Piyush Rai

CS771 (Supplementary Notes/Slides)

August 14, 2018



A Toy Problem: Estimating the mean of a Gaussian

o Consider data consisting of NV scalar-valued observations xi, ..., xy

@ Assume each observation is drawn i.i.d. from a one-dimensional Gaussian N (u,o?)

-

@ Would like to estimate the mean p (assume that we know o2)
@ One approach is to define an appropriate “loss function” and minimize it w.r.t. p

@ A possible loss function could be the sum of squared deviations from the mean

n=1

i.e., the empirical mean of data)

N
o Minimizing it w.r.t. u gives i = Z"%X (

@ Can we solve this problem using a probabilistic approach?
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The Probabilistic Approach

@ Let's write down the probability of the N Gaussian-distributed observations (assumed i.i.d.)

. R T O —n)?
p(X[u) =TT pCxalie) =TT Vono? P 202

n=1

Note: The quantity p(X|u) is also known as the likelihood

Let's define the optimal p as one that maximizes p(X|u)

N
fi = arg max p(X|u) = arg maxlog p(X|u) = arg min Z(X” — u)?
I 12 n
n=1

@ The above procedure is commonly known as maximum likelihood estimation (MLE)

N
@ The optimal u will be the same as the previous loss function based approach, i.e., i = E"ﬁlx

@ MLE basically gave us the same solution. So what did we gain? Stay tuned :-)
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Adding Prior Knowledge

@ What if someone told us that p is close to pg?

e Can add a “regularizer” (i — fi0)? to the objective function, and the solution would be
N N
N . RY. 2| L 2n—1Xn Tt o
fi = argmin ;(xn )%+ (1 — o) 1
@ Note that our estimate of u has “shifted” a bit towards pg
@ Question: What happens to our estimate when N is very large?
@ Rather than adding a regularizer in ad-hoc way, can we do it in a more formal way?
@ Yes. Using a “prior distribution” on p
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Prior Distribution

@ Let's assume we have a probabilistic prior belief as to what p might be (before seeing the data)

@ Let us assume our belief is modeled by a Gaussian prior distribution on p

[_ (1 — uo)z}

1
_ 2y
p(p) = N(plpo, 05) = > exp 207

2rog

The prior tells us that a prior we believe 11 to be close to o with a “spread” o3

o Note: Gaussian prior not necessary; can use other distributions. But Gaussian has some benefits
(e.g., computational ease; also makes sense in general in some cases)

How do we now “update” our prior belief in the light of observed data X7

@ To do this we need to combine the prior distribution p(u) with the likelihood p(X|u)
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Combining Prior and Likelihood..

o Enters the Bayes rule. Can define the posterior distribution of u as

p(X|u)p(p)  likelihood x prior
p(X) "~ marginal probability

p(ulX) =
@ We can find an optimal u by maximizing the posterior distribution p(u|X) w.r.t. u
fu= argmax p(u| X) = argmax p(X|u)p(p) = arg max[log p(X|u) + log p(u)]

@ The above procedure is commonly known as maximum-a-posteriori (MAP) estimation

@ Plugging in p(X|u) and p(u) and simplifying, we get

N Now o

fimap = argmin Z (X0 — p)? + (1 — po)? _ Done1 5t p
clhe 5
N 0
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Probability




The Full Posterior

@ MLE and MAP both only gave us a single best estimate of p (also called a point estimate)

@ However, we may sometimes be interested in the full posterior distribution over y

p(X|w)p(r) _ — p(XIp)p(k)
p(X) J p(X|u)p(r)du

@ The full posterior distribution provides a more complete picture about p

p(ulX) =

@ However, it is usually a hard problem since the integral to compute p(X) is not always easy

@ In some cases however (e.g., Gaussian mean estimation), the posterior can be computed easily
2
p(ulX) = N (plpn, o)

2 1
N—™ N 1
2zt

2
90

where N
X o
Zn:l CTZ + 0-7(2)

R (exercise: verify)
2t

un = and o

@ Note that the posterior is the same distribution as the prior - both are Gaussian (this happens when
likelihood and prior are conjugate to each other)
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Conjugate Priors

@ Many pairs of distributions are conjugate to each other. E.g.,

e Bernoulli (likelihood) + Beta (prior) = Beta posterior

e Binomial (likelihood) + Beta (prior) = Beta posterior

o Multinomial (likelihood) + Dirichlet (prior) = Dirichlet posterior
e Poisson (likelihood) + Gamma (prior) = Gamma posterior

e Gaussian (likelihood) + Gaussian (prior) = Gaussian posterior

e and many other such pairs ..

o Easy to identify if two distributions are conjugate to each other: their functional forms are similar
e E.g., recall the forms of Bernoulli and Beta

Bernoulli o 6*(1 — 6)' ™, Beta o % (1 — )"}
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Making Predictions

@ So we have estimated p, either via MLE/MAP or its full posterior distribution
@ Suppose, for a new observation x,., we want to compute its predictive distribution p(x.|X)
@ This too can be done in two ways

e Compute the plug-in predictive distribution using the MLE/MAP point estimate ji

mmm=/m&mmw=/mm%mmeMmeXF p(x. )

since data is i.i.d.

o Compute the posterior predictive distribution by averaging over the posterior of p

pcIX) = [ el ulX)dn = [ pc s X)p(ulX)d = [ b 1)p(ulX)

@ Posterior averaged prediction is more robust (and also more informative)

e Caveat: In general, much harder to compute as compared to the plug-in prediction but can be done in
closed form in this case since p(x.|p) and p(u|X) both are Gaussians
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