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A Toy Problem: Estimating the mean of a Gaussian

Consider data consisting of N scalar-valued observations x1, . . . , xN

Assume each observation is drawn i.i.d. from a one-dimensional Gaussian N (µ, σ2)

Would like to estimate the mean µ (assume that we know σ2)

One approach is to define an appropriate “loss function” and minimize it w.r.t. µ

A possible loss function could be the sum of squared deviations from the mean

L(µ) =
N∑

n=1

(xn − µ)2

Minimizing it w.r.t. µ gives µ̂ =
∑N

n=1 xn
N (i.e., the empirical mean of data)

Can we solve this problem using a probabilistic approach?
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The Probabilistic Approach

Let’s write down the probability of the N Gaussian-distributed observations (assumed i.i.d.)

p(X |µ) =
N∏

n=1

p(xn|µ) =
N∏

n=1

1√
2πσ2

exp

[
− (xn − µ)2

2σ2

]
Note: The quantity p(X |µ) is also known as the likelihood

Let’s define the optimal µ as one that maximizes p(X |µ)

µ̂ = arg max
µ

p(X |µ) = arg max
µ

log p(X |µ) = arg min
µ

N∑
n=1

(xn − µ)2

The above procedure is commonly known as maximum likelihood estimation (MLE)

The optimal µ will be the same as the previous loss function based approach, i.e., µ̂ =
∑N

n=1 xn
N

MLE basically gave us the same solution. So what did we gain? Stay tuned :-)
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Adding Prior Knowledge

What if someone told us that µ is close to µ0?

Can add a “regularizer” (µ− µ0)2 to the objective function, and the solution would be

µ̂ = arg min
µ

[
N∑

n=1

(xn − µ)2 + (µ− µ0)2

]
=

∑N
n=1 xn + µ0

N + 1

Note that our estimate of µ has “shifted” a bit towards µ0

Question: What happens to our estimate when N is very large?

Rather than adding a regularizer in ad-hoc way, can we do it in a more formal way?

Yes. Using a “prior distribution” on µ
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Prior Distribution

Let’s assume we have a probabilistic prior belief as to what µ might be (before seeing the data)

Let us assume our belief is modeled by a Gaussian prior distribution on µ

p(µ) = N (µ|µ0, σ
2
0) =

1√
2πσ2

0

exp

[
− (µ− µ0)2

2σ2
0

]
The prior tells us that a prior we believe µ to be close to µ0 with a “spread” σ2

0

Note: Gaussian prior not necessary; can use other distributions. But Gaussian has some benefits
(e.g., computational ease; also makes sense in general in some cases)

How do we now “update” our prior belief in the light of observed data X?

To do this we need to combine the prior distribution p(µ) with the likelihood p(X |µ)
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Combining Prior and Likelihood..

Enters the Bayes rule. Can define the posterior distribution of µ as

p(µ|X ) =
p(X |µ)p(µ)

p(X )
=

likelihood× prior

marginal probability

We can find an optimal µ by maximizing the posterior distribution p(µ|X ) w.r.t. µ

µ̂ = arg max
µ

p(µ|X ) = arg max
µ

p(X |µ)p(µ) = arg max
µ

[log p(X |µ) + log p(µ)]

The above procedure is commonly known as maximum-a-posteriori (MAP) estimation

Plugging in p(X |µ) and p(µ) and simplifying, we get

µ̂MAP = arg min
µ

[
N∑

n=1

(xn − µ)2

2σ2
+

(µ− µ0)2

2σ2
0

]
=

∑N
n=1

xn
σ2 + µ0

σ2
0

N
σ2 + 1

σ2
0
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MLE vs MAP: A Pictorial View
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The Full Posterior

MLE and MAP both only gave us a single best estimate of µ (also called a point estimate)

However, we may sometimes be interested in the full posterior distribution over µ

p(µ|X ) =
p(X |µ)p(µ)

p(X )
=

p(X |µ)p(µ)∫
p(X |µ)p(µ)dµ

The full posterior distribution provides a more complete picture about µ

However, it is usually a hard problem since the integral to compute p(X ) is not always easy

In some cases however (e.g., Gaussian mean estimation), the posterior can be computed easily

p(µ|X ) = N (µ|µN , σ
2
N)

where

µN =

∑N
n=1

xn
σ2 + µ0

σ2
0

N
σ2 + 1

σ2
0

and σ2
N =

1
N
σ2 + 1

σ2
0

(exercise: verify)

Note that the posterior is the same distribution as the prior - both are Gaussian (this happens when
likelihood and prior are conjugate to each other)
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Conjugate Priors

Many pairs of distributions are conjugate to each other. E.g.,

Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior

Binomial (likelihood) + Beta (prior) ⇒ Beta posterior

Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior

Poisson (likelihood) + Gamma (prior) ⇒ Gamma posterior

Gaussian (likelihood) + Gaussian (prior) ⇒ Gaussian posterior

and many other such pairs ..

Easy to identify if two distributions are conjugate to each other: their functional forms are similar

E.g., recall the forms of Bernoulli and Beta

Bernoulli ∝ θx(1− θ)1−x , Beta ∝ θα−1(1− θ)β−1
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Making Predictions

So we have estimated µ, either via MLE/MAP or its full posterior distribution

Suppose, for a new observation x∗, we want to compute its predictive distribution p(x∗|X )

This too can be done in two ways

Compute the plug-in predictive distribution using the MLE/MAP point estimate µ̂

p(x∗|X ) =

∫
p(x∗, µ|X )dµ =

∫
p(x∗|µ,X )p(µ|X )dµ ≈ p(x∗|µ̂,X ) = p(x∗|µ̂)︸ ︷︷ ︸

since data is i.i.d.

Compute the posterior predictive distribution by averaging over the posterior of µ

p(x∗|X ) =

∫
p(x∗, µ|X )dµ =

∫
p(x∗|µ,X )p(µ|X )dµ =

∫
p(x∗|µ)p(µ|X )dµ

Posterior averaged prediction is more robust (and also more informative)

Caveat: In general, much harder to compute as compared to the plug-in prediction but can be done in
closed form in this case since p(x∗|µ) and p(µ|X ) both are Gaussians
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