Piyush Rai

Introduction to Machine Learning (CS771A)

August 28, 2018

«4O0>» «Fr «E» «E)» = HA

@ Most ML problems boil down to minimization of convex/non-convex functions, e.g.,

N
. . B 1
W = arg min L(w) = arg min — ;E,,(w)+ R(w)

«4O0>» «Fr «E» «E)» = HA

@ Convex functions have a unique minima

Loss

N
. . B 1
W = arg min L(w) = arg min ;E,,(w) + R(w)

Optima

«O» 4« F»

@ Most ML problems boil down to minimization of convex/non-convex functions, e.g.,

DA

@ Convex functions have a unique minima

@ Most ML problems boil down to minimization of convex/non-convex functions, e.g.,

Loss

N
. . B 1
W = arg min L(w) = arg min ;E,,(w) + R(w)

Optima

w

Loss

@ Non-convex function have several local minima

“Local” Optima -7

DA

Convex Function

@ A function is convex if all of its chords lie above the function

Non-convex Function

Note: “Chord lies above function”

more formally means

If fis convex then given

Q1,0 st Y =1

f(Zn: ﬂili) = z": aif(w:)
i=1 i=1

Jensen’s Inequality

«4O0>» «Fr «E» «E)» = HA

Convex Function

@ A function is convex if all of its chords lie above the function

Non-convex Function

Note: “Chord lies above function”
more formally means
f1()

If fis convex then given

Q1. Qp st Y i =1

f(z": ﬂili) < z": aif(w:)
i i=1 i=1
:c’ T

Jensen’s Inequality
@ A function is convex if its graph lies above all of its tangents (above its first order Taylor expansion)

L I0) 2 f@) + V@) (v - 2)]

f@)+ V(@) (y - 2)
(z, f(2))
«O>r <« Fr o« > > DU
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 3

Convex Function

@ A function is convex if all of its chords lie above the function

Non-convex Function

Note: “Chord lies above function”
more formally means
f1()

If fis convex then given

Q1. Qp st Y i =1

g (z”: ﬂili)
e i=1
e

< iaif(ri)
Jensen’s Ineg;;Iigy
@ A function is convex if its graph lies above all of its tangents (above its first order Taylor expansion)

L I0) 2 f@) + V@) (v - 2)]

f@) + V(@) (y-2)
(=, f(=))
@ A function is convex if its second derivative (Hessian) is positive semi-definite
R TREE , Sac
"~ Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 3

Recap: Convex Functions

@ A function is convex if all of its chords lie above the function

Note: “Chord lies above function”
Convex Function Non-convex Function more formally means

If fis convex then given
5@ 1@ g, .., an st Y ai=1

(@) () /‘(3 n,.r,) <Y aif(@)

>z > Jensen’s Inequalit
T & z z

@ A function is convex if its graph lies above all of its tangents (above its first order Taylor expansion)

f@) > f(@) + V@) (y-2)

f(@) +Vf@)(y - 2)

@ A function is convex if its second derivative (Hessian) is positive semi-definite

@ Note: If f is convex then —f is a concave function

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

Recap: Gradient Descent

@ Uses only the gradient g = V.L(w) of the function

@ A very simple, first-order method for optimizing any differentiable function (convex/non-convex)
e Basic idea: Start at some location w(®) and move in the opposite direction of the gradient

wttD — 2p®

_ 77tg(t)
negative
© gradient

Intro to Machine Learning (CS771A)

—p-positive

direction

Optimization Techniques for ML (2)

@ A very simple, first-order method for optimizing any differentiable function (convex/non-convex)
@ Uses only the gradient g = V.L(w) of the function

e Basic idea: Start at some location w(®) and move in the opposite direction of the gradient

wtHD = ® _ pg®

«O» «Fr «=)r «E)» HA

Recap: Gradient Descent

@ A very simple, first-order method for optimizing any differentiable function (convex/non-convex)
o Uses only the gradient g = V.L(w) of the function

e Basic idea: Start at some location w(®) and move in the opposite direction of the gradient

wtt) = p® _ p, g®

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

Recap: Gradient Descent

@ A very simple, first-order method for optimizing any differentiable function (convex/non-convex)
@ Uses only the gradient g = V.L(w) of the function

e Basic idea: Start at some location w(®) and move in the opposite direction of the gradient

wttD = op® _ pg®

positive
gradient g /

——
negative w’())

direction

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

@ A very simple, first-order method for optimizing any differentiable function (convex/non-convex)
@ Uses only the gradient g = V.L(w) of the function

e Basic idea: Start at some location w(®) and move in the opposite direction of the gradient

-—
«O» «Fr «=)r «E)» HA
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) a4

@ A very simple, first-order method for optimizing any differentiable function (convex/non-convex)
o Uses only the gradient g = V.L(w) of the function

@ Basic idea: Start at some location w(®) and move in the opposite direction of the gradient

wD = 4 ® _ pg®

«O» «Fr «=)r «E)» HA
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) a4

Recap: Gradient Descent

Gradient Descent

1. Initialize w as w'®
2. Update w as follows
wttD) = ® — p,g®

3. Repeat until convergence

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

@ The learning rate 7); is important

Very small learning rates

May not be :be 10 “cross”
towards the good side

May take too long
to converge

@ Very small learning rates may result in very slow convergence

@ Very large learning rates may lead to oscillatory behavior or result in a bad local optima

Very large learning rates

VERY VERY large rate (can
even jump into a bad region)

May keep
oscillating

«O» «Fr «=)r «E)» = HA

Recap: Gradient Descent

@ The learning rate 7; is important
@ Very small learning rates may result in very slow convergence

@ Very large learning rates may lead to oscillatory behavior or result in a bad local optima

Very large learning rates

Y,

')/‘:; May keep
- oscillating

Very small learning rates

May not be :be to “cross”

towards the good side

VERY VERY large rate (can
even jump into a bad region;

_May take too long
to converge

@ Many ways to set the learning rate, e.g.,

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

Recap: Gradient Descent

@ The learning rate 7; is important
@ Very small learning rates may result in very slow convergence

@ Very large learning rates may lead to oscillatory behavior or result in a bad local optima

Very large learning rates

Y,

')/‘:; May keep
- oscillating

Very small learning rates

VERY VERY large rate (can
even jump into a bad region;

May not be :be to “cross”

towards the good side

_May take too long
to converge

@ Many ways to set the learning rate, e.g.,

e Constant (if properly set, can still show good convergence behavior)
o Decreasing with t (e.g. 1/t, 1//t, etc.)
e Use adaptive learning rates (e.g., using methods such as Adagrad, Adam)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

N

1
= Nzgn

n=1

o Gradient computation in standard GD may be expensive when N is large
1 N
g8=Vu N ;én(w)

(ignoring regularizer R(w))

«4O0>» «Fr «E» «E)» HA

(ignoring regularizer R(w))

«O» «Fr «=)r «E)» = HA

o Gradient computation in standard GD may be expensive when N is large
NZum Nza ignor
@ Stochastic Gradient Descent (SGD) approximates g using a single data point

Recap: Stochastic Gradient Descent

o Gradient computation in standard GD may be expensive when N is large

1 N
N;en(w)

@ Stochastic Gradient Descent (SGD) approximates g using a single data point

1

N
g2=Vu =N Zgn (ignoring regularizer R(w))
n=1

@ In iteration t, SGD picks a uniformly random i € {1,..., N} and approximate g as

g ~g;=Vuli(w)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

Recap: Stochastic Gradient Descent

o Gradient computation in standard GD may be expensive when N is large

1 N
N;en(w)

@ Stochastic Gradient Descent (SGD) approximates g using a single data point

1

N
g2=Vu =N Zgn (ignoring regularizer R(w))
n=1

@ In iteration t, SGD picks a uniformly random i € {1,..., N} and approximate g as

g ~g;=Vuli(w)

Stochastic Gradient Descent

1. Initialize w as w©®

2. Pick a random 7 € {1,..., N}. Update w as follows
()

i

wt) = ® _pg
3. Repeat until convergence

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

@ This results in a large variance in g;

@ In each itearation, SGD uses a single randomly chosen i € {1,..., N} to approximate g

«Or «F» « > > HA

@ In each itearation, SGD uses a single randomly chosen i € {1,..., N} to approximate g
@ This results in a large variance in g;

@ We can instead use B > 1 uniformly randomly chosen points with indices i,

...,iB€{17...,N}
«O» «Fr «=)r «E)» HA
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) g

Recap: Mini-batch SGD

@ In each itearation, SGD uses a single randomly chosen i € {1,..., N} to approximate g

@ This results in a large variance in g;
g (full gradient)

. (stochastic gradient)
» g,

@ We can instead use B > 1 uniformly randomly chosen points with indices i, ...,ig € {1,..., N}

@ This is the idea behind mini-batch SGD. The approximated gradient in this case would be

1B
g~ Ezgib
b=1

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

Recap: Mini-batch SGD

@ In each itearation, SGD uses a single randomly chosen i € {1,..., N} to approximate g

@ This results in a large variance in g;
g (full gradient)

. (stochastic gradient)
» g,

@ We can instead use B > 1 uniformly randomly chosen points with indices i, ...,ig € {1,...

@ This is the idea behind mini-batch SGD. The approximated gradient in this case would be

1B
g~ Ezgib
b=1

@ The basic intuition: Averaging helps in variance reduction!

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

N}

Recap: Mini-batch SGD

@ In each itearation, SGD uses a single randomly chosen i € {1,..., N} to approximate g

@ This results in a large variance in g;
g (full gradient)

. (stochastic gradient)
» g,

@ We can instead use B > 1 uniformly randomly chosen points with indices i, ...,ig € {1,..., N}

@ This is the idea behind mini-batch SGD. The approximated gradient in this case would be

1B
g~ B Zgib
b=1
@ The basic intuition: Averaging helps in variance reduction!

@ The algorithm is same as SGD except we will now using these mini-batch gradients at each step

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

@ Optimization of functions that are NOT differentiable
@ Optimization with constraints on the variables

@ Optimizing w.r.t. several variables with one at a time
e Co-ordinate descent

e Alternating optimization

@ Second-order methods for optimization

«O» «Fr «=)r «E)» = HA

@ Many ML problems require minimizing non-differentiable functions

«O)>» «F»r « DU
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 10

@ Some common examples

Absolute Loss: [y — w x|

@ Many ML problems require minimizing non-differentiable functions

e Absolute, e-insensitive loss in regression, several classification loss functions (we will see shortly)
€ insensitive Loss: [y ~ w'a| e

DA

@ Some common examples

Absolute Loss: [y — w x|

@ Many ML problems require minimizing non-differentiable functions

“Perceptron” Loss: max{0, —yw ' a}

e Absolute, e-insensitive loss in regression, several classification loss functions (we will see shortly)
€ insensitive Loss: [y ~ w'a| e

Hinge Loss: max{0.1-yw'z}

0.1)
©.0) "

yw'x

.0) (1,0)

'@

DA

Optimizing Non-differentiable Functions

@ Many ML problems require minimizing non-differentiable functions
@ Some common examples

o Absolute, e-insensitive loss in regression, several classification loss functions (we will see shortly)

Absolute Loss: |y —w ' i Sy —w' x| — . . .
v | € msensmv:e Loss: "U wel-e “Perceptron” Loss: max{0, —yw '@} Hinge Loss: max{0,1-yw z}

01)

Yy w'x 00 'z ©0 @O yw'x

o Regression/classification loss functions with ¢1 or £, (p < 1) regularization

Contour of squared £ norm =1 Contour of £, norm =1 Contour of £, (p < 1) norm = 1

2 wi+w; =1 Wy [wn| + o] =1 wy
Wy \j/“.l

NON-Differentiable

(] +uh) P =1

Differentiable

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 10

Optimizing Non-differentiable Functions

@ Many ML problems require minimizing non-differentiable functions
@ Some common examples
o Absolute, e-insensitive loss in regression, several classification loss functions (we will see shortly)

Absolute Loss: |y —w ' i Sy —w' x| — .
v | € msensmv:e Loss: "U wel-e “Perceptron” Loss: max{0, —yw '@} Hinge Loss: max{0,1-yw z}

01)

Y o % ©.0) w [CIOREE p—p

o Regression/classification loss functions with ¢1 or £, (p < 1) regularization

Contour of squared £ norm =1 Contour of £, norm =1 Contour of £, (p < 1) norm = 1

Wy, o,) g
Uity =1 w2 [un| + Jun| =1 Wy
Wy \L/“.I

NON-Differentiable

(] +ud)P =1

Differentiable

@ Can't apply standard GD or SGD since gradient isn't defined at points of non-differentiability

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

10

Uy, 9)

@ In regression (assuming linear model y = w ' x), some common loss functions are

(y—w'x) or Uy, 9)=|y—w'x|

«0O>» «F»r « > » HA

@ In regression (assuming linear model y = w ' x), some common loss functions are
Uy.9) = (y—w'x)® or Uy, 9)=|y—w'x|
o We typically look at the difference between true y and model's prediction w

Tx

«O» «Fr «=)r «E)» = HA

Interlude: Loss Functions for Classification

@ In regression (assuming linear model y = w ' x), some common loss functions are

Uy.9) = (y—w'x)p? or Uy.9)=1ly—w'x]
@ We typically look at the difference between true y and model’s prediction w ' x

@ How to formally define loss functions for classification?

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

11

Interlude: Loss Functions for Classification

@ In regression (assuming linear model y = w ' x), some common loss functions are

Uy.9) = (y—w'x) or Uy.9)=1ly—w'x|
@ We typically look at the difference between true y and model’s prediction w ' x
@ How to formally define loss functions for classification?

@ We have already looked at the loss function for logistic regression (assuming y € {—1,+1})

(y,9) = log(1 + exp(—yw ' x))

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

11

Interlude: Loss Functions for Classification

@ In regression (assuming linear model y = w ' x), some common loss functions are
Uy.9) = (y—w'x)p? or Uy.9)=1ly—w'x]

@ We typically look at the difference between true y and model’s prediction w ' x

@ How to formally define loss functions for classification?
@ We have already looked at the loss function for logistic regression (assuming y € {—1,+1})
Uy,) = log(1 + exp(—yw " x))

@ Why does the above make sense? Well, it is large for large misclassifications, small otherwise

if y=+1, then large positive w @ implies small error
T

' T . Lo
log(1 + exp(-yw @) 1, then large negative w ' a implies small error
if y=+1, then large negative w ' implies large error

1, then large positive w" @ implies large error

[Large psitve yu" = small error, Large negative y” @ = lage ero

00 yw'x

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 11

Interlude: Loss Functions for Classification

@ In regression (assuming linear model y = w ' x), some common loss functions are

Uy,9) = (y—w'x)® or y,9)=|y—w'x|

@ We typically look at the difference between true y and model’s prediction w ' x

@ How to formally define loss functions for classification?

@ We have already looked at the loss function for logistic regression (assuming y € {—1,+1})

Uy,) = log(1 + exp(—yw " x))
@ Why does the above make sense? Well, it is large for large misclassifications, small otherwise

if y=+1, then large positive w @ implies small error

f then large negative w'a implies small error
LT

+1, then large negative w ' a implies large error

-1, then large positive w " @ implies large error

log(1 + exp(—yw" z))

[Large psitve yu" = small error, Large negative y” @ = lage ero

00 yw'x

@ Are there other loss functions for classification?

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

11

Interlude: Loss Functions for Classification

@ In regression (assuming linear model y = w ' x), some common loss functions are

Uy,9) = (y—w'x)® or y,9)=|y—w'x|

@ We typically look at the difference between true y and model’s prediction w ' x

@ How to formally define loss functions for classification?

@ We have already looked at the loss function for logistic regression (assuming y € {—1,+1})

Uy,) = log(1 + exp(—yw " x))
@ Why does the above make sense? Well, it is large for large misclassifications, small otherwise

if y=+1, then large positive w @ implies small error

f then large negative w'a implies small error
LT

+1, then large negative w ' a implies large error

-1, then large positive w " @ implies large error

log(1 + exp(—yw" z))

[Large psitve yu" = small error, Large negative y” @ = lage ero

00 yw'x

@ Are there other loss functions for classification? Yes, several.

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

11

(same as)

0-1 Loss
H[yw"'z <0

Isign(w @) # 1]
0,1)

(0,0)

wa

m—
xr

40> «Fr «=>r «E» gl

(same as)

0-1 Loss
H[yw"'z <0

Isign(w @) # 1]
0,1)

(0,0)

wa

m—
xr

40> «Fr «=>r «E» gl

0-1 Loss “Perceptron” Loss
Iyw "2 < 0]

(same as) max{0, —yw "z}
Isign(w) # 4|
0,1)
0,0) wa_w 0.0) yw'z
«O» «Fr «=)r «E)» = HA

0-1 Loss “Perceptron” Loss
Iyw "2 < 0]

(same as) max{0, —yw "z}
Isign(w) # 4|
0,1)
0,0) wa_w 0.0) yw'z
«O» «Fr «=)r «E)» = HA

0-1 Loss

Iyw "2 < 0]
(same as)

Isign(we) #]
©01)

“Perceptron” Loss

max{0, —yw 'z}
0,0) wa_w 0.0) ywﬁ
Log(istic) Loss
log(1 + exp(~yw " z))
(0,0) yw'z
«O» «Fr «=)r «E)» = HA

0-1 Loss “Perceptron" Loss
Iyw "2 < 0]
(same as)
Isign(we) #]
—(0,1)

(0,0)

max{0, —yw 'z}
x

yw'
Log(istic) Loss

(0,0)

wa_
log(1 + exp(~yw " z))

(0,0)

yw'

«O» «Fr «=)r «E)»

0-1 Loss

“Perceptron” Loss
Iyw "2 < 0]
(same as) max{0, —yw "}
Isign(w'z) #y]
(0,1)
0,0) wa_:c 0.0) ywﬁ
Log(istic) Loss Hinge Loss

log(1 + exp(~yw " z))

max{0, 1 - yw "z}

(0.1)

0,0

ERO

«O» «Fr «=)r «E)»

DA

0-1 Loss

“Perceptron” Loss
Iyw "2 < 0]
(same as) max{0, —yw "}
Isign(w'z) #y]
(0,1)
0,0) wa_:c 0.0) ywﬁ
Log(istic) Loss Hinge Loss

log(1 + exp(~yw " z))

max{0, 1 - yw "z}

yw ' x

0,0

(0,0)

ERO

«O» «Fr «=)r «E)»

DA

«— here

non-differentiable

@ Even though gradients are not defined for non-diff. functions, we can work with subgradients
’ differentiable

here \

«O» «F»r « > » HA

@ Even though gradients are not defined for non-diff. functions, we can work with subgradients
’ differentiable
«— here
@) +g"(y-22)

f(iél)+91T(!l—11)
non-differentiable
here J@) ol u-=)
T oy
e For a function f(x), its subgradient at x is any vector g s.t. Vy
T
fly)=2f(x)+g (y —x)

«O>» «F>r «=» «E» = HA

Optimizing Non-differentiable Functions

@ Even though gradients are not defined for non-diff. functions, we can work with subgradients

differentiable
«— here .
f@)+g;1 (y—21)
non-differentiable A4 _
@)+ ()

Iy oy

e For a function f(x), its subgradient at x is any vector g s.t. Vy
fly) > f(x)+g"(y —x)

@ A non-differentiable function can have several subgradients at the point of non-differentiability

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

13

Optimizing Non-differentiable Functions

@ Even though gradients are not defined for non-diff. functions, we can work with subgradients

differentiable
«— here

Y @)+l (y—z1)
fla) +g'(y-2) non-differentiable .’
here \ ‘

@)+ y-m)

L2 \ Iy
e For a function f(x), its subgradient at x is any vector g s.t. Vy
fly) > f(x)+g"(y —x)
@ A non-differentiable function can have several subgradients at the point of non-differentiability
@ Set of all subgradients of a function f at point x is called the subdifferential denoted as 9f(x)

of(x)={g:fly)>f(x)+g (y—x), Vy}

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

13

N

n=1

«4O0>» «Fr «E» «E)» = HA

W = arg muiln Z(y,, —w ' x,)%+ A|w|:

@ Consider linear regression but with ¢; norm on w (recall: ¢; norm promotes a sparse w)

@ Consider linear regression but with ¢; norm on w (recall: ¢; norm promotes a sparse w)
N
A : T, 32
W = arg min Z(yn —w Xxp)" 4+ A|w|;
v n=1
@ The squared error term is differentiable but the norm ||w/||; is NOT at wy =0
«O» «Fr «=)r «E)» HA

"~ Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 1

Subgradient Descent: An Example

o Consider linear regression but with ¢; norm on w (recall: ¢; norm promotes a sparse w)
ﬁ/:argmln E n—w ! x,)2 4 N|wl|;

@ The squared error term is differentiable but the norm ||w]|; is NOT at wy =0

e We can use subgradients of ||wl||1 in this case

—22 wx,,x,,—&-At

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

14

Subgradient Descent: An Example

@ Consider linear regression but with #; norm on w (recall: ¢; norm promotes a sparse w)
N

i = arg min > (v, — w T x)? + Al w];
n=1

@ The squared error term is differentiable but the norm ||w]|; is NOT at wy =0

e We can use subgradients of ||wl||1 in this case
= ZZ —w' Xpn)Xp+ At

@ Here t is a vector s.t.

-1, for wy <0
tg =< [-1,+1] for wy =0 T
+1 for wy >0

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

14

Subgradient Descent: An Example

@ Consider linear regression but with #; norm on w (recall: ¢; norm promotes a sparse w)
N

i = arg min > (v, — w T x)? + Al w];
n=1

@ The squared error term is differentiable but the norm ||w]|; is NOT at wy =0

e We can use subgradients of ||wl||1 in this case
= ZZ —w' Xpn)Xp+ At

@ Here t is a vector s.t.

-1, for wy <0
tg =< [-1,+1] for wy =0 T
+1 for wy >0

o If we take ty = 0 at wy = 0 then tg = sign(wy)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 14

e Consider binary classification with hinge loss (used in SVM - will see later), assume {5 regularizer
Hinge Loss: max{0,1—yw'x}

yw'z

«O» «F»r « > » HA

@ In this case loss (hinge) non-differentiable, regularizer differentiable

Subgradient Descent: Another Example

e Consider binary classification with hinge loss (used in SVM - will see later), assume {5 regularizer

Hinge Loss: max{0,1—-yw "z}

©0) @O yw'z
@ In this case loss (hinge) non-differentiable, regularizer differentiable
@ Subgradient t of the hinge loss term will be
0, for yow'x, > 1

t=< —y.x, fory,w'x,<1
ky,x, for y,w'x,=1 (where k € [-1,0])

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

Hinge Loss: max{0,1 - yw "z}

. W
o Not really that different from standard GD

4 DAt wax
@ Only difference is that we use subgradients where function is non-differentiable
@ In practice, it is like pretending that the function is differentiable everywhere
«O» «Fr «=)r «E)» HA
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 16

ntro to Macl

hine

Learn

Constrained Optimization

1: Lagrangian based optimization
2: Projected gradient descent

ing (CS771A) Optimization Techniques for ML (2)

17

e Consider optimizing some function f(w) subject to an inequality constraint on w

w =argminf(w), st. g(w)<0
w
o If constraint of the form g(w) > 0, use —g(w) <0

«O» «Fr «=)r «E)» HA

Constrained Optimization: Lagrangian Approach

o Consider optimizing some function f(w) subject to an inequality constraint on w

w=argminf(w), st. g(w)<O0

o If constraint of the form g(w) > 0, use —g(w) <0

@ Note: Can handle multiple inequality and equality constraints too (will see later)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 18

Constrained Optimization: Lagrangian Approach

o Consider optimizing some function f(w) subject to an inequality constraint on w
w=argminf(w), st. g(w)<O0
o If constraint of the form g(w) > 0, use —g(w) <0

@ Note: Can handle multiple inequality and equality constraints too (will see later)

@ Can transform the above constrained problem into an equivalent unconstrained problem

w = argmin f(w)-+c(w)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 18

Constrained Optimization: Lagrangian Approach
o Consider optimizing some function f(w) subject to an inequality constraint on w
w=argminf(w), st. g(w)<O0

o If constraint of the form g(w) > 0, use —g(w) <0
@ Note: Can handle multiple inequality and equality constraints too (will see later)

@ Can transform the above constrained problem into an equivalent unconstrained problem

w = argmin f(w)-+c(w)
where we have defined c(w) as v

c(w) = max ag(w)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

18

Constrained Optimization: Lagrangian Approach

o Consider optimizing some function f(w) subject to an inequality constraint on w

w=argminf(w), st. g(w)<O0

o If constraint of the form g(w) > 0, use —g(w) <0
@ Note: Can handle multiple inequality and equality constraints too (will see later)
@ Can transform the above constrained problem into an equivalent unconstrained problem
w = argmin f(w)-+c(w)
where we have defined c(w) as v

oo, if g(w) >0 (constraint violated)

C = a =
(w) o ag(w) {0 if g(w) <0 (constraint satisfied)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 18

Constrained Optimization: Lagrangian Approach

o Consider optimizing some function f(w) subject to an inequality constraint on w
w=argminf(w), st. g(w)<O0
o If constraint of the form g(w) > 0, use —g(w) <0

@ Note: Can handle multiple inequality and equality constraints too (will see later)

@ Can transform the above constrained problem into an equivalent unconstrained problem

w = argmin f(w)-+c(w)
where we have defined c(w) as v

oo, if g(w) >0 (constraint violated)
0 if g(w) <0 (constraint satisfied)

c(w) = max ag(w) = {

@ We can equivalently write the problem as

W = argmin {f(w)+ arg max ag(w)}

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 18

@ So we could write the original problem as
W = argmin {f(w)+ arg max ag(w)}
w a>0
«4O0>» «Fr «E» «E)» = HA
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 19

@ So we could write the original problem as
w =

arg i { () arg max () | = angmin {ang mac ((w) + ()

«O» «Fr «=)r «E)» HA

Constrained Optimization: Lagrangian Approach

@ So we could write the original problem as
W = argmin {f(w)+ arg max ug(w)} = arg min {arg max {f(w) + ag(w)}}
w a>0 w a>0

@ The function L(w, a) = f(w) + ag(w) called the Lagrangian, optimized w.r.t. w and «

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

19

Constrained Optimization: Lagrangian Approach

@ So we could write the original problem as
W = argmin {f(w)+ arg max ug(w)} = arg min {arg max {f(w) + ag(w)}}
w a>0 w a>0

@ The function L(w, a) = f(w) + ag(w) called the Lagrangian, optimized w.r.t. w and «

@ « is known as the Lagrange multiplier

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

19

Constrained Optimization: Lagrangian Approach

@ So we could write the original problem as
W = argmin {f(w)+ arg max ug(w)} = arg min {arg max {f(w) + ag(w)}}
w a>0 w a>0

@ The function L(w, a) = f(w) + ag(w) called the Lagrangian, optimized w.r.t. w and «
@ « is known as the Lagrange multiplier

@ Primal and Dual problems

Wp = argmin {arg m%({f(w) + ag(w)}} (primal problem)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

19

Constrained Optimization: Lagrangian Approach

@ So we could write the original problem as
W = argmin {f(w)+ arg max ug(w)} = arg min {arg max {f(w) + ag(w)}}
w a>0 w a>0

@ The function L(w, a) = f(w) + ag(w) called the Lagrangian, optimized w.r.t. w and «
@ « is known as the Lagrange multiplier

@ Primal and Dual problems

Wp = argmin {arg m%({f(w) + ag(w)}} (primal problem)
Wp = arg mgg({arg min {f(w) + ag(w)}} (dual problem)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 19

Constrained Optimization: Lagrangian Approach

So we could write the original problem as

W = argmin {f(w)+ arg max ug(w)} = arg min {arg max {f(w) +ag(w)}}
w a>0 w a>0

The function £(w,a) = f(w) + ag(w) called the Lagrangian, optimized w.r.t. w and «
@ « is known as the Lagrange multiplier

@ Primal and Dual problems

Wp = argmin {arg m%({f(w) + ag(w)}} (primal problem)
Wp = arg mgg({arg min {f(w) + ag(w)}} (dual problem)

e Note: Wp = Wp in some nice cases (e.g., when f(w) and constraint set g(w) < 0 are convex)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 19

Constrained Optimization: Lagrangian Approach

So we could write the original problem as

W = argmin {f(w)+ arg max ug(w)} = arg min {arg max {f(w) +ag(w)}}
w a>0 w a>0

The function £(w,a) = f(w) + ag(w) called the Lagrangian, optimized w.r.t. w and «

@ « is known as the Lagrange multiplier

@ Primal and Dual problems
Wp = argmin {arg m%({f(w) + ag(w)}} (primal problem)
w a>
Wp = arg mgg({arg min {f(w) + ag(w)}} (dual problem)

e Note: Wp = Wp in some nice cases (e.g., when f(w) and constraint set g(w) < 0 are convex)

@ For dual solution, apg(wp) = 0 (complimentary slackness/Karush-Kuhn-Tucker (KKT) condition)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 19

@ We can also have multiple inequality and equality constraints

w = argminf(w)
s.t. g(w)<0, i=1,....K
hj(w) =0,

j=1,...,L

«O» «Fr «=)r «E)» HA

Constrained Optimization: Lagrangian with Multiple Constraints

@ We can also have multiple inequality and equality constraints

w = argminf(w)
w
s.t. g(w)<o0, i=1,...,K
hj(w):07 J:717' 7L

@ Introduce Lagrange multipliers a = (a1, ...,ax) > 0and 3= (b1,...,5L)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

20

Constrained Optimization: Lagrangian with Multiple Constraints

@ We can also have multiple inequality and equality constraints

w = argminf(w)
w
s.t. g(w)<o0, i=1,...,K
hj(w):07 J:717' 7L
@ Introduce Lagrange multipliers a = (a1, ...,ax) > 0and 3= (b1,...,5L)

@ The Lagrangian based primal and dual problems will be

L
wp = argmln{arg max{f +Zag,)+Z[3jhj(w

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

20

Constrained Optimization: Lagrangian with Multiple Constraints

@ We can also have multiple inequality and equality constraints

w = argminf(w)
w
s.t. g(w)<o0, i=1,...,K
hi(w)=0, j=,1,....L
@ Introduce Lagrange multipliers a = (a1, ...,ax) > 0and 3= (b1,...,5L)

@ The Lagrangian based primal and dual problems will be

A

L
Wp = arg max{argmm{f +Zag, +Zﬁjhj(
j=1

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

L
wp = argmln{arg max{f +Zag,)+Z[3jhj(w
=1

w)}}

20

o Consider the generative classification model with K classes
@ Suppose we want to estimate the parameters of class-marginal p(y)

K K
p(y|m) = multinoulli(my, 72, ..., Tk) = H ﬂ]f([y:k], s.t. Zwk =1
k=1 k=1

«O» «Fr «=)r «E)» = HA

Lagrangian based Optimization: An Example

o Consider the generative classification model with K classes

@ Suppose we want to estimate the parameters of class-marginal p(y)
K K
p(y|m) = multinoulli(my, 72, ..., Tk) = Hﬂ',ﬂ([y:k], s.t. Zﬂ'k =1
k=1 k=1
@ Given N observations {x,,y,}~_;, the negative log-likelihood for class marginal

f(m) == log p(ylm)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

21

Lagrangian based Optimization: An Example

o Consider the generative classification model with K classes

@ Suppose we want to estimate the parameters of class-marginal p(y)
K K
p(y|m) = multinoulli(my, 72, ..., Tk) = Hﬂ',ﬂ([y:k], s.t. Zﬂ'k =1
k=1 k=1
@ Given N observations {x,,y,}~_;, the negative log-likelihood for class marginal
N
f(m) == log p(ylm)
n=1

@ We have an equality constraint Zle T —1=0

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

21

Lagrangian based Optimization: An Example

o Consider the generative classification model with K classes

@ Suppose we want to estimate the parameters of class-marginal p(y)
K K
p(y|m) = multinoulli(wy, 7o, ..., k) = Hﬂ',ﬂ([y:k], s.t. Zﬂ'k =1
@ Given N observations {x,,y,}N_;, the negative Iog likelihood for class marginal

= Z log p(ya|m)

@ We have an equality constraint Zle T —1=0

@ The Lagrangian for this problem will be

L(x,B) = f(m +ﬂszl

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

21

Lagrangian based Optimization: An Example

o Consider the generative classification model with K classes

@ Suppose we want to estimate the parameters of class-marginal p(y)
K K
p(y|m) = multinoulli(wy, 7o, ..., k) = Hﬂ',ﬂ([y:k], s.t. Zﬂ'k =1

@ Given N observations {x,,y,}N_;, the negative Iog likelihood for class marginal

= Z log p(ya|m)

@ We have an equality constraint Zle T —1=0

@ The Lagrangian for this problem will be
L(m, B) = f(m) + B Zm—l

@ Exercise: Solve arg maxg arg min L(7, 3) and show that 7k = N /N

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

21

@ Suppose our problem requires the parameters to lie within a set C
W = argmin £(w), subjectto weC
w
«4O0>» «Fr «E» «E)» = HA
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) . 2

@ Suppose our problem requires the parameters to lie within a set C

W = argmin £(w), subjectto weC
w
@ Projected GD is very similar to GD with an extra projection step
(t+1)
z

C~—__Projection

step

«4O0>» «Fr «E» «E)»

Projected Gradient Descent

@ Suppose our problem requires the parameters to lie within a set C
w = argmin L(w), subjectto w€C
w

@ Projected GD is very similar to GD with an extra projection step

4D

‘\ Projection
step

@ Each step of projected GD works as follows
o Do the usual GD update: z(t+1) = w(®) — 5, g(*)
o Check z(** for the constraints
o If z(tt1) ¢ ¢, w(ttl) = (t+1)
o If z(t+1) ¢ C, project on the constraint set: w(tt1) = M[z(t+1)]
projection

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

22

@ The projection itself is an optimization problem

S+

(~—_Projection

step

o Given z, we find the “closest” point (e.g., in Euclidean sense) w in the set as follows
Me[z] = arg min ||w — z||?
clz] = arg min ||w 2|

«0O>» «F»r « > » HA

@ The projection itself is an optimization problem

S+

C~—_Projection

step

Melz] = inllw—z|J?
clz] = arg min [|lw —]|

o Given z, we find the “closest” point (e.g., in Euclidean sense) w in the set as follows
@ For some sets C, the projection step is easy/trivial

C : unit radius £ ball
©.1)

2z

Projection

Normalize to
1.0 unit length
oz

z

C : Set of non-negative reals
.-

Projection
Set negative
values to 0

| zé

«O» 4« F»

DA

Projected GD: How to Project?

@ The projection itself is an optimization problem

@ Given z, we find the “closest” point (e.g., in Euclidean sense) w in the set as follows

z[Hl)

~—__ Projection
step

Me[z] = arg min ||w — z||*

@ For some sets C, the projection step is easy/trivial

C : Unit radius £5 ball C’: Set of non-negative reals

0.1)

rz |

Projection z Projection

= o =
1.0 Normalize to Set negative
.0 unit length values to 0

ey | Ze

@ For some other sets C, the projection step may be a bit more involved

Intro to Machine Learning (CS771A)

Optimization Techniques for ML (2)

23

e Standard GD update for w € RP at each step
wltth) = (0 _ g0
«4O0>» «Fr «E» «E)» = HA
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) . o4

e Standard GD update for w € RP at each step
w(tt) = () _ p g(t)

@ CD: Each step update one component (co-ordinate) at a time, keeping all others fixed

W‘(jt+1) _ W‘St) ntgt(f)

«4O0>» «Fr «E» «E)» = HA

e Standard GD update for w € RP at each step
w(tt) = () _ p g(t)

@ CD: Each step update one component (co-ordinate) at a time, keeping all others fixed

W‘(jt+1) _ W‘St) ntgt(f)

«O» «Fr «=)r «E)» = HA

@ Cost of each update is now independent of D

e Standard GD update for w € RP at each step

w(tHD) = (0 g(0)

@ CD: Each step update one component (co-ordinate) at a time, keeping all others fixed
)

- ﬂtgt({t)

«O» «Fr «=)r «E)» HA

W‘(jt+1) _
@ Cost of each update is now independent of D

@ How to pick which co-ordinate to update?

e Standard GD update for w € RP at each step

w(tHD) = (0 g(0)

@ CD: Each step update one component (co-ordinate) at a time, keeping all others fixed
)

W‘(jt+1) _ . ntgt(f)
@ Cost of each update is now independent of D

@ How to pick which co-ordinate to update?

o Can be chosen in random order (stochastic CD)

«O» «Fr «=)r «E)» HA

Co-ordinate Descent (CD)

e Standard GD update for w € RP at each step
w(tt) = () _ p g(t)
e CD: Each step update one component (co-ordinate) at a time, keeping all others fixed

W§t+1) _ Wc(lt) . ntgst)

@ Cost of each update is now independent of D

@ How to pick which co-ordinate to update?

e Can be chosen in random order (stochastic CD)

e Can be chosen in cyclic order

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

24

Co-ordinate Descent (CD)

e Standard GD update for w € RP at each step

w(tHD) = (0 g(0)

e CD: Each step update one component (co-ordinate) at a time, keeping all others fixed
W§t+1) _ Wc(lt) . ntgst)

@ Cost of each update is now independent of D

How to pick which co-ordinate to update?

e Can be chosen in random order (stochastic CD)

e Can be chosen in cyclic order

@ Note: Can also update “blocks” of co-ordinates (called Block co-ordinate descent)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 24

Co-ordinate Descent (CD)

e Standard GD update for w € RP at each step

w(tHD) = (0 g(0)

e CD: Each step update one component (co-ordinate) at a time, keeping all others fixed
W§t+1) _ Wc(lt) . ntgét)

@ Cost of each update is now independent of D

How to pick which co-ordinate to update?

e Can be chosen in random order (stochastic CD)

e Can be chosen in cyclic order

@ Note: Can also update “blocks” of co-ordinates (called Block co-ordinate descent)

@ Should cache previous computations (e.g., w ' x) to avoid O(D) cost in gradient computation

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 24

@ Many optimization problems consist of several variables. Very common in ML.

it
a

«Or «Fr o« > > DU

{Wy, Wy} = arg min L(wy, wy)
wi,w>

«O» «Fr «=)r «E)» = HA

@ Many optimization problems consist of several variables. Very common in ML.
e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP

Alternating Optimization

@ Many optimization problems consist of several variables. Very common in ML.
e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization
@ Many optimization problems consist of several variables. Very common in ML.
e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)

@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization
@ Many optimization problems consist of several variables. Very common in ML.
e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)
@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)

@ We can therefore follow an alternating scheme to optimize w.r.t. wy; and w,

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization
@ Many optimization problems consist of several variables. Very common in ML.
e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)
@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)
@ We can therefore follow an alternating scheme to optimize w.r.t. wy; and w,

o Initialize one of the variables, e.g., w2 = w§°>, t=0

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization

@ Many optimization problems consist of several variables. Very common in ML.

e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>
e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)
@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)

@ We can therefore follow an alternating scheme to optimize w.r.t. wy; and w,

o Initialize one of the variables, e.g., w2 = w§°>, t=0

o Solve w!{"™ = arg maxu, £(w1, wi?)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization

@ Many optimization problems consist of several variables. Very common in ML.

e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)
@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)

@ We can therefore follow an alternating scheme to optimize w.r.t. wy; and w,

o Initialize one of the variables, e.g., w2 = w§°>, t=0

o Solve w!{"™ = arg maxu, £(w1, wi?)

o Solve w!™ = arg maxw, L(w!"™ wy)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization

@ Many optimization problems consist of several variables. Very common in ML.

e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)
@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)

@ We can therefore follow an alternating scheme to optimize w.r.t. wy; and w,
o Initialize one of the variables, e.g., w2 = w§°>, t=0
o Solve w!{"™ = arg maxu, £(w1, wi?)

o Solve w!™ = arg maxw, L(w!"™ wy)

e t =t + 1. Repeat until convergence

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization

@ Many optimization problems consist of several variables. Very common in ML.

e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)
@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)

@ We can therefore follow an alternating scheme to optimize w.r.t. wy; and w,
o Initialize one of the variables, e.g., w2 = w§°>, t=0
o Solve w!{"™ = arg maxu, £(w1, wi?)

o Solve wi™ = arg maxw, L(w{"™, ws)
e t =t + 1. Repeat until convergence

@ Usually converges to a local optima of £(w1, ws). Also connections to EM (will see later)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization

@ Many optimization problems consist of several variables. Very common in ML.

e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)
@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)
@ We can therefore follow an alternating scheme to optimize w.r.t. wy; and w,

o Initialize one of the variables, e.g., w2 = w§°>, t=0

o Solve w!{"™ = arg maxu, £(w1, wi?)
o Solve wi™ = arg maxw, L(w{"™, ws)
e t =t + 1. Repeat until convergence

@ Usually converges to a local optima of £(w1, ws). Also connections to EM (will see later)
e Extends to more than 2 variables as well (and not just to vectors)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

Alternating Optimization

@ Many optimization problems consist of several variables. Very common in ML.

e For simplicity, suppose we want to optimize a function of 2 variables w; € RP and w, € RP
{l;i/l, I;I\I2} = arg min E(Wl, W2)
wi,w>

e Jointly optimizing w.r.t. wy and wy may be hard (e.g., if their values depend on each other)
@ Often, knowing value of one may make optimization w.r.t. other easy (sometimes even closed form)
@ We can therefore follow an alternating scheme to optimize w.r.t. wy; and w,

o Initialize one of the variables, e.g., w2 = w§°>, t=0

o Solve w!{"™ = arg maxu, £(w1, wi?)
o Solve wi™ = arg maxw, L(w{"™, ws)
e t =t + 1. Repeat until convergence

@ Usually converges to a local optima of £(w1, ws). Also connections to EM (will see later)
@ Extends to more than 2 variables as well (and not just to vectors). CD is a special case.

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 25

@ GD and variants only use first-order information (the gradient)
«4O0>» «Fr «E» «E)» = HA
~Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 2%

Second-Order Methods: Newton’s Method

@ GD and variants only use first-order information (the gradient)
@ Second-order information often tells us a lot more about the function's shape, curvature, etc.

@ Newton's method is one such method that uses second-order information

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

26

Second-Order Methods: Newton’s Method

@ GD and variants only use first-order information (the gradient)
@ Second-order information often tells us a lot more about the function's shape, curvature, etc.

@ Newton's method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

26

Second-Order Methods: Newton’s Method

@ GD and variants only use first-order information (the gradient)
@ Second-order information often tells us a lot more about the function's shape, curvature, etc.

@ Newton's method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

26

Second-Order Methods: Newton’s Method

@ GD and variants only use first-order information (the gradient)
@ Second-order information often tells us a lot more about the function’s shape, curvature, etc.

@ Newton's method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

26

Second-Order Methods: Newton’s Method

@ GD and variants only use first-order information (the gradient)
@ Second-order information often tells us a lot more about the function’s shape, curvature, etc.

@ Newton's method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

26

Second-Order Methods: Newton’s Method

GD and variants only use first-order information (the gradient)

Second-order information often tells us a lot more about the function's shape, curvature, etc.

@ Newton's method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

26

Second-Order Methods: Newton’s Method

GD and variants only use first-order information (the gradient)

Second-order information often tells us a lot more about the function's shape, curvature, etc.

@ Newton's method is one such method that uses second-order information

At each point, approximate the function by its quadratic approx. and minimize it

@ Doesn'’t rely on gradient to choose w(t*1)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

26

Second-Order Methods: Newton’s Method

@ GD and variants only use first-order information (the gradient)
@ Second-order information often tells us a lot more about the function's shape, curvature, etc.
@ Newton's method is one such method that uses second-order information

@ At each point, approximate the function by its quadratic approx. and minimize it

@ Doesn'’t rely on gradient to choose w(t*1)
@ Instead, each step directly jumps to the minima of quadratic approximation

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

26

@ The quadratic (Taylor) approximation of f(w) at w(*) is given by

f(w) = f(w®) + VF(w) T (w - w®) 4 %(w — w2 (W) (w — w®)

«O» «Fr «=)r «E)» HA

Second-Order Methods: Newton’s Method

@ The quadratic (Taylor) approximation of f(w) at w(*) is given by

f(w) = fF(w®) + VAW T (w — w?) + %(w —wO) T2 (W) (w — w?)
@ The minimizer of this quadratic approximation is (exercise: verify)

w = argmin f(w) = w® — (V2F(w)) 1V F(w®)
w

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

27

Second-Order Methods: Newton’s Method

@ The quadratic (Taylor) approximation of f(w) at w(*) is given by

f(w) = f(w®) + V(W) (w — w®) 4 %(w — w2 A (W) (w — w?)
@ The minimizer of this quadratic approximation is (exercise: verify)
W = arg min f(w) =w® — (V2F(w) Vi (w®)
@ This is the update used in Newton's method (a second order method since it uses the Hessian)
wttD — () (V2f(w(t)))—1vf(w(t))

@ Look, Ma! No learning rate! :-)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

27

Second-Order Methods: Newton’s Method

@ The quadratic (Taylor) approximation of f(w) at w(*) is given by

f(w) = f(w®) + VFA(wD)T(w — w®) 4 %(w — w2 (W) (w — w)
@ The minimizer of this quadratic approximation is (exercise: verify)
W = arg min f(w) =w® — (V2 (WD) IV F(w?)
@ This is the update used in Newton's method (a second order method since it uses the Hessian)
wttD — () (V2f(w(t)))—1vf(w(t))
@ Look, Ma! No learning rate! :-)

@ Very fast if f(w) is convex. But expensive due to Hessian computation /inversion.

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

Second-Order Methods: Newton’s Method

@ The quadratic (Taylor) approximation of f(w) at w(*) is given by

f(w) = f(w®) + VFA(wD)T(w — w®) 4 %(w — w2 (W) (w — w)
@ The minimizer of this quadratic approximation is (exercise: verify)
W = arg min f(w) =w® — (V2 (WD) IV F(w?)
@ This is the update used in Newton's method (a second order method since it uses the Hessian)
wttD — () (V2f(w(t)))—1vf(w(t))
@ Look, Ma! No learning rate! :-)

@ Very fast if f(w) is convex. But expensive due to Hessian computation /inversion.

e Many ways to approximate the Hessian (e.g., using previous gradients); also look at L-BFGS etc.

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

Summary

@ Gradient methods are simple to understand and implement
@ More sophisticated optimization methods often use gradient methods
e Backpropagation algorithm used in deep neural nets is GD + chain rule of differentiation
@ Use subgradient methods if function not differentiable
o Constrained optimization require methods such as Lagrangian or projected gradient
@ Second order methods such as Newton's method are much faster but computationally expensive

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2)

28

Summary

@ Gradient methods are simple to understand and implement
@ More sophisticated optimization methods often use gradient methods
e Backpropagation algorithm used in deep neural nets is GD + chain rule of differentiation
@ Use subgradient methods if function not differentiable
o Constrained optimization require methods such as Lagrangian or projected gradient
@ Second order methods such as Newton's method are much faster but computationally expensive

@ But computing all this gradient related stuff looks scary to me. Any help?

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 28

Summary

@ Gradient methods are simple to understand and implement
@ More sophisticated optimization methods often use gradient methods
e Backpropagation algorithm used in deep neural nets is GD + chain rule of differentiation
@ Use subgradient methods if function not differentiable
o Constrained optimization require methods such as Lagrangian or projected gradient
@ Second order methods such as Newton's method are much faster but computationally expensive

@ But computing all this gradient related stuff looks scary to me. Any help?

e Don't worry. Automatic Differentiation (AD) methods available now

e AD only requires specifying the loss function (especially useful for deep neural nets)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 28

Summary

@ Gradient methods are simple to understand and implement
@ More sophisticated optimization methods often use gradient methods
e Backpropagation algorithm used in deep neural nets is GD + chain rule of differentiation
@ Use subgradient methods if function not differentiable
o Constrained optimization require methods such as Lagrangian or projected gradient
@ Second order methods such as Newton's method are much faster but computationally expensive

@ But computing all this gradient related stuff looks scary to me. Any help?

e Don't worry. Automatic Differentiation (AD) methods available now
e AD only requires specifying the loss function (especially useful for deep neural nets)

e Many packages such as Tensorflow, PyTorch, etc. provide AD support

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 28

Summary

@ Gradient methods are simple to understand and implement
@ More sophisticated optimization methods often use gradient methods
e Backpropagation algorithm used in deep neural nets is GD + chain rule of differentiation
@ Use subgradient methods if function not differentiable
o Constrained optimization require methods such as Lagrangian or projected gradient
@ Second order methods such as Newton's method are much faster but computationally expensive

@ But computing all this gradient related stuff looks scary to me. Any help?

e Don't worry. Automatic Differentiation (AD) methods available now

e AD only requires specifying the loss function (especially useful for deep neural nets)

Many packages such as Tensorflow, PyTorch, etc. provide AD support

But having a good understanding of optimization is still helpful

Intro to Machine Learning (CS771A) Optimization Techniques for ML (2) 28

