
Optimization Techniques for ML (2)

Piyush Rai

Introduction to Machine Learning (CS771A)

August 28, 2018

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 1



Recap: Convex and Non-Convex Function

Most ML problems boil down to minimization of convex/non-convex functions, e.g.,

ŵ = arg min
w
L(w) = arg min

w

1

N

N∑
n=1

`n(w) + R(w)

Convex functions have a unique minima

w
1

w
2w

LossLoss

Optima Optima

Non-convex function have several local minima

w
1

w
2

w

Loss

Loss

“Local” Optima

“Local” Optima

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 2



Recap: Convex Functions

A function is convex if all of its chords lie above the function

Convex Function Non-convex  Function

s.t

If f is convex then given

Jensen’s Inequality

Note: “Chord lies above function” 
          more formally means

A function is convex if its graph lies above all of its tangents (above its first order Taylor expansion)

A function is convex if its second derivative (Hessian) is positive semi-definite

Note: If f is convex then −f is a concave function

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 3



Recap: Gradient Descent

A very simple, first-order method for optimizing any differentiable function (convex/non-convex)

Uses only the gradient g = ∇L(w) of the function

Basic idea: Start at some location w (0) and move in the opposite direction of the gradient

negative
gradient

positive 
direction

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 4



Recap: Gradient Descent

A very simple, first-order method for optimizing any differentiable function (convex/non-convex)

Uses only the gradient g = ∇L(w) of the function

Basic idea: Start at some location w (0) and move in the opposite direction of the gradient

positive
gradient

negative 
direction

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 5



Recap: Gradient Descent

Gradient Descent

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 6



Recap: Gradient Descent

The learning rate ηt is important

Very small learning rates may result in very slow convergence

Very large learning rates may lead to oscillatory behavior or result in a bad local optima

Very small learning rates Very large learning rates

VERY VERY large rate (can 
even jump into a bad region)

May not be able to “cross”
towards the good side

May take too long
    to converge

May keep
oscillating

Many ways to set the learning rate, e.g.,

Constant (if properly set, can still show good convergence behavior)

Decreasing with t (e.g. 1/t, 1/
√
t, etc.)

Use adaptive learning rates (e.g., using methods such as Adagrad, Adam)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 7



Recap: Stochastic Gradient Descent

Gradient computation in standard GD may be expensive when N is large

g = ∇w

[
1

N

N∑
n=1

`n(w)

]
=

1

N

N∑
n=1

g n (ignoring regularizer R(w))

Stochastic Gradient Descent (SGD) approximates g using a single data point

In iteration t, SGD picks a uniformly random i ∈ {1, . . . ,N} and approximate g as

g ≈ g i = ∇w `i (w)

Stochastic Gradient Descent

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 8



Recap: Mini-batch SGD

In each itearation, SGD uses a single randomly chosen i ∈ {1, . . . ,N} to approximate g

This results in a large variance in g i

(full gradient)

(stochastic gradient)

We can instead use B > 1 uniformly randomly chosen points with indices i1, . . . , iB ∈ {1, . . . ,N}

This is the idea behind mini-batch SGD. The approximated gradient in this case would be

g ≈ 1

B

B∑
b=1

g ib

The basic intuition: Averaging helps in variance reduction!

The algorithm is same as SGD except we will now using these mini-batch gradients at each step

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 9



Plan for today

Optimization of functions that are NOT differentiable

Optimization with constraints on the variables

Optimizing w.r.t. several variables with one at a time

Co-ordinate descent

Alternating optimization

Second-order methods for optimization

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 10



Optimizing Non-differentiable Functions

Many ML problems require minimizing non-differentiable functions

Some common examples

Absolute, ε-insensitive loss in regression, several classification loss functions (we will see shortly)
Absolute Loss: -insensitive Loss:

“Perceptron” Loss:

(0,0)

Hinge Loss:

(0,1)

(1,0)(0,0)

Regression/classification loss functions with `1 or `p (p < 1) regularization

Differentiable
NON-Differentiable

Can’t apply standard GD or SGD since gradient isn’t defined at points of non-differentiability

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 11



Interlude: Loss Functions for Classification

In regression (assuming linear model ŷ = w>x), some common loss functions are

`(y , ŷ) = (y −w>x)2 or `(y , ŷ) = |y −w>x |

We typically look at the difference between true y and model’s prediction w>x

How to formally define loss functions for classification?

We have already looked at the loss function for logistic regression (assuming y ∈ {−1,+1})

`(y , ŷ) = log(1 + exp(−yw>x))

Why does the above make sense? Well, it is large for large misclassifications, small otherwise

(0,0)

Are there other loss functions for classification? Yes, several.

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 12



Interlude: Some Loss Functions for (Binary) Classification

(same as)

“Perceptron” Loss0-1 Loss

Log(istic) Loss Hinge Loss

Non-convex
+

Non-differentiable
+

NP-Hard to Optimize
Convex

+
Non-differentiable

Convex
+

Differentiable

Convex
+

Non-differentiable

(0,0)

(0,1)

(0,0)

(0,1)

(1,0)(0,0) (0,0)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 13



Optimizing Non-differentiable Functions

Even though gradients are not defined for non-diff. functions, we can work with subgradients

differentiable
       here

non-differentiable
          here

For a function f (x), its subgradient at x is any vector g s.t. ∀y

f (y) ≥ f (x) + g>(y − x)

A non-differentiable function can have several subgradients at the point of non-differentiability

Set of all subgradients of a function f at point x is called the subdifferential denoted as ∂f (x)

∂f (x) = {g : f (y) ≥ f (x) + g>(y − x), ∀y}

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 14



Subgradient Descent: An Example

Consider linear regression but with `1 norm on w (recall: `1 norm promotes a sparse w)

ŵ = arg min
w

N∑
n=1

(yn −w>xn)2 + λ||w ||1

The squared error term is differentiable but the norm ||w ||1 is NOT at wd = 0

We can use subgradients of ||w ||1 in this case

g = 2
N∑

n=1

(yn −w>xn)xn + λt

Here t is a vector s.t.

td =


−1, for wd < 0

[−1,+1] for wd = 0

+1 for wd > 0

If we take td = 0 at wd = 0 then td = sign(wd)

(0,0)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 15



Subgradient Descent: Another Example

Consider binary classification with hinge loss (used in SVM - will see later), assume `2 regularizer

(1,0)

Hinge Loss:

(0,1)

(0,0)

In this case loss (hinge) non-differentiable, regularizer differentiable

Subgradient t of the hinge loss term will be

t =


0, for ynw>xn > 1

−ynxn for ynw>xn < 1

kynxn for ynw>xn = 1 (where k ∈ [−1, 0])

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 16



Subgradient Descent: Summary

(0,0) (1,0)

Hinge Loss:

(0,1)

(0,0)

Not really that different from standard GD

Only difference is that we use subgradients where function is non-differentiable

In practice, it is like pretending that the function is differentiable everywhere

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 17



Constrained Optimization

<= 0

w
1 w

2

1: Lagrangian based optimization
2: Projected gradient descent

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 18



Constrained Optimization: Lagrangian Approach

Consider optimizing some function f (w) subject to an inequality constraint on w

ŵ = arg min
w

f (w), s.t. g(w) ≤ 0

If constraint of the form g(w) ≥ 0, use −g(w) ≤ 0

Note: Can handle multiple inequality and equality constraints too (will see later)

Can transform the above constrained problem into an equivalent unconstrained problem

ŵ = arg min
w

f (w)+c(w)
where we have defined c(w) as

c(w) = max
α≥0

αg(w) =

{
∞, if g(w) > 0 (constraint violated)

0 if g(w) ≤ 0 (constraint satisfied)

We can equivalently write the problem as

ŵ = arg min
w

{
f (w)+ arg max

α≥0
αg(w)

}
Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 19



Constrained Optimization: Lagrangian Approach

So we could write the original problem as

ŵ = arg min
w

{
f (w)+ arg max

α≥0
αg(w)

}
= arg min

w

{
arg max

α≥0
{f (w) + αg(w)}

}
The function L(w , α) = f (w) + αg(w) called the Lagrangian, optimized w.r.t. w and α

α is known as the Lagrange multiplier

Primal and Dual problems

ŵP = arg min
w

{
arg max

α≥0
{f (w) + αg(w)}

}
(primal problem)

ŵD = arg max
α≥0

{
arg min

w
{f (w) + αg(w)}

}
(dual problem)

Note: ŵP = ŵD in some nice cases (e.g., when f (w) and constraint set g(w) ≤ 0 are convex)

For dual solution, αDg(ŵD) = 0 (complimentary slackness/Karush-Kuhn-Tucker (KKT) condition)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 20



Constrained Optimization: Lagrangian with Multiple Constraints

We can also have multiple inequality and equality constraints

ŵ = arg min
w

f (w)

s.t. gi (w) ≤ 0, i = 1, . . . ,K

hj(w) = 0, j =, 1, . . . , L

Introduce Lagrange multipliers α = (α1, . . . , αK ) ≥ 0 and β = (β1, . . . , βL)

The Lagrangian based primal and dual problems will be

ŵP = arg min
w
{arg max

α≥0,β
{f (w) +

K∑
i=1

αigi (w) +
L∑

j=1

βjhj(w)}}

ŵD = arg max
α≥0,β

{arg min
w
{f (w) +

K∑
i=1

αigi (w) +
L∑

j=1

βjhj(w)}}

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 21



Lagrangian based Optimization: An Example

Consider the generative classification model with K classes

Suppose we want to estimate the parameters of class-marginal p(y)

p(y |π) = multinoulli(π1, π2, . . . , πK ) =
K∏

k=1

π
I[y=k]
k , s.t.

K∑
k=1

πk = 1

Given N observations {xn, yn}Nn=1, the negative log-likelihood for class marginal

f (π) = −
N∑

n=1

log p(yn|π)

We have an equality constraint
∑K

k=1 πk − 1 = 0

The Lagrangian for this problem will be

L(π, β) = f (π) + β(
K∑

k=1

πk − 1)

Exercise: Solve arg maxβ arg minπ L(π, β) and show that πk = Nk/N

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 22



Projected Gradient Descent

Suppose our problem requires the parameters to lie within a set C

ŵ = arg min
w
L(w), subject to w ∈ C

Projected GD is very similar to GD with an extra projection step

Projection
    step

Each step of projected GD works as follows

Do the usual GD update: z (t+1) = w (t) − ηtg (t)

Check z (t+1) for the constraints

If z(t+1) ∈ C, w (t+1) = z(t+1)

If z(t+1) /∈ C, project on the constraint set: w (t+1) = ΠC [z(t+1)]︸ ︷︷ ︸
projection

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 23



Projected GD: How to Project?

The projection itself is an optimization problem

Projection
    step

Given z , we find the “closest” point (e.g., in Euclidean sense) w in the set as follows

ΠC[z ] = arg min
w∈C
||w − z ||2

For some sets C, the projection step is easy/trivial

(1,0)

(0,1)

  Projection
         =
Normalize to
  unit length

  Projection
         =
Set negative
 values to 0

: Unit radius     ball : Set of non-negative reals

For some other sets C, the projection step may be a bit more involved

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 24



Co-ordinate Descent (CD)

Standard GD update for w ∈ RD at each step

w (t+1) = w (t) − ηtg (t)

CD: Each step update one component (co-ordinate) at a time, keeping all others fixed

w
(t+1)
d = w

(t)
d − ηtg

(t)
d

Cost of each update is now independent of D

How to pick which co-ordinate to update?

Can be chosen in random order (stochastic CD)

Can be chosen in cyclic order

Note: Can also update “blocks” of co-ordinates (called Block co-ordinate descent)

Should cache previous computations (e.g., w>x) to avoid O(D) cost in gradient computation

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25



Alternating Optimization

Many optimization problems consist of several variables. Very common in ML.

For simplicity, suppose we want to optimize a function of 2 variables w 1 ∈ RD and w 2 ∈ RD

{ŵ 1, ŵ 2} = arg min
w1,w2

L(w 1,w 2)

Jointly optimizing w.r.t. w 1 and w 2 may be hard (e.g., if their values depend on each other)

Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)

We can therefore follow an alternating scheme to optimize w.r.t. w 1 and w 2

Initialize one of the variables, e.g., w 2 = w (0)
2 , t = 0

Solve w (t+1)
1 = arg maxw1 L(w 1,w (t)

2 )

Solve w (t+1)
2 = arg maxw2 L(w (t+1)

1 ,w 2)

t = t + 1. Repeat until convergence

Usually converges to a local optima of L(w 1,w 2). Also connections to EM (will see later)

Extends to more than 2 variables as well (and not just to vectors). CD is a special case.

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 26



Second-Order Methods: Newton’s Method

GD and variants only use first-order information (the gradient)

Second-order information often tells us a lot more about the function’s shape, curvature, etc.

Newton’s method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Doesn’t rely on gradient to choose w (t+1)

Instead, each step directly jumps to the minima of quadratic approximation

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 27



Second-Order Methods: Newton’s Method

GD and variants only use first-order information (the gradient)

Second-order information often tells us a lot more about the function’s shape, curvature, etc.

Newton’s method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Doesn’t rely on gradient to choose w (t+1)

Instead, each step directly jumps to the minima of quadratic approximation

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 28



Second-Order Methods: Newton’s Method

GD and variants only use first-order information (the gradient)

Second-order information often tells us a lot more about the function’s shape, curvature, etc.

Newton’s method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Doesn’t rely on gradient to choose w (t+1)

Instead, each step directly jumps to the minima of quadratic approximation

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 29



Second-Order Methods: Newton’s Method

GD and variants only use first-order information (the gradient)

Second-order information often tells us a lot more about the function’s shape, curvature, etc.

Newton’s method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Doesn’t rely on gradient to choose w (t+1)

Instead, each step directly jumps to the minima of quadratic approximation

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 30



Second-Order Methods: Newton’s Method

The quadratic (Taylor) approximation of f (w) at w (t) is given by

f̃ (w) = f (w (t)) +∇f (w (t))>(w −w (t)) +
1

2
(w −w (t))>∇2f (w (t))(w −w (t))

The minimizer of this quadratic approximation is (exercise: verify)

ŵ = arg min
w

f̃ (w) = w (t) − (∇2f (w (t)))−1∇f (w (t))

This is the update used in Newton’s method (a second order method since it uses the Hessian)

w (t+1) = w (t) − (∇2f (w (t)))−1∇f (w (t))

Look, Ma! No learning rate! :-)

Very fast if f (w) is convex. But expensive due to Hessian computation/inversion.

Many ways to approximate the Hessian (e.g., using previous gradients); also look at L-BFGS etc.

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 31



Summary

Gradient methods are simple to understand and implement

More sophisticated optimization methods often use gradient methods

Backpropagation algorithm used in deep neural nets is GD + chain rule of differentiation

Use subgradient methods if function not differentiable

Constrained optimization require methods such as Lagrangian or projected gradient

Second order methods such as Newton’s method are much faster but computationally expensive

But computing all this gradient related stuff looks scary to me. Any help?

Don’t worry. Automatic Differentiation (AD) methods available now

AD only requires specifying the loss function (especially useful for deep neural nets)

Many packages such as Tensorflow, PyTorch, etc. provide AD support

But having a good understanding of optimization is still helpful

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 32


