Probabilistic Modeling - An Illustration via Gaussian Mean Estimation

Piyush Rai

CS771 (Supplementary Notes/Slides)

August 14, 2018
A Toy Problem: Estimating the mean of a Gaussian

- Consider data consisting of N scalar-valued observations x_1, \ldots, x_N
- Assume each observation is drawn i.i.d. from a one-dimensional Gaussian $\mathcal{N}(\mu, \sigma^2)$
- Would like to estimate the mean μ (assume that we know σ^2)
- One approach is to define an appropriate "loss function" and minimize it w.r.t. μ
- A possible loss function could be the sum of squared deviations from the mean
 \[
 L(\mu) = \sum_{n=1}^{N} (x_n - \mu)^2
 \]
- Minimizing it w.r.t. μ gives $\hat{\mu} = \frac{\sum_{n=1}^{N} x_n}{N}$ (i.e., the empirical mean of data)
- Can we solve this problem using a probabilistic approach?
The Probabilistic Approach

Let’s write down the probability of the N Gaussian-distributed observations (assumed i.i.d.)

$$p(X|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(x_n - \mu)^2}{2\sigma^2} \right]$$

Note: The quantity $p(X|\mu)$ is also known as the likelihood

Let’s define the optimal μ as one that maximizes $p(X|\mu)$

$$\hat{\mu} = \arg \max_{\mu} p(X|\mu) = \arg \max_{\mu} \log p(X|\mu) = \arg \min_{\mu} \sum_{n=1}^{N} (x_n - \mu)^2$$

The above procedure is commonly known as maximum likelihood estimation (MLE)

The optimal μ will be the same as the previous loss function based approach, i.e., $\hat{\mu} = \frac{\sum_{n=1}^{N} x_n}{N}$

MLE basically gave us the same solution. So what did we gain? Stay tuned :)
Adding Prior Knowledge

- What if someone told us that μ is close to μ_0?
- Can add a “regularizer” $(\mu - \mu_0)^2$ to the objective function, and the solution would be:

$$\hat{\mu} = \arg \min_{\mu} \left[\sum_{n=1}^{N} (x_n - \mu)^2 + (\mu - \mu_0)^2 \right] = \frac{\sum_{n=1}^{N} x_n + \mu_0}{N + 1}$$

- Note that our estimate of μ has “shifted” a bit towards μ_0
- Question: What happens to our estimate when N is very large?
- Rather than adding a regularizer in ad-hoc way, can we do it in a more formal way?
- Yes. Using a “prior distribution” on μ
Let’s assume we have a probabilistic prior belief as to what \(\mu \) might be (before seeing the data).

Let us assume our belief is modeled by a Gaussian prior distribution on \(\mu \)

\[
p(\mu) = \mathcal{N}(\mu | \mu_0, \sigma_0^2) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left[-\frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right]
\]

The prior tells us that a prior we believe \(\mu \) to be close to \(\mu_0 \) with a “spread” \(\sigma_0^2 \)

Note: Gaussian prior not necessary; can use other distributions. But Gaussian has some benefits (e.g., computational ease; also makes sense in general in some cases)

How do we now “update” our prior belief in the light of observed data \(X \)?

To do this we need to combine the prior distribution \(p(\mu) \) with the likelihood \(p(X|\mu) \)
Combining Prior and Likelihood..

- Enters the **Bayes rule**. Can define the posterior distribution of μ as

$$p(\mu|X) = \frac{p(X|\mu)p(\mu)}{p(X)} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal probability}}$$

- We can find an optimal μ by maximizing the posterior distribution $p(\mu|X)$ w.r.t. μ

$$\hat{\mu} = \arg \max_{\mu} p(\mu|X) = \arg \max_{\mu} p(X|\mu)p(\mu) = \arg \max_{\mu} [\log p(X|\mu) + \log p(\mu)]$$

- The above procedure is commonly known as **maximum-a-posteriori** (MAP) estimation

- Plugging in $p(X|\mu)$ and $p(\mu)$ and simplifying, we get

$$\hat{\mu}_{\text{MAP}} = \arg \min_{\mu} \left[\sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2} + \frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right] = \frac{\sum_{n=1}^{N} x_n \sigma_0^2 + \mu_0^2}{\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}}$$
MLE vs MAP: A Pictorial View

![Diagram of MLE vs MAP](image)

- **Posterior PDF**: $p(\mu | X)$
- **Prior PDF**: $p(\mu)$
- **Obs. Likelihood**: $p(X | \mu)$
- **MLE**: $\hat{\mu}_{MLE}$
- **MAP**: $\hat{\mu}_{MAP}$
The Full Posterior

- MLE and MAP both only gave us a single best estimate of \(\mu \) (also called a point estimate)
- However, we may sometimes be interested in the full posterior distribution over \(\mu \)

\[
p(\mu|X) = \frac{p(X|\mu)p(\mu)}{p(X)} = \frac{p(X|\mu)p(\mu)}{\int p(X|\mu)p(\mu)d\mu}
\]

- The full posterior distribution provides a more complete picture about \(\mu \)
- However, it is usually a hard problem since the integral to compute \(p(X) \) is not always easy
- In some cases however (e.g., Gaussian mean estimation), the posterior can be computed easily

\[
p(\mu|X) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)
\]

where

\[
\mu_N = \frac{\sum_{n=1}^{N} \frac{x_n}{\sigma_n^2} + \frac{\mu_0}{\sigma_0^2}}{\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}} \quad \text{and} \quad \sigma_N^2 = \frac{1}{\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}} \quad \text{(exercise: verify)}
\]

- Note that the posterior is the same distribution as the prior - both are Gaussian (this happens when likelihood and prior are conjugate to each other)
Conjugate Priors

- Many pairs of distributions are conjugate to each other. E.g.,
 - Bernoulli (likelihood) + Beta (prior) ⇒ Beta posterior
 - Binomial (likelihood) + Beta (prior) ⇒ Beta posterior
 - Multinomial (likelihood) + Dirichlet (prior) ⇒ Dirichlet posterior
 - Poisson (likelihood) + Gamma (prior) ⇒ Gamma posterior
 - Gaussian (likelihood) + Gaussian (prior) ⇒ Gaussian posterior
 - and many other such pairs..

- Easy to identify if two distributions are conjugate to each other: their functional forms are similar
 - E.g., recall the forms of Bernoulli and Beta

\[
\text{Bernoulli} \propto \theta^x (1 - \theta)^{1-x}, \quad \text{Beta} \propto \theta^{\alpha-1} (1 - \theta)^{\beta-1}
\]
Making Predictions

So we have estimated \(\mu \), either via MLE/MAP or its full posterior distribution.

Suppose, for a new observation \(x_* \), we want to compute its predictive distribution \(p(x_*|X) \).

This too can be done in two ways:

- Compute the plug-in predictive distribution using the MLE/MAP point estimate \(\hat{\mu} \):
 \[
p(x_*|X) = \int p(x_*, \mu|X)d\mu = \int p(x_*|\mu, X)p(\mu|X)d\mu \approx p(x_*|\hat{\mu}, X) = p(x_*|\hat{\mu})
 \]
 since data is i.i.d.

- Compute the posterior predictive distribution by averaging over the posterior of \(\mu \):
 \[
p(x_*|X) = \int p(x_*, \mu|X)d\mu = \int p(x_*|\mu, X)p(\mu|X)d\mu = \int p(x_*|\mu)p(\mu|X)d\mu
 \]

 Posterior averaged prediction is more robust (and also more informative).

 Caveat: In general, much harder to compute as compared to the plug-in prediction but can be done in closed form in this case since \(p(x_*|\mu) \) and \(p(\mu|X) \) both are Gaussians.