}} = [\hat{x}_1, \dots, \hat{x}_D]$

$$\ell(\hat{\mathbf{x}}, \mathbf{x}) = \sum_{d=1}^{D} (\hat{x}_d - x_d)^2 \qquad (\text{squared loss; used if input are real-valued})$$

$$\ell(\hat{\mathbf{x}}, \mathbf{x}) = -\sum_{d=1}^{D} [x_d \log(\hat{x}_d) + (1 - x_d) \log(1 - \hat{x}_d)] \qquad (\text{cross-entropy loss; used if input are binary})$$

- We find (W, b, W*, c) by minimizing the reconstruction error (summed over all training data)
- This can be done using backpropagation

Piyush Rai (IIT Kanpur)

<ロト <回 > < 三 > < 三 > 、 三 > の へ ()

Undercomplete, Overcomplete, and Need for Regularization

3

Undercomplete, Overcomplete, and Need for Regularization

• In both cases, it is important to control the capacity of encoder and decoder

DQC

3

Undercomplete, Overcomplete, and Need for Regularization

- In both cases, it is important to control the capacity of encoder and decoder
- Undercomplete: Imagine K = 1 and very powerful f and g. Can achieve very small reconstruction error but the learned code will not capture any interesting properties in the data

3

Undercomplete, Overcomplete, and Need for Regularization

- In both cases, it is important to control the capacity of encoder and decoder
- Undercomplete: Imagine K = 1 and very powerful f and g. Can achieve very small reconstruction error but the learned code will not capture any interesting properties in the data
- Overcomplete: Imagine K ≥ D and trivial (identity) functions f and g. Can achieve even zero
 reconstruction error but the learned code will not capture any interesting properties in the data

э.

Undercomplete, Overcomplete, and Need for Regularization

- In both cases, it is important to control the capacity of encoder and decoder
- Undercomplete: Imagine K = 1 and very powerful f and g. Can achieve very small reconstruction error but the learned code will not capture any interesting properties in the data
- Overcomplete: Imagine K ≥ D and trivial (identity) functions f and g. Can achieve even zero reconstruction error but the learned code will not capture any interesting properties in the data
- It is therefore important to regularize the functions as well as the learned code, and not just focus on minimizing the reconstruction error

Piyush Rai (IIT Kanpur)

Regularized Autoencoders

- Several ways to regularize the model, e.g.
 - Make the learned code sparse (Sparse Autoencoders)
 - Make the model robust against noisy/incomplete inputs (Denoising Dutoencoders)

3

Regularized Autoencoders

- Several ways to regularize the model, e.g.
 - Make the learned code sparse (Sparse Autoencoders)
 - Make the model robust against noisy/incomplete inputs (Denoising Dutoencoders)

• Make the model robust against small changes in the input (Contractive Autoencoders)

3

• Make the learned code sparse (Sparse Autoencoders). Done by adding a sparsity penalty on \boldsymbol{h}

Loss Function: $\ell(\hat{\boldsymbol{x}}, \boldsymbol{x}) + \Omega(\boldsymbol{h})$

where $\Omega(\boldsymbol{h}) = \sum_{k=1}^{K} |h_k|$ is the ℓ_1 norm of \boldsymbol{h}

• Make the learned code sparse (Sparse Autoencoders). Done by adding a sparsity penalty on \boldsymbol{h}

Loss Function: $\ell(\hat{\boldsymbol{x}}, \boldsymbol{x}) + \Omega(\boldsymbol{h})$

• Sparse autoencoder is learned by minimizing the above regularized loss function

Denoising Autoencoders

- First add some noise (e.g., Gaussian noise) to the original input x
- Let's denote \tilde{x} as the corrupted version of x
- The encoder f operates on \tilde{x} , i.e., $h = f(\tilde{x})$

Denoising Autoencoder

3

メロト メポト メヨト メヨト

Denoising Autoencoders

- First add some noise (e.g., Gaussian noise) to the original input x
- Let's denote \tilde{x} as the corrupted version of x
- The encoder f operates on \tilde{x} , i.e., $h = f(\tilde{x})$

• However, we still want to reconstruction \hat{x} to be close to the original uncorrupted input x

э.

メロト メポト メヨト メヨト

Denoising Autoencoders

- First add some noise (e.g., Gaussian noise) to the original input x
- Let's denote \tilde{x} as the corrupted version of x
- The encoder f operates on \tilde{x} , i.e., $h = f(\tilde{x})$

- However, we still want to reconstruction \hat{x} to be close to the original uncorrupted input x
- Since the corruption is stochastic, we minimize the expected loss: $\mathbb{E}_{\tilde{\mathbf{x}} \sim p(\tilde{\mathbf{x}}|\mathbf{x})}[\ell(\hat{\mathbf{x}}, \tilde{\mathbf{x}})] + \Omega(\mathbf{h})$

3

Deep/Stacked Autoencoders

• Most autoencoders can be extended to have more than one hidden layer

• Can also define the encoder and decoder functions using probability distributions

 $p_{ ext{encoder}}(m{h}|m{x}) \ p_{ ext{decoder}}(m{x}|m{h})$

イロト 不得 トイヨト イヨト ニヨー

• Can also define the encoder and decoder functions using probability distributions

 $p_{ ext{encoder}}(m{h}|m{x}) \ p_{ ext{decoder}}(m{x}|m{h})$

• The choice of distributions depends on the type of data being modeled and of the encodings

Sac

イロト 不得 トイヨト イヨト ニヨー

• Can also define the encoder and decoder functions using probability distributions

 $p_{ ext{encoder}}(m{h}|m{x}) \ p_{ ext{decoder}}(m{x}|m{h})$

- The choice of distributions depends on the type of data being modeled and of the encodings
- This gives a probabilistic approach for designing autoencoders

• Can also define the encoder and decoder functions using probability distributions

 $p_{ ext{encoder}}(m{h}|m{x}) \ p_{ ext{decoder}}(m{x}|m{h})$

- The choice of distributions depends on the type of data being modeled and of the encodings
- This gives a probabilistic approach for designing autoencoders
- Negative log-likelihood $-\log p_{decoder}(\boldsymbol{x}|\boldsymbol{h})$ is equivalent to the reconstruction error

• Can also define the encoder and decoder functions using probability distributions

 $p_{ ext{encoder}}(m{h}|m{x}) \ p_{ ext{decoder}}(m{x}|m{h})$

- The choice of distributions depends on the type of data being modeled and of the encodings
- This gives a probabilistic approach for designing autoencoders
- Negative log-likelihood $-\log p_{decoder}(\boldsymbol{x}|\boldsymbol{h})$ is equivalent to the reconstruction error
- Can also use a prior distribution p(h) on the encodings (equivalent to regularizer)

• Can also define the encoder and decoder functions using probability distributions

 $p_{ ext{encoder}}(m{h}|m{x}) \ p_{ ext{decoder}}(m{x}|m{h})$

- The choice of distributions depends on the type of data being modeled and of the encodings
- This gives a probabilistic approach for designing autoencoders
- Negative log-likelihood $-\log p_{decoder}(\boldsymbol{x}|\boldsymbol{h})$ is equivalent to the reconstruction error
- Can also use a prior distribution p(h) on the encodings (equivalent to regularizer)
- Such ideas have been used to design generative models for autoencoders

• Can also define the encoder and decoder functions using probability distributions

 $p_{ ext{encoder}}(m{h}|m{x}) \ p_{ ext{decoder}}(m{x}|m{h})$

- The choice of distributions depends on the type of data being modeled and of the encodings
- This gives a probabilistic approach for designing autoencoders
- Negative log-likelihood $-\log p_{decoder}(\boldsymbol{x}|\boldsymbol{h})$ is equivalent to the reconstruction error
- Can also use a prior distribution p(h) on the encodings (equivalent to regularizer)
- Such ideas have been used to design generative models for autoencoders
 - Variational Autoencoder (VAE) is a popular example of such a model

• Can also define the encoder and decoder functions using probability distributions

 $p_{ ext{encoder}}(m{h}|m{x}) \ p_{ ext{decoder}}(m{x}|m{h})$

- The choice of distributions depends on the type of data being modeled and of the encodings
- This gives a probabilistic approach for designing autoencoders
- Negative log-likelihood $-\log p_{decoder}(\boldsymbol{x}|\boldsymbol{h})$ is equivalent to the reconstruction error
- Can also use a prior distribution p(h) on the encodings (equivalent to regularizer)
- Such ideas have been used to design generative models for autoencoders
 - Variational Autoencoder (VAE) is a popular example of such a model
 - ullet Generative models like VAE can be used to "generate" new data using a random code $m{h}$

<ロ> <同> < 三> < 三> < 三> < 三> < ○<</p>

Variational Autoencoders (VAE)

• Learns a distribution (e.g., a Gaussian) on the encoding¹

¹http://www.birving.com/presentations/autoencoders/

Piyush Rai (IIT Kanpur)

э.

Variational Autoencoders (VAE)

• Learns a distribution (e.g., a Gaussian) on the encoding¹

• Unlike standard AE, a VAE model learns to generate plausible data from random encodings

э

イロト イヨト イヨト

¹http://www.birving.com/presentations/autoencoders/

- (Unsupervised) Feature learning and Dimensionality reduction
- Denoising and inpainting
- Pre-training of deep neural networks
- Recommender systems applications

Sac

イロト 不得 トイヨト イヨト ニヨー

Feature learning and Dimensionality Reduction

• Example: A deep AE for low-dim feature learning for 784-dimensional MNIST images²

²Figure credit: Hinton and Salakhutdinov

Feature learning and Dimensionality Reduction

• Example: Low-dim feature learning for 2000-dimensional bag-of-words documents

イロト 不得 トイヨト イヨト ニヨー

Denoising and Inpainting

Denoising and Inpainting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Applications in Recommender Systems

イロト 不得 トイヨト イヨト ニヨー

Recommender Systems

• Assume we are given a partially known $N \times M$ ratings matrix **R** of N users on M items (movies)

- Denote by $\mathbf{r}^{(u)}$ the (partially known) M imes 1 ratings vector of user u
- Denote by $\mathbf{r}^{(i)}$ the (partially known) $N \times 1$ ratings vector of item i

3

Recommender Systems

• Assume we are given a partially known $N \times M$ ratings matrix **R** of N users on M items (movies)

- Denote by $\mathbf{r}^{(u)}$ the (partially known) $M \times 1$ ratings vector of user u
- Denote by $\mathbf{r}^{(i)}$ the (partially known) $N \times 1$ ratings vector of item i
- How can we use this data to build a recommender system?

3

Recommender Systems via Matrix Completion

• An idea: If the predicted value of a user's rating for a movie is high, then we should ideally recommend this movie to the user

3

メロト メポト メヨト メヨト

Recommender Systems via Matrix Completion

• An idea: If the predicted value of a user's rating for a movie is high, then we should ideally recommend this movie to the user

• Thus if we can "reconstruct" the missing entries in **R**, we can use this method to recommend movies to users. Using an autoencoders can help us do this!

3

An Autoencoder based Approach

• Using the rating vectors $\{\mathbf{r}^{(u)}\}_{u=1}^N$ of all users, can learn an autoencoder

 \bullet Note: During backprop, only update weights in ${\bf W}$ that are connected to the observed ratings^3

• Once learned, the model can predict (reconstruct) the missing ratings

Another Autoencoder based Approach

• Another approach is to combine (denoising) autoencoders with a matrix factorization model⁴

⁴Deep Collaborative Filtering via Marginalized Denoising Auto-encoder (Li et al, CIKM:2015) アト・モントモント ミークへへ

Another Autoencoder based Approach

- Another approach is to combine (denoising) autoencoders with a matrix factorization model⁴
- Idea: Rating of a user u on an item i can be defined using the inner-product based similarity of their features learned via an autoencoder: $R_{ui} = f(\mathbf{h}^{(u)^{\top}} \mathbf{h}^{(i)})$ where f is some compatibity function

Another Autoencoder based Approach

- Another approach is to combine (denoising) autoencoders with a matrix factorization model⁴
- Idea: Rating of a user u on an item i can be defined using the inner-product based similarity of their features learned via an autoencoder: $R_{ui} = f(\boldsymbol{h}^{(u)^{\top}}\boldsymbol{h}^{(i)})$ where f is some compatibity function
- Denoting $\{\boldsymbol{h}^{(u)}\}_{u=1}^{N} = \boldsymbol{\mathsf{U}}$ and $\{\boldsymbol{h}^{(i)}\}_{i=1}^{M} = \boldsymbol{\mathsf{V}}$, we can write $\boldsymbol{\mathsf{R}} = \boldsymbol{\mathsf{U}}\boldsymbol{\mathsf{V}}^{\top}$

Other Approaches on Autoencoders for Recommender Systems

- Several recent papers on similar autoencoder based ideas
 - Collaborative Denoising Auto-Encoders for Top-N Recommender Systems (Wu et al, WSDM 2016)
 - Collaborative Deep Learning for Recommender Systems (Wang et al, KDD 2015)

• Also possible to incorporate side information about the users and/or items (Wang et al, KDD 2015)

- Simple and powerful for (nonlinear) feature learning
- Learned features are able to capture salient properties of data
- Several extensions (sparse, denoising, stochastic, etc.)
- Can also be stacked to create "deep" autoencoders
- Recent focus on autoencoders that are based on generative models of data
 - Example: Variational Autoencoders