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Recap: Probabilistic Linear Regression

Mean Variance

Equivalently
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Recap: Probabilistic Linear Regression

The Likelihood

=
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Recap: Probabilistic Linear Regression

0

The Prior

=

Zero-mean Gaussian prior encourages weights to be small. Precision λ controls how strong this prior is.
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Recap: MLE, MAP, and Bayesian Inference for Prob. Lin. Reg.

For MLE, we maximize the log-likelihood. Ignoring constants w.r.t. w , we have

ŵMLE = arg max
w

log p(y |X,w) = arg min
w

[
β

2

N∑
n=1

(yn −w>xn)2

]
For MAP, we maximize the log-posterior. Ignoring constants w.r.t. w , we have

ŵMAP = arg max
w

log p(w |y ,X) = arg min
w

[
β

2

N∑
n=1

(yn −w>xn)2 +
λ

2
w>w

]

For Bayesian inference, we compute the full posterior. Easily computable (thanks to conjugacy)

p(w |y ,X) = N (µN ,ΣN)

ΣN = (βX>X + λID)−1

µN = (X>X +
λ

β
ID)−1X>y

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning (Contd.) 5



Recap: Predictive Distribution for Prob. Lin. Reg.

When using MLE/MAP estimate of w , we compute the “plug-in” predictive distribution

p(y∗|x∗,X, y) ≈ p(y∗|x∗,wMLE ) = N (w>MLEx∗, β−1)

p(y∗|x∗,X, y) ≈ p(y∗|x∗,wMAP) = N (w>MAPx∗, β−1)

For MLE approach, mean of predicted output is w>MLEx∗, variance is β−1

For MAP approach, mean of predicted output is w>MAPx∗, variance is β−1

When using the fully posterior, we can compute the posterior predictive distribution

p(y∗|x∗,X, y) =

∫
p(y∗|x∗,w)p(w |X, y)dw = N (µ>N x∗, β−1+x>∗ ΣNx∗)

For Bayesian approach, mean of predicted output is w>N x∗, variance is β−1 + x>∗ ΣNx∗(note the
different variance for each test input, unlike MLE/MAP prediction)
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Recap: Logistic Regression

Logistic Regression models p(yn = 1|w , xn) using the sigmoid function

Sigmoid Function

Thus each likelihood p(yn|w , xn) = Bernoulli(yn|µn) = µyn
n (1− µn)1−yn

Assuming i.i.d. labels, likelihood is product of Bernoullis

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =
N∏

n=1

µyn
n (1− µn)1−yn

Can also use a Gaussian prior p(w) = N (w |0, λ−1ID) just like in probabilistic linear regression

Can estimate w via MLE, MAP, or (a somewhat hard to do) fully Bayesian inference
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Recap: Logistic Regression

Logistic regression can be extended to more than 2 classes

p(yn = k|xn,W) =
exp(w>k xn)∑K
`=1 exp(w>` xn)

= µnk and
K∑

`=1

µn` = 1

MLE/MAP for logistic/softmax does not have closed form solution (unlike linear regression case)

Computing full posterior is intractable (since Bernoulli/multinoulli and Gaussian are not conjugate)

Laplace (Gaussian) approximation is one way to get an approximate posterior

Predictive distribution is straightforward when using MLE/MAP

Predictive distribution is intractable when using full posterior
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Generative Models for Supervised Learning

p(y |x) = p(x , y)
p(x)

Here, we will model both inputs and outputs!

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning (Contd.) 9



Generative Classification

Consider a classification problem with K ≥ 2 classes

Assuming θ to collectively denote all the params, the generative classification model is

p(y = k |x , θ) =
p(x , y = k|θ)

p(x |θ)
, k = 1, . . . ,K

Note that the denominator p(x |θ) =
∑K

k=1 p(x , y = k|θ), using sum rule of probability

Can use the chain rule to re-express the above as

p(y = k |x , θ) =
p(y = k |θ)p(x |y = k, θ)

p(x |θ)

This depends on two quantities

p(y = k|θ): The class-marginal distribution (also called “class prior”)

p(x |y = k, θ): The class-conditional distribution of the inputs

Generative classification requires first estimating the parameters θ of these two distributions
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Generative Classification: Estimating Class-Marginal Distribution

Estimating the class-marginal is usually straightforward in generative classification

The class marginal distribution is (has to be!) a discrete distribution (multinoulli)

p(y |π) = multinoulli(y |π1, . . . , πK ) =
K∏

k=1

π
I[y=k]
k

where multinoilli parameters π = [π1, . . . , πK ],
∑K

k=1 πk = 1 , and πk = p(y = k)

Given N labeled training examples {(xn, yn)}Nn=1, MLE for π (won’t depend on xn’s) will be

πMLE = arg max
π

N∑
n=1

log p(yn|π)

.. which gives πk = Nk/N (exercise: verify) where Nk =
∑N

n=1 I[yn = k]

Note: If MAP (or full posterior) is needed, we can use a Dirichlet prior distribution on π

Another exercise: Try to derive the MAP estimate of π and also the full posterior (good news:
multinoulli and Dirichlet are conjugate to each other, so full posterior is easy)
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Generative Classification: Estimating Class-Conditional Distr.

We usually assume an appropriate class-conditional p(x |y = k, θ) for the inputs, e.g.,

If x ∈ RD , then a D-dim Gaussian N (x |µk ,Σk) may be appropriate (here θ = (µk ,Σk))

If x ∈ {0, 1}D , then a D-dim Bernoulli may be appropriate

Can choose more flexible distributions as well (any density estimation model for that matter)

For the assumed class-conditional, we can do MLE/MAP estimation or learn full posterior for θ

An issue: When D is large, we may need to estimate a huge number of parameters, e.g.,

A D-dim Gaussian will have D params for mean and O(D2) params for covariance matrix

Some workarounds: Regularize well; assume diagonal (or same) covariance for all classes, which means
that the features are independent given the class (used in “näıve” Bayes models)
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Generative Classification: The Prediction Rule

Suppose we’ve estimated the parameters of p(y = k |θ) and p(x |y = k, θ) (assuming MLE/MAP)

The “most likely” class for a test input x∗ will be (skipping θ from the notation)

y∗ = arg max
k

p(y∗ = k|x∗) = arg max
k

p(y∗ = k)p(x∗|y∗ = k)

p(x∗)
= arg max

k
p(y∗ = k)p(x∗|y∗ = k)

If p(y = k) is the same for all the classes then, we simple compare p(x |y = k)
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Generative Classification using Gaussian Class-conditionals

Recall our generative classification model p(y = k |x) = p(y=k)p(x|y=k)
p(x)

Assume each class-conditional to be a Gaussian

p(x |y = k) = N (x |µk ,Σk) =
1√

(2π)D |Σk |
exp

[
−1

2
(x− µk)>Σ−1

k (x− µk)

]

Class-marginal is multinoulli (already saw): p(y = k) = πk ∈ (0, 1), s.t..
∑K

k=1 πk = 1

Parameters θ = {πk ,µk ,Σk}Kk=1 can be estimated using MLE/MAP/Bayesian approach

We also saw estimation of πk ’s. (µk ,Σk) can be found via Gaussian parameter estimation

If using MLE/MAP estimate of θ, the predictive distribution will be

p(y∗ = k|x∗, θ) =
πk |Σk |−1/2 exp

[
− 1

2
(x∗ − µk)>Σ−1

k (x∗ − µk)
]

∑K
k=1 πk |Σk |−1/2 exp

[
− 1

2
(x∗ − µk)>Σ−1

k (x∗ − µk)
]
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Decision Boundaries

The generative classification prediction rule we saw had

p(y = k|x, θ) =
πk |Σk |−1/2 exp

[
− 1

2 (x− µk )
>Σ
−1
k (x− µk )

]
∑K

k=1 πk |Σk |−1/2 exp
[
− 1

2 (x− µk )
>Σ
−1
k (x− µk )

]
The decision boundary between any pair of classes will be.. a quadratic curve

Reason: For any two classes k and k ′, at the decision boundary p(y = k|x) = p(y = k ′|x).Thus

(x− µk)>Σ−1
k (x− µk)− (x− µk′)

>Σ−1
k′ (x− µk′) = 0 (ignoring terms that don’t depend on x)

.. defines the decision boundary, which is a quadratic function of x (this model is popularly known
as Quadratic Discriminant Analysis)
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Decision Boundaries

Let’s again consider the generative classification prediction rule with Gaussian class-conditionals

p(y = k|x, θ) =
πk |Σk |−1/2 exp

[
− 1

2 (x− µk )
>Σ
−1
k (x− µk )

]
∑K

k=1 πk |Σk |−1/2 exp
[
− 1

2 (x− µk )
>Σ
−1
k (x− µk )

]
Let’s assume all classes to have the same covariance (i.e., same shape/size), i.e., Σk = Σ, ∀k

Now the decision boundary between any pair of classes will be.. linear

Reason: For any two classes k and k ′, at the decision boundary p(y = k|x) = p(y = k ′|x). Thus

(x− µk )
>Σ−1(x− µk )− (x− µk′ )

>Σ−1(x− µk′ ) = 0 (ignoring terms that don’t depend on x)

.. terms quadratic in x cancel out in this case and we get a linear function of x (this model is
popularly known as Linear or “Fisher” Discriminant Analysis)

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning (Contd.) 16



Decision Boundaries

Depending on the form of the covariance matrices, the boundaries can be quadratic/linear
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A Closer Look at the Linear Case

For the linear case (when Σk = Σ), we have

p(y = k|x , θ) ∝ πk exp

[
−1

2
(x− µk)>Σ−1(x− µk)

]
Expanding further, we can write the above as

p(y = k|x , θ) ∝ exp

[
µ>k Σ−1x − 1

2
µ>k Σ−1µk + log πk

]
exp

[
x>Σ−1x

]
Therefore, the above posterior class probability can be written as

p(y = k|x , θ) =
exp

[
w>k x + bk

]∑K
k=1 exp

[
w>k x + bk

]
where w k = Σ−1µk and bk = − 1

2µ
>
k Σ−1µk + log πk

Interestingly, this has exactly the same form as the softmax classification model (saw it in last
class), which is a discriminative model, as opposed to a generative model.
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A Very Special Case: Prototype based Classification

We can get a non-probabilistic analogy for the Gaussian generative classification model

Note the decision rule when Σk = Σ

ŷ = arg max
k

p(y = k |x) = arg max
k

πk exp

[
−1

2
(x− µk)>Σ−1(x− µk)

]
= arg max

k
log πk −

1

2
(x− µk)>Σ−1(x− µk)

Further, let’s assume the classes to be of equal size, i.e., πk = 1/K . Then we will have

ŷ = arg min
k

(x− µk)>Σ−1(x− µk)

This is equivalent to assigning x to the “closest” class in terms of a Mahalanobis distance

The covariance matrix “modulates” how the distances are computed
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Generative Classification: Some Comments

A simple but powerful approach to probabilistic classification

Especially easy to learn if class-conditionals are simple

E.g., Gaussian with diagonal covariances ⇒ Gaussian näıve Bayes

Another popular model is multinomial näıve Bayes (widely used for document classification)

The so-called “näıve” models assume features to be independent conditioned on y , i.e.,

p(x |θy ) =
D∏

d=1

p(xd |θy ) (significantly reduces the number of parameters to be estimated)

Generative classification models work seamlessly for any number of classes

Can choose the form of class-conditionals p(x |y) based on the type of inputs x

Can handle missing data (e.g., if some part of the input x is missing) or missing labels

Generative models are also useful for unsupervised and semi-supervised learning (will look at later)
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Generative Classification: Some Comments

Estimating the class-conditional distributions p(x |y) reliably is important

In general, the class-conditional p(x |y) may have too many parameter to be estimated (e.g., if we
use full covariance Gaussians when the class-conditionals are Gaussians)

Can be difficult if we don’t have enough data for each class

Assuming shared and/or diagonal covariance for each Gaussian can reduce the number of params

.. or the “näıve” assumptions

MLE for parameter estimation in these models can be prone to overfitting

Need to regularize the model properly to prevent that

A MAP or fully Bayesian approach can help (will need prior on the parameters)

A good density estimation model is necessary for generative classification model to work well
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Probabilistic Models for Supervised Learning: Wrapping Up

Both discriminative and generative models estimate the conditional distribution p(y |x)

Note that both are basically doing density estimation for learning p(y |x) but in different ways

Discriminative models directly model p(y |x) via some parameters (say w if using linear model)

p(y |w , x) = N (w>x , β−1) (prob. linear regression)

p(y |w , x) = Bernoulli[σ(w>x)] (prob. linear binary classification)

These parameters can then be estimated via MLE, MAP, or fully Bayesian inference

Generative classification models define p(y |x) as

p(y |x , θ) =
p(x , y |θ)

p(x |θ)
=

p(y |θ)p(x |y , θ)

p(x |θ)

and estimate the parameters of the class-marginal and class-conditional distributions

Note: Can use generative models for doing regression as well (will be an exercise)
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