
18 Reinforcement Learning

In reinforcement learning, the learner is a decision-making agent

that takes actions in an environment and receives reward (or penalty)

for its actions in trying to solve a problem. After a set of trial-and-

error runs, it should learn the best policy, which is the sequence of

actions that maximize the total reward.

18.1 Introduction

Let us say we want to build a machine that learns to play chess. In

this case we cannot use a supervised learner for two reasons. First, it is

very costly to have a teacher that will take us through many games and

indicate us the best move for each position. Second, in many cases, there

is no such thing as the best move; the goodness of a move depends on the

moves that follow. A single move does not count; a sequence of moves is

good if after playing them we win the game. The only feedback is at the

end of the game when we win or lose the game.

Another example is a robot that is placed in a maze. The robot can

move in one of the four compass directions and should make a sequence

of movements to reach the exit. As long as the robot is in the maze, there

is no feedback and the robot tries many moves until it reaches the exit

and only then does it get a reward. In this case there is no opponent, but

we can have a preference for shorter trajectories, implying that in this

case we play against time.

These two applications have a number of points in common: There is

a decision maker, called the agent, that is placed in an environment (see

figure 18.1). In chess, the game-player is the decision maker and the en-

vironment is the board; in the second case, the maze is the environment
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Figure 18.1 The agent interacts with an environment. At any state of the envi-

ronment, the agent takes an action that changes the state and returns a reward.

of the robot. At any time, the environment is in a certain state that is

one of a set of possible states—for example, the state of the board, the

position of the robot in the maze. The decision maker has a set of actions

possible: legal movement of pieces on the chess board, movement of the

robot in possible directions without hitting the walls, and so forth. Once

an action is chosen and taken, the state changes. The solution to the task

requires a sequence of actions, and we get feedback, in the form of a re-

ward rarely, generally only when the complete sequence is carried out.

The reward defines the problem and is necessary if we want a learning

agent. The learning agent learns the best sequence of actions to solve a

problem where “best” is quantified as the sequence of actions that has

the maximum cumulative reward. Such is the setting of reinforcement

learning.

Reinforcement learning is different from the learning methods we dis-

cussed before in a number of respects. It is called “learning with a critic,”

as opposed to learning with a teacher which we have in supervised learn-

ing. A critic differs from a teacher in that it does not tell us what to docritic

but only how well we have been doing in the past; the critic never informs

in advance. The feedback from the critic is scarce and when it comes, it

comes late. This leads to the credit assignment problem. After takingcredit assignment

several actions and getting the reward, we would like to assess the indi-

vidual actions we did in the past and find the moves that led us to win the

reward so that we can record and recall them later on. As we see shortly,

what a reinforcement learning program does is that it learns to generate
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an internal value for the intermediate states or actions in terms of how

good they are in leading us to the goal and getting us to the real reward.

Once such an internal reward mechanism is learned, the agent can just

take the local actions to maximize it.

The solution to the task requires a sequence of actions, and from this

perspective, we remember the Markov models we discussed in chapter 15.

Indeed, we use a Markov decision process to model the agent. The differ-

ence is that in the case of Markov models, there is an external process that

generates a sequence of signals, for example, speech, which we observe

and model. In the current case, however, it is the agent that generates

the sequence of actions. Previously, we also made a distinction between

observable and hidden Markov models where the states are observed or

hidden (and should be inferred) respectively. Similarly here, sometimes

we have a partially observable Markov decision process in cases where

the agent does not know its state exactly but should infer it with some

uncertainty through observations using sensors. For example, in the case

of a robot moving in a room, the robot may not know its exact position

in the room, nor the exact location of obstacles nor the goal, and should

make decisions through a limited image provided by a camera.

18.2 Single State Case: K-Armed Bandit

We start with a simple example. The K-armed bandit is a hypotheticalK-armed bandit

slot machine with K levers. The action is to choose and pull one of the

levers, and we win a certain amount of money that is the reward associ-

ated with the lever (action). The task is to decide which lever to pull to

maximize the reward. This is a classification problem where we choose

one of K. If this were supervised learning, then the teacher would tell us

the correct class, namely, the lever leading to maximum earning. In this

case of reinforcement learning, we can only try different levers and keep

track of the best. This is a simplified reinforcement learning problem

because there is only one state, or one slot machine, and we need only

decide on the action. Another reason why this is simplified is that we

immediately get a reward after a single action; the reward is not delayed,

so we immediately see the value of our action.

Let us say Q(a) is the value of action a. Initially, Q(a) = 0 for all a.

When we try action a, we get reward ra ≥ 0. If rewards are deterministic,

we always get the same ra for any pull of a and in such a case, we can
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just set Q(a) = ra. If we want to exploit, once we find an action a such

that Q(a) > 0, we can keep choosing it and get ra at each pull. However,

it is quite possible that there is another lever with a higher reward, so we

need to explore.

We can choose different actions and store Q(a) for all a. Whenever we

want to exploit, we can choose the action with the maximum value, that

is,

choose a∗ if Q(a∗) = max
a
Q(a)(18.1)

If rewards are not deterministic but stochastic, we get a different re-

ward each time we choose the same action. The amount of the reward is

defined by the probability distribution p(r |a). In such a case, we define

Qt(a) as the estimate of the value of action a at time t . It is an average of

all rewards received when action a was chosen before time t . An online

update can be defined as

Qt+1(a)← Qt(a)+ η[rt+1(a)−Qt(a)](18.2)

where rt+1(a) is the reward received after taking action a at time (t+1)st

time.

Note that equation 18.2 is the delta rule that we have used on many

occasions in the previous chapters: η is the learning factor (gradually

decreased in time for convergence), rt+1 is the desired output, and Qt(a)

is the current prediction. Qt+1(a) is the expected value of action a at time

t + 1 and converges to the mean of p(r |a) as t increases.

The full reinforcement learning problem generalizes this simple case in

a number of ways. First, we have several states. This corresponds to hav-

ing several slot machines with different reward probabilities, p(r |si, aj),
and we need to learnQ(si, aj), which is the value of taking action aj when

in state si . Second, the actions affect not only the reward but also the next

state, and we move from one state to another. Third, the rewards are de-

layed and we need to be able to estimate immediate values from delayed

rewards.

18.3 Elements of Reinforcement Learning

The learning decision maker is called the agent. The agent interacts with

the environment that includes everything outside the agent. The agent

has sensors to decide on its state in the environment and takes an action
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that modifies its state. When the agent takes an action, the environment

provides a reward. Time is discrete as t = 0,1,2, . . ., and st ∈ S denotes

the state of the agent at time t where S is the set of all possible states.

at ∈A(st) denotes the action that the agent takes at time t where A(st)
is the set of possible actions in state st . When the agent in state st takes

the action at , the clock ticks, reward rt+1 ∈ � is received, and the agent

moves to the next state, st+1. The problem is modeled using a MarkovMarkov decision

process decision process (MDP). The reward and next state are sampled from their

respective probability distributions, p(rt+1|st , at) and P(st+1|st , at). Note

that what we have is a Markov system where the state and reward in

the next time step depend only on the current state and action. In some

applications, reward and next state are deterministic, and for a certain

state and action taken, there is one possible reward value and next state.

Depending on the application, a certain state may be designated as the

initial state and in some applications, there is also an absorbing terminal

(goal) state where the search ends; all actions in this terminal state tran-

sition to itself with probability 1 and without any reward. The sequence

of actions from the start to the terminal state is an episode, or a trial.episode

The policy, π , defines the agent’s behavior and is a mapping from thepolicy

states of the environment to actions: π : S → A. The policy defines the

action to be taken in any state st : at = π(st). The value of a policy π ,

Vπ(st), is the expected cumulative reward that will be received while the

agent follows the policy, starting from state st .

In the finite-horizon or episodic model, the agent tries to maximize thefinite-horizon

expected reward for the next T steps:

Vπ(st) = E[rt+1 + rt+2 + · · · + rt+T ] = E
⎡

⎣

T�

i=1

rt+i

⎤

⎦(18.3)

Certain tasks are continuing, and there is no prior fixed limit to the

episode. In the infinite-horizon model, there is no sequence limit, butinfinite-horizon

future rewards are discounted:

Vπ(st) = E[rt+1 + γrt+2 + γ2rt+3 + · · ·] = E
⎡

⎣

∞�

i=1

γi−1rt+i

⎤

⎦(18.4)

where 0 ≤ γ < 1 is the discount rate to keep the return finite. If γ = 0,discount rate

then only the immediate reward counts. As γ approaches 1, rewards

further in the future count more, and we say that the agent becomes

more farsighted. γ is less than 1 because there generally is a time limit
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to the sequence of actions needed to solve the task. The agent may be a

robot that runs on a battery. We prefer rewards sooner rather than later

because we are not certain how long we will survive.

For each policy π , there is a Vπ(st), and we want to find the optimaloptimal policy

policy π∗ such that

V∗(st) = max
π
Vπ(st),∀st(18.5)

In some applications, for example, in control, instead of working with

the values of states, V(st), we prefer to work with the values of state-

action pairs, Q(st , at). V(st) denotes how good it is for the agent to be

in state st , whereas Q(st , at) denotes how good it is to perform action at
when in state st . We define Q∗(st , at) as the value, that is, the expected

cumulative reward, of action at taken in state st and then obeying the

optimal policy afterward. The value of a state is equal to the value of the

best possible action:

V∗(st) = max
at
Q∗(st , at)

= max
at
E

⎡

⎣

∞�

i=1

γi−1rt+i

⎤

⎦

= max
at
E

⎡

⎣rt+1 + γ
∞�

i=1

γi−1rt+i+1

⎤

⎦

= max
at
E
)

rt+1 + γV∗(st+1)
*

V∗(st) = max
at

⎛

⎝E[rt+1]+ γ
�

st+1

P(st+1|st , at)V∗(st+1)

⎞

⎠(18.6)

To each possible next state st+1, we move with probability P(st+1|st , at),
and continuing from there using the optimal policy, the expected cumu-

lative reward is V∗(st+1). We sum over all such possible next states, and

we discount it because it is one time step later. Adding our immediate

expected reward, we get the total expected cumulative reward for action

at . We then choose the best of possible actions. Equation 18.6 is known

as Bellman’s equation (Bellman 1957). Similarly, we can also writeBellman’s equation

Q∗(st , at) = E[rt+1]+ γ
�

st+1

P(st+1|st , at)max
at+1

Q∗(st+1, at+1)(18.7)
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Initialize V(s) to arbitrary values

Repeat

For all s ∈ S
For all a ∈A
Q(s, a)← E[r |s, a]+ γ�s�∈S P(s�|s, a)V(s�)

V(s)← maxa Q(s, a)

Until V(s) converge

Figure 18.2 Value iteration algorithm for model-based learning.

Once we have Q∗(st , at) values, we can then define our policy π as

taking the action a∗t , which has the highest value among all Q∗(st , at):

π∗(st) : Choose a∗t where Q∗(st , a∗t ) = max
at
Q∗(st , at)(18.8)

This means that if we have theQ∗(st , at) values, then by using a greedy

search at each local step we get the optimal sequence of steps that maxi-

mizes the cumulative reward.

18.4 Model-Based Learning

We start with model-based learning where we completely know the en-

vironment model parameters, p(rt+1|st , at) and P(st+1|st , at). In such a

case, we do not need any exploration and can directly solve for the opti-

mal value function and policy using dynamic programming. The optimal

value function is unique and is the solution to the simultaneous equa-

tions given in equation 18.6. Once we have the optimal value function,

the optimal policy is to choose the action that maximizes the value in the

next state:

π∗(st) = arg max
at

⎛

⎝E[rt+1|st , at]+ γ
�

st+1∈S
P(st+1|st , at)V∗(st + 1)

⎞

⎠(18.9)

18.4.1 Value Iteration

To find the optimal policy, we can use the optimal value function, and

there is an iterative algorithm called value iteration that has been shownvalue iteration

to converge to the correct V∗ values. Its pseudocode is given in fig-

ure 18.2.



524 18 Reinforcement Learning

Initialize a policy π � arbitrarily

Repeat

π ← π �

Compute the values using π by

solving the linear equations

Vπ(s) = E[r |s,π(s)]+ γ�s�∈S P(s�|s,π(s))Vπ(s�)
Improve the policy at each state

π �(s)← arg maxa(E[r |s, a]+ γ
�

s�∈S P(s�|s, a)Vπ(s�))
Until π = π �

Figure 18.3 Policy iteration algorithm for model-based learning.

We say that the values converged if the maximum value difference be-

tween two iterations is less than a certain threshold δ:

max
s∈S

|V(l+1)(s)− V(l)(s)| < δ

where l is the iteration counter. Because we care only about the actions

with the maximum value, it is possible that the policy converges to the

optimal one even before the values converge to their optimal values. Each

iteration is O(|S|2|A|), but frequently there is only a small number k <

|S| of next possible states, so complexity decreases to O(k|S||A|).

18.4.2 Policy Iteration

In policy iteration, we store and update the policy rather than doing this

indirectly over the values. The pseudocode is given in figure 18.3. The

idea is to start with a policy and improve it repeatedly until there is no

change. The value function can be calculated by solving for the linear

equations. We then check whether we can improve the policy by taking

these into account. This step is guaranteed to improve the policy, and

when no improvement is possible, the policy is guaranteed to be optimal.

Each iteration of this algorithm takes O(|A||S|2+ |S|3) time that is more

than that of value iteration, but policy iteration needs fewer iterations

than value iteration.



18.5 Temporal Difference Learning 525

18.5 Temporal Difference Learning

Model is defined by the reward and next state probability distributions,

and as we saw in section 18.4, when we know these, we can solve for the

optimal policy using dynamic programming. However, these methods are

costly, and we seldom have such perfect knowledge of the environment.

The more interesting and realistic application of reinforcement learning

is when we do not have the model. This requires exploration of the en-

vironment to query the model. We first discuss how this exploration

is done and later see model-free learning algorithms for deterministic

and nondeterministic cases. Though we are not going to assume a full

knowledge of the environment model, we will however require that it be

stationary.

As we will see shortly, when we explore and get to see the value of the

next state and reward, we use this information to update the value of the

current state. These algorithms are called temporal difference algorithmstemporal

difference because what we do is look at the difference between our current estimate

of the value of a state (or a state-action pair) and the discounted value of

the next state and the reward received.

18.5.1 Exploration Strategies

To explore, one possibility is to use �-greedy search where with prob-

ability �, we choose one action uniformly randomly among all possible

actions, namely, explore, and with probability 1 − �, we choose the best

action, namely, exploit. We do not want to continue exploring indefinitely

but start exploiting once we do enough exploration; for this, we start with

a high � value and gradually decrease it. We need to make sure that our

policy is soft, that is, the probability of choosing any action a ∈ A in

state s ∈ S is greater than 0.

We can choose probabilistically, using the softmax function to convert

values to probabilities

P(a|s) = expQ(s, a)
�

b∈A expQ(s, b)
(18.10)

and then sample according to these probabilities. To gradually move

from exploration to exploitation, we can use a “temperature” variable T

and define the probability of choosing action a as

P(a|s) = exp[Q(s, a)/T]
�

b∈A exp[Q(s, b)/T]
(18.11)
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When T is large, all probabilities are equal and we have exploration.

When T is small, better actions are favored. So the strategy is to start

with a large T and decrease it gradually, a procedure named annealing,

which in this case moves from exploration to exploitation smoothly in

time.

18.5.2 Deterministic Rewards and Actions

In model-free learning, we first discuss the simpler deterministic case,

where at any state-action pair, there is a single reward and next state

possible. In this case, equation 18.7 reduces to

Q(st , at) = rt+1 + γmax
at+1

Q(st+1, at+1)(18.12)

and we simply use this as an assignment to update Q(st , at). When in

state st , we choose action at by one of the stochastic strategies we saw

earlier, which returns a reward rt+1 and takes us to state st+1. We then

update the value of previous action as

Q̂(st , at)← rt+1 + γmax
at+1

Q̂(st+1, at+1)(18.13)

where the hat denotes that the value is an estimate. Q̂(st+1, at+1) is a later

value and has a higher chance of being correct. We discount this by γ and

add the immediate reward (if any) and take this as the new estimate for

the previous Q̂(st , at). This is called a backup because it can be viewed asbackup

taking the estimated value of an action in the next time step and “backing

it up” to revise the estimate for the value of a current action.

For now we assume that all Q̂(s, a) values are stored in a table; we will

see later on how we can store this information more succinctly when |S|
and |A| are large.

Initially all Q̂(st , at) are 0, and they are updated in time as a result

of trial episodes. Let us say we have a sequence of moves and at each

move, we use equation 18.13 to update the estimate of the Q value of the

previous state-action pair using the Q value of the current state-action

pair. In the intermediate states, all rewards and therefore values are 0,

so no update is done. When we get to the goal state, we get the reward

r and then we can update the Q value of the previous state-action pair

as γr . As for the preceding state-action pair, its immediate reward is 0

and the contribution from the next state-action pair is discounted by γ

because it is one step later. Then in another episode, if we reach this
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G
100*

0

90

81

A

B

Figure 18.4 Example to show that Q values increase but never decrease. This

is a deterministic grid-world where G is the goal state with reward 100, all other

immediate rewards are 0, and γ = 0.9. Let us consider the Q value of the transi-

tion marked by asterisk, and let us just consider only the two paths A and B. Let

us say that path A is seen before path B, then we have γmax(0,81) = 72.9;

if afterward B is seen, a shorter path is found and the Q value becomes

γmax(100,81) = 90. If B is seen before A, the Q value is γmax(100,0) = 90;

then when A is seen, it does not change because γmax(100,81) = 90.

state, we can update the one preceding that as γ2r , and so on. This way,

after many episodes, this information is backed up to earlier state-action

pairs. Q values increase until they reach their optimal values as we find

paths with higher cumulative reward, for example, shorter paths, but they

never decrease (see figure 18.4).

Note that we do not know the reward or next state functions here.

They are part of the environment, and it is as if we query them when

we explore. We are not modeling them either, though that is another

possibility. We just accept them as given and learn directly the optimal

policy through the estimated value function.

18.5.3 Nondeterministic Rewards and Actions

If the rewards and the result of actions are not deterministic, then we

have a probability distribution for the reward p(rt+1|st , at) from which

rewards are sampled, and there is a probability distribution for the next

state P(st+1|st , at). These help us model the uncertainty in the system

that may be due to forces we cannot control in the environment: for

instance, our opponent in chess, the dice in backgammon, or our lack of
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Initialize all Q(s, a) arbitrarily

For all episodes

Initalize s

Repeat

Choose a using policy derived from Q, e.g., �-greedy

Take action a, observe r and s�

Update Q(s, a):

Q(s, a)← Q(s, a)+ η(r + γmaxa� Q(s�, a�)−Q(s, a))
s ← s�

Until s is terminal state

Figure 18.5 Q learning, which is an off-policy temporal difference algorithm.

knowledge of the system. For example, we may have an imperfect robot

which sometimes fails to go in the intended direction and deviates, or

advances shorter or longer than expected.

In such a case, we have

Q(st , at) = E[rt+1]+ γ
�

st+1

P(st+1|st , at)max
at+1

Q(st+1, at+1)(18.14)

We cannot do a direct assignment in this case because for the same

state and action, we may receive different rewards or move to different

next states. What we do is keep a running average. This is known as the

Q learning algorithm:Q learning

Q̂(st , at)← Q̂(st , at)+ η(rt+1 + γmax
at+1

Q̂(st+1, at+1)−Q(st , at))(18.15)

We think of rt+1+γmaxat+1 Q̂(st+1, at+1) values as a sample of instances

for each (st , at) pair and we would like Q̂(st , at) to converge to its mean.

As usual η is gradually decreased in time for convergence, and it has been

shown that this algorithm converges to the optimal Q∗ values (Watkins

and Dayan 1992). The pseudocode of the Q learning algorithm is given

in figure 18.5.

We can also think of equation 18.15 as reducing the difference between

the currentQ value and the backed-up estimate, from one time step later.

Such algorithms are called temporal difference (TD) algorithms (Suttontemporal

difference 1988).

This is an off-policy method as the value of the best next action is usedoff-policy

without using the policy. In an on-policy method, the policy is used toon-policy
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Initialize all Q(s, a) arbitrarily

For all episodes

Initalize s

Choose a using policy derived from Q, e.g., �-greedy

Repeat

Take action a, observe r and s�

Choose a� using policy derived from Q, e.g., �-greedy

Update Q(s, a):

Q(s, a)← Q(s, a)+ η(r + γQ(s�, a�)−Q(s, a))
s ← s�, a ← a�

Until s is terminal state

Figure 18.6 Sarsa algorithm, which is an on-policy version of Q learning.

determine also the next action. The on-policy version of Q learning is the

Sarsa algorithm whose pseudocode is given in figure 18.6. We see thatSarsa

instead of looking for all possible next actions a� and choosing the best,

the on-policy Sarsa uses the policy derived from Q values to choose one

next action a� and uses its Q value to calculate the temporal difference.

On-policy methods estimate the value of a policy while using it to take

actions. In off-policy methods, these are separated, and the policy used

to generate behavior, called the behavior policy, may in fact be differ-

ent from the policy that is evaluated and improved, called the estimation

policy.

Sarsa converges with probability 1 to the optimal policy and state-

action values if a GLIE policy is employed to choose actions. A GLIE

(greedy in the limit with infinite exploration) policy is where (1) all state-

action pairs are visited an infinite number of times, and (2) the policy

converges in the limit to the greedy policy (which can be arranged, e.g.,

with �-greedy policies by setting � = 1/t).

The same idea of temporal difference can also be used to learn V(s)

values, instead of Q(s, a). TD learning (Sutton 1988) uses the followingTD learning

update rule to update a state value:

V(st)← V(st)+ η[rt+1 + γV(st+1)− V(st)](18.16)

This again is the delta rule where rt+1 + γV(st+1) is the better, later

prediction and V(st) is the current estimate. Their difference is the tem-

poral difference, and the update is done to decrease this difference. The
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update factor η is gradually decreased, and TD is guaranteed to converge

to the optimal value function V∗(s).

18.5.4 Eligibility Traces

The previous algorithms are one-step—that is, the temporal difference is

used to update only the previous value (of the state or state-action pair).

An eligibility trace is a record of the occurrence of past visits that en-eligibility trace

ables us to implement temporal credit assignment, allowing us to update

the values of previously occurring visits as well. We discuss how this

is done with Sarsa to learn Q values; adapting this to learn V values is

straightforward.

To store the eligibility trace, we require an additional memory variable

associated with each state-action pair, e(s, a), initialized to 0. When the

state-action pair (s, a) is visited, namely, when we take action a in state

s, its eligibility is set to 1; the eligibilities of all other state-action pairs

are multiplied by γλ. 0 ≤ λ ≤ 1 is the trace decay parameter.

et(s, a) =
�

1 if s = st and a = at ,
γλet−1(s, a) otherwise

(18.17)

If a state-action pair has never been visited, its eligibility remains 0; if it

has been, as time passes and other state-actions are visited, its eligibility

decays depending on the value of γ and λ (see figure 18.7).

We remember that in Sarsa, the temporal error at time t is

δt = rt+1 + γQ(st+1, at+1)−Q(st , at)(18.18)

In Sarsa with an eligibility trace, named Sarsa(λ), all state-action pairs

are updated as

Q(s, a)← Q(s, a)+ ηδtet(s, a), ∀s, a(18.19)

This updates all eligible state-action pairs, where the update depends

on how far they have occurred in the past. The value of λ defines the

temporal credit: If λ = 0, only a one-step update is done. The algo-

rithms we discussed in section 18.5.3 are such, and for this reason they

are namedQ(0), Sarsa(0), or TD(0). As λ gets closer to 1, more of the pre-

vious steps are considered. When λ = 1, all previous steps are updated

and the credit given to them falls only by γ per step. In online updat-

ing, all eligible values are updated immediately after each step; in offline

updating, the updates are accumulated and a single update is done at
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Figure 18.7 Example of an eligibility trace for a value. Visits are marked by an

asterisk.

the end of the episode. Online updating takes more time but converges

faster. The pseudocode for Sarsa(λ) is given in figure 18.8. Q(λ) andSarsa(λ)

TD(λ) algorithms can similarly be derived (Sutton and Barto 1998).

18.6 Generalization

Until now, we assumed that the Q(s, a) values (or V(s), if we are esti-

mating values of states) are stored in a lookup table, and the algorithms

we considered earlier are called tabular algorithms. There are a num-

ber of problems with this approach: (1) when the number of states and

the number of actions is large, the size of the table may become quite

large; (2) states and actions may be continuous, for example, turning the

steering wheel by a certain angle, and to use a table, they should be dis-

cretized which may cause error; and (3) when the search space is large,

too many episodes may be needed to fill in all the entries of the table

with acceptable accuracy.

Instead of storing the Q values as they are, we can consider this a re-

gression problem. This is a supervised learning problem where we define

a regressor Q(s, a|θ), taking s and a as inputs and parameterized by a


