
Optimization Techniques for ML (1)

Piyush Rai

Introduction to Machine Learning (CS771A)

August 23, 2018

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 1

Recap: Generative Classification

 Class-Marginal
 or
 Class Prior

 Class-Conditional

E.g.: Gaussian with
Diagonal or Spherical
Covariance Matrix

Class-Marginal and
 Class-Conditional
 estimated from
 training data

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 2

Recap: Generative Classification

 Class-Marginal
 or
 Class Prior

 Class-Conditional

E.g.: Gaussian with
Diagonal or Spherical
Covariance Matrix

Class-Marginal and
 Class-Conditional
 estimated from
 training data

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 2

Recap: Generative Classification

 Class-Marginal
 or
 Class Prior

 Class-Conditional

E.g.: Gaussian with
Diagonal or Spherical
Covariance Matrix

Class-Marginal and
 Class-Conditional
 estimated from
 training data

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 2

Recap: Generative Classification

 Class-Marginal
 or
 Class Prior

 Class-Conditional

E.g.: Gaussian with
Diagonal or Spherical
Covariance Matrix

Class-Marginal and
 Class-Conditional
 estimated from
 training data

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 2

Recap: Generative Classification

 Class-Marginal
 or
 Class Prior

 Class-Conditional

E.g.: Gaussian with
Diagonal or Spherical
Covariance Matrix

Class-Marginal and
 Class-Conditional
 estimated from
 training data

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 2

Recap: Generative Classification Decision Boundaries

We can look at the case when we have Gaussians as class-conditionals

p(y = k|x) =
p(y = k)p(x |y = k)

p(x)

=
πk |Σk |−1/2 exp

[
− 1

2
(x− µk)>Σ−1

k (x− µk)
]

∑K
k=1 πk |Σk |−1/2 exp

[
− 1

2
(x− µk)>Σ−1

k (x− µk)
]

All points x at the boundary between classes k and k ′ must satisfy p(y = k|x) = p(y = k ′|x)

Quadratic decision boundary if covariances unequal, linear if covariances equal

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 3

Recap: Generative Classification Decision Boundaries

We can look at the case when we have Gaussians as class-conditionals

p(y = k|x) =
p(y = k)p(x |y = k)

p(x)
=

πk |Σk |−1/2 exp
[
− 1

2
(x− µk)>Σ−1

k (x− µk)
]

∑K
k=1 πk |Σk |−1/2 exp

[
− 1

2
(x− µk)>Σ−1

k (x− µk)
]

All points x at the boundary between classes k and k ′ must satisfy p(y = k|x) = p(y = k ′|x)

Quadratic decision boundary if covariances unequal, linear if covariances equal

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 3

Recap: Generative Classification Decision Boundaries

We can look at the case when we have Gaussians as class-conditionals

p(y = k|x) =
p(y = k)p(x |y = k)

p(x)
=

πk |Σk |−1/2 exp
[
− 1

2
(x− µk)>Σ−1

k (x− µk)
]

∑K
k=1 πk |Σk |−1/2 exp

[
− 1

2
(x− µk)>Σ−1

k (x− µk)
]

All points x at the boundary between classes k and k ′ must satisfy p(y = k|x) = p(y = k ′|x)

Quadratic decision boundary if covariances unequal, linear if covariances equal

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 3

Recap: Generative Classification Decision Boundaries

We can look at the case when we have Gaussians as class-conditionals

p(y = k|x) =
p(y = k)p(x |y = k)

p(x)
=

πk |Σk |−1/2 exp
[
− 1

2
(x− µk)>Σ−1

k (x− µk)
]

∑K
k=1 πk |Σk |−1/2 exp

[
− 1

2
(x− µk)>Σ−1

k (x− µk)
]

All points x at the boundary between classes k and k ′ must satisfy p(y = k|x) = p(y = k ′|x)

Quadratic decision boundary if covariances unequal, linear if covariances equal

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 3

Recap: Equivalence to Discriminative Model in Linear Case

For the Gaussian class-conditionals with equal covariances (linear case)

p(y = k|x , θ) ∝ πk exp

[
−1

2
(x− µk)>Σ−1(x− µk)

]

Expanding further, we can write the above as

p(y = k|x , θ) ∝ exp

[
µ>k Σ−1x−1

2
µ>k Σ−1µk + log πk

]
exp

[
x>Σ−1x

]
After normalizing, the above posterior class probability can be written as

p(y = k|x , θ) =
exp

[
w>k x + bk

]∑K
k=1 exp

[
w>k x + bk

]
where w k = Σ−1µk and bk = − 1

2µ
>
k Σ−1µk + log πk

Interestingly, this has exactly the same form as the softmax classification model

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 4

Recap: Equivalence to Discriminative Model in Linear Case

For the Gaussian class-conditionals with equal covariances (linear case)

p(y = k|x , θ) ∝ πk exp

[
−1

2
(x− µk)>Σ−1(x− µk)

]
Expanding further, we can write the above as

p(y = k|x , θ) ∝ exp

[
µ>k Σ−1x−1

2
µ>k Σ−1µk + log πk

]
exp

[
x>Σ−1x

]

After normalizing, the above posterior class probability can be written as

p(y = k|x , θ) =
exp

[
w>k x + bk

]∑K
k=1 exp

[
w>k x + bk

]
where w k = Σ−1µk and bk = − 1

2µ
>
k Σ−1µk + log πk

Interestingly, this has exactly the same form as the softmax classification model

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 4

Recap: Equivalence to Discriminative Model in Linear Case

For the Gaussian class-conditionals with equal covariances (linear case)

p(y = k|x , θ) ∝ πk exp

[
−1

2
(x− µk)>Σ−1(x− µk)

]
Expanding further, we can write the above as

p(y = k|x , θ) ∝ exp

[
µ>k Σ−1x−1

2
µ>k Σ−1µk + log πk

]
exp

[
x>Σ−1x

]
After normalizing, the above posterior class probability can be written as

p(y = k|x , θ) =
exp

[
w>k x + bk

]∑K
k=1 exp

[
w>k x + bk

]
where w k = Σ−1µk and bk = − 1

2µ
>
k Σ−1µk + log πk

Interestingly, this has exactly the same form as the softmax classification model

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 4

Recap: Equivalence to Discriminative Model in Linear Case

For the Gaussian class-conditionals with equal covariances (linear case)

p(y = k|x , θ) ∝ πk exp

[
−1

2
(x− µk)>Σ−1(x− µk)

]
Expanding further, we can write the above as

p(y = k|x , θ) ∝ exp

[
µ>k Σ−1x−1

2
µ>k Σ−1µk + log πk

]
exp

[
x>Σ−1x

]
After normalizing, the above posterior class probability can be written as

p(y = k|x , θ) =
exp

[
w>k x + bk

]∑K
k=1 exp

[
w>k x + bk

]
where w k = Σ−1µk and bk = − 1

2µ
>
k Σ−1µk + log πk

Interestingly, this has exactly the same form as the softmax classification model

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 4

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]

= arg max
k

log πk −
1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Recap: Equivalence to Prototype based Classification

Again consider, generative clasification with Gaussian class-conditionals

Consider the prediction rule

ŷ = arg max
k

p(y = k|x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1

k (x− µk)

This is a generalization of prototype based classification

Generalization because we are not simply computing Euclidean distances to make predictions

If we assume the classes to be of equal size, i.e., πk = 1/K and Σk = Σ. Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed

If we further assume Σ = I, we get the exact same model as prototype based clasification

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 5

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Discriminative vs Generative: A Few Points

Generative models are always probabilistic with models for p(y) and p(x |y)

Some discriminative models are also non-probabilistic

Any model of the form y = f (x) with no model for x is a discriminative model

Example: Support Vector Machines (SVM), DT, KNN, etc.

Discriminative models are preferred when

There is plenty of training data. Modeling x doesn’t usually matter much in that case

Some situations when generative models are preferred

We can (afford to) learn the structure of the inputs

We want to do semi-supervised learning (or if we don’t have much labeled data)

We would like to “generate” data (note that we are learning p(x |y))

Generative and discriminative models can be combined as well

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 6

Optimization Techniques for ML

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 7

Optimization Problems in ML

The generic form of most optimization problems in ML

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

`n(w) + R(w)

`n(w): loss function for the nth training example, R(w): (optional) regularizer on the parameters

Some common examples

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 8

Optimization Problems in ML

The generic form of most optimization problems in ML

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

`n(w) + R(w)

`n(w): loss function for the nth training example, R(w): (optional) regularizer on the parameters

Some common examples

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 8

Optimization Problems in ML

Wish to find the optima (minima) of an objective function, that can be seen as as a curve/surface

For simple cases, the functions may look like this

w
1

w
2w

LossLoss

Optima Optima

In many cases, the functions may even look like this

w
1

w
2

w

Loss

Loss

“Local” Optima

“Local” Optima

Functions with unique minima: Convex; Functions with many local minima: Non-convex

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 9

Optimization Problems in ML

Wish to find the optima (minima) of an objective function, that can be seen as as a curve/surface

For simple cases, the functions may look like this

w
1

w
2w

LossLoss

Optima Optima

In many cases, the functions may even look like this

w
1

w
2

w

Loss

Loss

“Local” Optima

“Local” Optima

Functions with unique minima: Convex; Functions with many local minima: Non-convex

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 9

Optimization Problems in ML

Wish to find the optima (minima) of an objective function, that can be seen as as a curve/surface

For simple cases, the functions may look like this

w
1

w
2w

LossLoss

Optima Optima

In many cases, the functions may even look like this

w
1

w
2

w

Loss

Loss

“Local” Optima

“Local” Optima

Functions with unique minima: Convex; Functions with many local minima: Non-convex

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 9

Optimization Problems in ML

Wish to find the optima (minima) of an objective function, that can be seen as as a curve/surface

For simple cases, the functions may look like this

w
1

w
2w

LossLoss

Optima Optima

In many cases, the functions may even look like this

w
1

w
2

w

Loss

Loss

“Local” Optima

“Local” Optima

Functions with unique minima: Convex; Functions with many local minima: Non-convex

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 9

Interlude: Convex Sets

A set S of points is a convex set, if for any two points x , y ∈ S, and 0 ≤ α ≤ 1

z = αx + (1− α)y ∈ S

.. i.e., all points on the line-segment between x and y lie within the set

A Convex Set A Non-convex Set

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 10

Interlude: Convex Functions

Note: The domain of a convex function needs to be a convex set (a required condition)

Informally, a function f (x) is convex if all of its chords lie above the function everywhere

Convex Function Non-convex Function

s.t

If f is convex then given

Jensen’s Inequality

Note: “Chord lies above function”
 more formally means

Formally, (assuming the function is differentiable), some conditions to test for convexity:

First-order convexity (graph of f must be above all the tangents)

Second-order convexity: Second derivative a.k.a. Hessian (if exists) must be positive semi-definite

∇2f (x) � 0

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 11

Interlude: Convex Functions

Note: The domain of a convex function needs to be a convex set (a required condition)

Informally, a function f (x) is convex if all of its chords lie above the function everywhere

Convex Function Non-convex Function

s.t

If f is convex then given

Jensen’s Inequality

Note: “Chord lies above function”
 more formally means

Formally, (assuming the function is differentiable), some conditions to test for convexity:

First-order convexity (graph of f must be above all the tangents)

Second-order convexity: Second derivative a.k.a. Hessian (if exists) must be positive semi-definite

∇2f (x) � 0

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 11

Interlude: Convex Functions

Note: The domain of a convex function needs to be a convex set (a required condition)

Informally, a function f (x) is convex if all of its chords lie above the function everywhere

Convex Function Non-convex Function

s.t

If f is convex then given

Jensen’s Inequality

Note: “Chord lies above function”
 more formally means

Formally, (assuming the function is differentiable), some conditions to test for convexity:

First-order convexity (graph of f must be above all the tangents)

Second-order convexity: Second derivative a.k.a. Hessian (if exists) must be positive semi-definite

∇2f (x) � 0

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 11

Interlude: Convex Functions

Note: The domain of a convex function needs to be a convex set (a required condition)

Informally, a function f (x) is convex if all of its chords lie above the function everywhere

Convex Function Non-convex Function

s.t

If f is convex then given

Jensen’s Inequality

Note: “Chord lies above function”
 more formally means

Formally, (assuming the function is differentiable), some conditions to test for convexity:

First-order convexity (graph of f must be above all the tangents)

Second-order convexity: Second derivative a.k.a. Hessian (if exists) must be positive semi-definite

∇2f (x) � 0

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 11

Interlude: Convex Functions

Note: The domain of a convex function needs to be a convex set (a required condition)

Informally, a function f (x) is convex if all of its chords lie above the function everywhere

Convex Function Non-convex Function

s.t

If f is convex then given

Jensen’s Inequality

Note: “Chord lies above function”
 more formally means

Formally, (assuming the function is differentiable), some conditions to test for convexity:

First-order convexity (graph of f must be above all the tangents)

Second-order convexity: Second derivative a.k.a. Hessian (if exists) must be positive semi-definite

∇2f (x) � 0

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 11

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R

log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Interlude: Convex Functions

Some basic rules to check if f (x) is convex or not

All linear and affine functions (e.g., ax + b) are convex

exp(ax) is convex for x ∈ R, for any a ∈ R
log(x) is concave (not convex) for x > 0

xa is convex for x > 0, for any a ≥ 1 and a < 0, concave for 0 ≤ a ≤ 1

|x |a is convex for x ∈ R, for any a ≥ 1

All norms in RD are convex

Non-negative weighted sum of convex functions is also a convex function

Affine transformation preserves convexity: if f (x) is convex then f (x) = f (ax + b) is also convex

Some rules to check whether composition f (x) = h(g(x)) of two functions h and g is convex

Most of these also apply when x is a vector (and many other rules)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 12

Disclaimer:
It’s OK to be non-convex :-)

Many interesting ML problems are in fact non-convex and
there are ways to optimize non-convex objectives

(non-convex optimization is a research area in itself)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 13

Disclaimer:
It’s OK to be non-convex :-)

Many interesting ML problems are in fact non-convex and
there are ways to optimize non-convex objectives

(non-convex optimization is a research area in itself)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 13

Solving Optimization Problems

The most basic approach: Use first-order optimality condition

First order optimality: The gradient g must be equal to zero at (each of) the optima

g = ∇wL(w) = ∇w

[
N∑

n=1

`n(w) + R(w)

]
= 0

Sometimes, setting g = 0 and solving for w gives a closed form solution (recall linear regression)

.. and often it does NOT (recall logistic regression)

The gradient g can still be helpful since we can use it in iterative optimization methods

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 14

Solving Optimization Problems

The most basic approach: Use first-order optimality condition

First order optimality: The gradient g must be equal to zero at (each of) the optima

g = ∇wL(w) = ∇w

[
N∑

n=1

`n(w) + R(w)

]
= 0

Sometimes, setting g = 0 and solving for w gives a closed form solution (recall linear regression)

.. and often it does NOT (recall logistic regression)

The gradient g can still be helpful since we can use it in iterative optimization methods

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 14

Solving Optimization Problems

The most basic approach: Use first-order optimality condition

First order optimality: The gradient g must be equal to zero at (each of) the optima

g = ∇wL(w) = ∇w

[
N∑

n=1

`n(w) + R(w)

]
= 0

Sometimes, setting g = 0 and solving for w gives a closed form solution (recall linear regression)

.. and often it does NOT (recall logistic regression)

The gradient g can still be helpful since we can use it in iterative optimization methods

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 14

Solving Optimization Problems

The most basic approach: Use first-order optimality condition

First order optimality: The gradient g must be equal to zero at (each of) the optima

g = ∇wL(w) = ∇w

[
N∑

n=1

`n(w) + R(w)

]
= 0

Sometimes, setting g = 0 and solving for w gives a closed form solution (recall linear regression)

.. and often it does NOT (recall logistic regression)

The gradient g can still be helpful since we can use it in iterative optimization methods

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 14

Solving Optimization Problems

The most basic approach: Use first-order optimality condition

First order optimality: The gradient g must be equal to zero at (each of) the optima

g = ∇wL(w) = ∇w

[
N∑

n=1

`n(w) + R(w)

]
= 0

Sometimes, setting g = 0 and solving for w gives a closed form solution (recall linear regression)

.. and often it does NOT (recall logistic regression)

The gradient g can still be helpful since we can use it in iterative optimization methods

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 14

Iterative Optimization via Gradient Descent

Gradient Descent

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 15

Gradient Descent

A very simple, first-order method (uses only the gradient g of the objective)

Basic idea: Start at some location w (0) and move in the opposite direction of the gradient

negative
gradient

positive
direction

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 16

Gradient Descent

A very simple, first-order method (uses only the gradient g of the objective)

Basic idea: Start at some location w (0) and move in the opposite direction of the gradient

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 16

Gradient Descent

A very simple, first-order method (uses only the gradient g of the objective)

Basic idea: Start at some location w (0) and move in the opposite direction of the gradient

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 16

Gradient Descent

A very simple, first-order method (uses only the gradient g of the objective)

Basic idea: Start at some location w (0) and move in the opposite direction of the gradient

positive
gradient

negative
direction

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 16

Gradient Descent

A very simple, first-order method (uses only the gradient g of the objective)

Basic idea: Start at some location w (0) and move in the opposite direction of the gradient

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 16

Gradient Descent

A very simple, first-order method (uses only the gradient g of the objective)

Basic idea: Start at some location w (0) and move in the opposite direction of the gradient

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 16

Gradient Descent

ηt is called the learning rate (can be constant or may vary at each step)

A good init. A bad init.

Note: The effective step size (how much w moves) depends on both ηt and current gradient g (t)

A good initialization w (0) matters, otherwise might get trapped in a bad local optima

If run long enough, guaranteed to converge to a local optima (=global optima for convex functions)

When to stop: Many criteria, e.g., gradients become too small, or validation error starts increasing

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 17

Gradient Descent

ηt is called the learning rate (can be constant or may vary at each step)

A good init. A bad init.

Note: The effective step size (how much w moves) depends on both ηt and current gradient g (t)

A good initialization w (0) matters, otherwise might get trapped in a bad local optima

If run long enough, guaranteed to converge to a local optima (=global optima for convex functions)

When to stop: Many criteria, e.g., gradients become too small, or validation error starts increasing

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 17

Gradient Descent

ηt is called the learning rate (can be constant or may vary at each step)

A good init. A bad init.

Note: The effective step size (how much w moves) depends on both ηt and current gradient g (t)

A good initialization w (0) matters, otherwise might get trapped in a bad local optima

If run long enough, guaranteed to converge to a local optima (=global optima for convex functions)

When to stop: Many criteria, e.g., gradients become too small, or validation error starts increasing

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 17

Gradient Descent

ηt is called the learning rate (can be constant or may vary at each step)

A good init. A bad init.

Note: The effective step size (how much w moves) depends on both ηt and current gradient g (t)

A good initialization w (0) matters, otherwise might get trapped in a bad local optima

If run long enough, guaranteed to converge to a local optima (=global optima for convex functions)

When to stop: Many criteria, e.g., gradients become too small, or validation error starts increasing

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 17

Gradient Descent

ηt is called the learning rate (can be constant or may vary at each step)

A good init. A bad init.

Note: The effective step size (how much w moves) depends on both ηt and current gradient g (t)

A good initialization w (0) matters, otherwise might get trapped in a bad local optima

If run long enough, guaranteed to converge to a local optima (=global optima for convex functions)

When to stop: Many criteria, e.g., gradients become too small, or validation error starts increasing

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 17

Gradient Descent

ηt is called the learning rate (can be constant or may vary at each step)

A good init. A bad init.

Note: The effective step size (how much w moves) depends on both ηt and current gradient g (t)

A good initialization w (0) matters, otherwise might get trapped in a bad local optima

If run long enough, guaranteed to converge to a local optima (=global optima for convex functions)

When to stop: Many criteria, e.g., gradients become too small, or validation error starts increasing

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 17

Gradient Descent

The learning rate ηt is important

Very small learning rates may result in very slow convergence

Very large learning rates may lead to oscillatory behavior or result in a bad local optima

Very small learning rates Very large learning rates

VERY VERY large rate (can
even jump into a bad region)

May not be able to “cross”
towards the good side

May take too long
 to converge

May keep
oscillating

Many ways to set the learning rate, e.g.,

Constant (if properly set, can still show good convergence behavior)

Decreasing with t (e.g. 1/t, 1/
√
t, etc.)

Use adaptive learning rates (e.g., using methods such as Adagrad, Adam)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 18

Gradient Descent

The learning rate ηt is important

Very small learning rates may result in very slow convergence

Very large learning rates may lead to oscillatory behavior or result in a bad local optima

Very small learning rates Very large learning rates

VERY VERY large rate (can
even jump into a bad region)

May not be able to “cross”
towards the good side

May take too long
 to converge

May keep
oscillating

Many ways to set the learning rate, e.g.,

Constant (if properly set, can still show good convergence behavior)

Decreasing with t (e.g. 1/t, 1/
√
t, etc.)

Use adaptive learning rates (e.g., using methods such as Adagrad, Adam)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 18

Gradient Descent

The learning rate ηt is important

Very small learning rates may result in very slow convergence

Very large learning rates may lead to oscillatory behavior or result in a bad local optima

Very small learning rates Very large learning rates

VERY VERY large rate (can
even jump into a bad region)

May not be able to “cross”
towards the good side

May take too long
 to converge

May keep
oscillating

Many ways to set the learning rate, e.g.,

Constant (if properly set, can still show good convergence behavior)

Decreasing with t (e.g. 1/t, 1/
√
t, etc.)

Use adaptive learning rates (e.g., using methods such as Adagrad, Adam)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 18

Gradient Descent: Gradient Computations may be Expensive

Gradient computation in GD may be very expensive

Reason: Need to evaluate N terms. Assuming no regularization term, something like

g = ∇w

[
N∑

n=1

`n(w)

]
=

N∑
n=1

g n

.. will be very expensive when N is very large

A solution: Use stochastic gradient descent (SGD). Pick a random i ∈ {1, . . . ,N}
g ≈ g i = ∇w `i (w)

SGD updates use this approximation of the actual gradient

Stochastic Gradient Descent

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 19

Gradient Descent: Gradient Computations may be Expensive

Gradient computation in GD may be very expensive

Reason: Need to evaluate N terms. Assuming no regularization term, something like

g = ∇w

[
N∑

n=1

`n(w)

]
=

N∑
n=1

g n

.. will be very expensive when N is very large

A solution: Use stochastic gradient descent (SGD). Pick a random i ∈ {1, . . . ,N}
g ≈ g i = ∇w `i (w)

SGD updates use this approximation of the actual gradient

Stochastic Gradient Descent

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 19

Gradient Descent: Gradient Computations may be Expensive

Gradient computation in GD may be very expensive

Reason: Need to evaluate N terms. Assuming no regularization term, something like

g = ∇w

[
N∑

n=1

`n(w)

]
=

N∑
n=1

g n

.. will be very expensive when N is very large

A solution: Use stochastic gradient descent (SGD). Pick a random i ∈ {1, . . . ,N}
g ≈ g i = ∇w `i (w)

SGD updates use this approximation of the actual gradient

Stochastic Gradient Descent

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 19

(Stochastic) Gradient Descent

SGD uses a single example to compute the gradient

Can show that E[g i] = g . Therefore g i is an unbiased estimate of g (good)

However, the approximate gradient will have large variance

(full gradient)

(stochastic gradient)

Many ways to control the variance in the gradient’s approximation

One simple way is to use a mini-batch containing more than one (say B) example

g ≈ 1

B

B∑
i=1

g i

This is known as mini-batch SGD

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 20

(Stochastic) Gradient Descent

SGD uses a single example to compute the gradient

Can show that E[g i] = g . Therefore g i is an unbiased estimate of g (good)

However, the approximate gradient will have large variance

(full gradient)

(stochastic gradient)

Many ways to control the variance in the gradient’s approximation

One simple way is to use a mini-batch containing more than one (say B) example

g ≈ 1

B

B∑
i=1

g i

This is known as mini-batch SGD

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 20

(Stochastic) Gradient Descent

SGD uses a single example to compute the gradient

Can show that E[g i] = g . Therefore g i is an unbiased estimate of g (good)

However, the approximate gradient will have large variance

(full gradient)

(stochastic gradient)

Many ways to control the variance in the gradient’s approximation

One simple way is to use a mini-batch containing more than one (say B) example

g ≈ 1

B

B∑
i=1

g i

This is known as mini-batch SGD

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 20

(Stochastic) Gradient Descent

SGD uses a single example to compute the gradient

Can show that E[g i] = g . Therefore g i is an unbiased estimate of g (good)

However, the approximate gradient will have large variance

(full gradient)

(stochastic gradient)

Many ways to control the variance in the gradient’s approximation

One simple way is to use a mini-batch containing more than one (say B) example

g ≈ 1

B

B∑
i=1

g i

This is known as mini-batch SGD

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 20

Gradient Descent: Some Simple Examples

Ignoring the regularizer, consider the loss functions for linear and logistic regression

Linear Regression: L(w) =
N∑

n=1

(yn − w>xn)2

Logistic Regression: L(w) = −
N∑

n=1

(ynw>xn − log(1 + exp(w>xn))) (assuming yn ∈ {0, 1})

Both objectives are convex functions (can get global minima). The (full) gradients for each will be

Linear Regression: g = −
N∑

n=1

2(yn − w>xn)xn

Logistic Regression g = −
N∑

n=1

(yn − µn)xn (where µn = σ(w>xn))

The GD updates in both cases will be of the form w (t+1) = w (t) − ηtg (t)

Note that highly mispredicted inputs xn contribute more to g and thus to the weight updates!

SGD is also straightforward (same as GD but with one or few inputs for each gradient computation)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 21

Gradient Descent: Some Simple Examples

Ignoring the regularizer, consider the loss functions for linear and logistic regression

Linear Regression: L(w) =
N∑

n=1

(yn − w>xn)2

Logistic Regression: L(w) = −
N∑

n=1

(ynw>xn − log(1 + exp(w>xn))) (assuming yn ∈ {0, 1})

Both objectives are convex functions (can get global minima).

The (full) gradients for each will be

Linear Regression: g = −
N∑

n=1

2(yn − w>xn)xn

Logistic Regression g = −
N∑

n=1

(yn − µn)xn (where µn = σ(w>xn))

The GD updates in both cases will be of the form w (t+1) = w (t) − ηtg (t)

Note that highly mispredicted inputs xn contribute more to g and thus to the weight updates!

SGD is also straightforward (same as GD but with one or few inputs for each gradient computation)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 21

Gradient Descent: Some Simple Examples

Ignoring the regularizer, consider the loss functions for linear and logistic regression

Linear Regression: L(w) =
N∑

n=1

(yn − w>xn)2

Logistic Regression: L(w) = −
N∑

n=1

(ynw>xn − log(1 + exp(w>xn))) (assuming yn ∈ {0, 1})

Both objectives are convex functions (can get global minima). The (full) gradients for each will be

Linear Regression: g = −
N∑

n=1

2(yn − w>xn)xn

Logistic Regression g = −
N∑

n=1

(yn − µn)xn (where µn = σ(w>xn))

The GD updates in both cases will be of the form w (t+1) = w (t) − ηtg (t)

Note that highly mispredicted inputs xn contribute more to g and thus to the weight updates!

SGD is also straightforward (same as GD but with one or few inputs for each gradient computation)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 21

Gradient Descent: Some Simple Examples

Ignoring the regularizer, consider the loss functions for linear and logistic regression

Linear Regression: L(w) =
N∑

n=1

(yn − w>xn)2

Logistic Regression: L(w) = −
N∑

n=1

(ynw>xn − log(1 + exp(w>xn))) (assuming yn ∈ {0, 1})

Both objectives are convex functions (can get global minima). The (full) gradients for each will be

Linear Regression: g = −
N∑

n=1

2(yn − w>xn)xn

Logistic Regression g = −
N∑

n=1

(yn − µn)xn (where µn = σ(w>xn))

The GD updates in both cases will be of the form w (t+1) = w (t) − ηtg (t)

Note that highly mispredicted inputs xn contribute more to g and thus to the weight updates!

SGD is also straightforward (same as GD but with one or few inputs for each gradient computation)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 21

Gradient Descent: Some Simple Examples

Ignoring the regularizer, consider the loss functions for linear and logistic regression

Linear Regression: L(w) =
N∑

n=1

(yn − w>xn)2

Logistic Regression: L(w) = −
N∑

n=1

(ynw>xn − log(1 + exp(w>xn))) (assuming yn ∈ {0, 1})

Both objectives are convex functions (can get global minima). The (full) gradients for each will be

Linear Regression: g = −
N∑

n=1

2(yn − w>xn)xn

Logistic Regression g = −
N∑

n=1

(yn − µn)xn (where µn = σ(w>xn))

The GD updates in both cases will be of the form w (t+1) = w (t) − ηtg (t)

Note that highly mispredicted inputs xn contribute more to g and thus to the weight updates!

SGD is also straightforward (same as GD but with one or few inputs for each gradient computation)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 21

Gradient Descent: Some Simple Examples

Ignoring the regularizer, consider the loss functions for linear and logistic regression

Linear Regression: L(w) =
N∑

n=1

(yn − w>xn)2

Logistic Regression: L(w) = −
N∑

n=1

(ynw>xn − log(1 + exp(w>xn))) (assuming yn ∈ {0, 1})

Both objectives are convex functions (can get global minima). The (full) gradients for each will be

Linear Regression: g = −
N∑

n=1

2(yn − w>xn)xn

Logistic Regression g = −
N∑

n=1

(yn − µn)xn (where µn = σ(w>xn))

The GD updates in both cases will be of the form w (t+1) = w (t) − ηtg (t)

Note that highly mispredicted inputs xn contribute more to g and thus to the weight updates!

SGD is also straightforward (same as GD but with one or few inputs for each gradient computation)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 21

Gradient Descent: Some Simple Examples

Ignoring the regularizer, consider the loss functions for linear and logistic regression

Linear Regression: L(w) =
N∑

n=1

(yn − w>xn)2

Logistic Regression: L(w) = −
N∑

n=1

(ynw>xn − log(1 + exp(w>xn))) (assuming yn ∈ {0, 1})

Both objectives are convex functions (can get global minima). The (full) gradients for each will be

Linear Regression: g = −
N∑

n=1

2(yn − w>xn)xn

Logistic Regression g = −
N∑

n=1

(yn − µn)xn (where µn = σ(w>xn))

The GD updates in both cases will be of the form w (t+1) = w (t) − ηtg (t)

Note that highly mispredicted inputs xn contribute more to g and thus to the weight updates!

SGD is also straightforward (same as GD but with one or few inputs for each gradient computation)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 21

GD and SGD: Some Comments

Note that we could solve linear regression in closed form

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

.. this has O(D3 + ND2) cost

GD for linear regression avoided the matrix inversion

In general, cost of batch GD with N examples having D features: O(ND)

SGD cost will be O(D) or O(BD) with mini-batch of size B

There exist theoretical results on convergence rates of GD/SGD (beyond the scope)

GD will take O
(

1
ε2

)
iterations reach ε-close solution, which is defined as

L(w (t)) ≤ L(w (opt)) + ε (up to ε worse than optimal)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 22

Gradient Descent: Updates are “Corrective”

The GD updates for the linear and logistic regression case look like

w (t+1) = w (t) + 2ηt

N∑
n=1

(yn −w (t)>xn)xn

w (t+1) = w (t) + ηt

N∑
n=1

(yn − µ(t)
n)xn

These updates try to correct w by moving it in the right direction

Consider the linear regression case and simplicity assume N = 1. Can verify (exercise)

If w (t)>xn < yn, the update will make w (t+1)>xn > w (t)>xn. Thus w moves more towards xn

If w (t)>xn > yn, the update will make w (t+1)>xn < w (t)>xn. Thus w moves away from xn

Try the same for the logistic regression case (reason about it in terms of probabilities)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 23

Gradient Descent: Updates are “Corrective”

The GD updates for the linear and logistic regression case look like

w (t+1) = w (t) + 2ηt

N∑
n=1

(yn −w (t)>xn)xn

w (t+1) = w (t) + ηt

N∑
n=1

(yn − µ(t)
n)xn

These updates try to correct w by moving it in the right direction

Consider the linear regression case and simplicity assume N = 1. Can verify (exercise)

If w (t)>xn < yn, the update will make w (t+1)>xn > w (t)>xn. Thus w moves more towards xn

If w (t)>xn > yn, the update will make w (t+1)>xn < w (t)>xn. Thus w moves away from xn

Try the same for the logistic regression case (reason about it in terms of probabilities)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 23

Gradient Descent: Updates are “Corrective”

The GD updates for the linear and logistic regression case look like

w (t+1) = w (t) + 2ηt

N∑
n=1

(yn −w (t)>xn)xn

w (t+1) = w (t) + ηt

N∑
n=1

(yn − µ(t)
n)xn

These updates try to correct w by moving it in the right direction

Consider the linear regression case and simplicity assume N = 1. Can verify (exercise)

If w (t)>xn < yn, the update will make w (t+1)>xn > w (t)>xn. Thus w moves more towards xn

If w (t)>xn > yn, the update will make w (t+1)>xn < w (t)>xn. Thus w moves away from xn

Try the same for the logistic regression case (reason about it in terms of probabilities)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 23

Gradient Descent: Updates are “Corrective”

The GD updates for the linear and logistic regression case look like

w (t+1) = w (t) + 2ηt

N∑
n=1

(yn −w (t)>xn)xn

w (t+1) = w (t) + ηt

N∑
n=1

(yn − µ(t)
n)xn

These updates try to correct w by moving it in the right direction

Consider the linear regression case and simplicity assume N = 1. Can verify (exercise)

If w (t)>xn < yn, the update will make w (t+1)>xn > w (t)>xn. Thus w moves more towards xn

If w (t)>xn > yn, the update will make w (t+1)>xn < w (t)>xn. Thus w moves away from xn

Try the same for the logistic regression case (reason about it in terms of probabilities)

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 23

Some Other Considerations

What if the function is not differentiable (e.g., loss function with `1 norm reg. on weights, or
absolute loss function, or many other loss functions for classification models, such as SVM)?

One option is to use subgradient instead of gradient (subgradient descent)

What if there are many variables, not just one (e.g., multi-output regression with W = BS)

One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)

What if w has too many component: Can even optimize w co-ordinate wise (co-ordinate descent)

What if we have an objective with constraints on variables, e.g.,

ŵ = arg min
||w ||≤c

N∑
n=1

(yn −w>xn)2 (constraint based regularization)

Constrained optimization problem! One option is to use Lagrangian based optimization

Can we use more than just gradient? Yes! (e.g., Newton’s method uses the Hessian)

Will look at these in the next class..

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 24

Some Other Considerations

What if the function is not differentiable (e.g., loss function with `1 norm reg. on weights, or
absolute loss function, or many other loss functions for classification models, such as SVM)?

One option is to use subgradient instead of gradient (subgradient descent)

What if there are many variables, not just one (e.g., multi-output regression with W = BS)

One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)

What if w has too many component: Can even optimize w co-ordinate wise (co-ordinate descent)

What if we have an objective with constraints on variables, e.g.,

ŵ = arg min
||w ||≤c

N∑
n=1

(yn −w>xn)2 (constraint based regularization)

Constrained optimization problem! One option is to use Lagrangian based optimization

Can we use more than just gradient? Yes! (e.g., Newton’s method uses the Hessian)

Will look at these in the next class..

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 24

Some Other Considerations

What if the function is not differentiable (e.g., loss function with `1 norm reg. on weights, or
absolute loss function, or many other loss functions for classification models, such as SVM)?

One option is to use subgradient instead of gradient (subgradient descent)

What if there are many variables, not just one (e.g., multi-output regression with W = BS)

One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)

What if w has too many component: Can even optimize w co-ordinate wise (co-ordinate descent)

What if we have an objective with constraints on variables, e.g.,

ŵ = arg min
||w ||≤c

N∑
n=1

(yn −w>xn)2 (constraint based regularization)

Constrained optimization problem! One option is to use Lagrangian based optimization

Can we use more than just gradient? Yes! (e.g., Newton’s method uses the Hessian)

Will look at these in the next class..

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 24

Some Other Considerations

What if the function is not differentiable (e.g., loss function with `1 norm reg. on weights, or
absolute loss function, or many other loss functions for classification models, such as SVM)?

One option is to use subgradient instead of gradient (subgradient descent)

What if there are many variables, not just one (e.g., multi-output regression with W = BS)

One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)

What if w has too many component: Can even optimize w co-ordinate wise (co-ordinate descent)

What if we have an objective with constraints on variables, e.g.,

ŵ = arg min
||w ||≤c

N∑
n=1

(yn −w>xn)2 (constraint based regularization)

Constrained optimization problem! One option is to use Lagrangian based optimization

Can we use more than just gradient? Yes! (e.g., Newton’s method uses the Hessian)

Will look at these in the next class..

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 24

Some Other Considerations

What if the function is not differentiable (e.g., loss function with `1 norm reg. on weights, or
absolute loss function, or many other loss functions for classification models, such as SVM)?

One option is to use subgradient instead of gradient (subgradient descent)

What if there are many variables, not just one (e.g., multi-output regression with W = BS)

One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)

What if w has too many component: Can even optimize w co-ordinate wise (co-ordinate descent)

What if we have an objective with constraints on variables, e.g.,

ŵ = arg min
||w ||≤c

N∑
n=1

(yn −w>xn)2 (constraint based regularization)

Constrained optimization problem! One option is to use Lagrangian based optimization

Can we use more than just gradient? Yes! (e.g., Newton’s method uses the Hessian)

Will look at these in the next class..

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 24

Some Other Considerations

What if the function is not differentiable (e.g., loss function with `1 norm reg. on weights, or
absolute loss function, or many other loss functions for classification models, such as SVM)?

One option is to use subgradient instead of gradient (subgradient descent)

What if there are many variables, not just one (e.g., multi-output regression with W = BS)

One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)

What if w has too many component: Can even optimize w co-ordinate wise (co-ordinate descent)

What if we have an objective with constraints on variables, e.g.,

ŵ = arg min
||w ||≤c

N∑
n=1

(yn −w>xn)2 (constraint based regularization)

Constrained optimization problem! One option is to use Lagrangian based optimization

Can we use more than just gradient? Yes! (e.g., Newton’s method uses the Hessian)

Will look at these in the next class..

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 24

Some Other Considerations

What if the function is not differentiable (e.g., loss function with `1 norm reg. on weights, or
absolute loss function, or many other loss functions for classification models, such as SVM)?

One option is to use subgradient instead of gradient (subgradient descent)

What if there are many variables, not just one (e.g., multi-output regression with W = BS)

One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)

What if w has too many component: Can even optimize w co-ordinate wise (co-ordinate descent)

What if we have an objective with constraints on variables, e.g.,

ŵ = arg min
||w ||≤c

N∑
n=1

(yn −w>xn)2 (constraint based regularization)

Constrained optimization problem! One option is to use Lagrangian based optimization

Can we use more than just gradient? Yes! (e.g., Newton’s method uses the Hessian)

Will look at these in the next class..

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 24

Some Other Considerations

What if the function is not differentiable (e.g., loss function with `1 norm reg. on weights, or
absolute loss function, or many other loss functions for classification models, such as SVM)?

One option is to use subgradient instead of gradient (subgradient descent)

What if there are many variables, not just one (e.g., multi-output regression with W = BS)

One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)

What if w has too many component: Can even optimize w co-ordinate wise (co-ordinate descent)

What if we have an objective with constraints on variables, e.g.,

ŵ = arg min
||w ||≤c

N∑
n=1

(yn −w>xn)2 (constraint based regularization)

Constrained optimization problem! One option is to use Lagrangian based optimization

Can we use more than just gradient? Yes! (e.g., Newton’s method uses the Hessian)

Will look at these in the next class..

Intro to Machine Learning (CS771A) Optimization Techniques for ML (1) 24

