Probabilistic Models for Supervised Learning

Piyush Rai

Introduction to Machine Learning (CS771A)

August 16, 2018

• Homework 1 will be out tonight. Due on August 31, 11:59pm. Please start early.

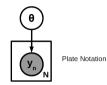
- Homework 1 will be out tonight. Due on August 31, 11:59pm. Please start early.
- Project ideas will be posted by tomorrow.

- Homework 1 will be out tonight. Due on August 31, 11:59pm. Please start early.
- Project ideas will be posted by tomorrow.
- Project group formation deadline extended to August 25.

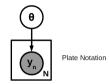
- Homework 1 will be out tonight. Due on August 31, 11:59pm. Please start early.
- Project ideas will be posted by tomorrow.
- Project group formation deadline extended to August 25.
 - Piazza has a "Search for Teammates" features (the very first pinned post)

- Homework 1 will be out tonight. Due on August 31, 11:59pm. Please start early.
- Project ideas will be posted by tomorrow.
- Project group formation deadline extended to August 25.
 - Piazza has a "Search for Teammates" features (the very first pinned post)
- Please sign-up on Piazza (we won't sign you up if you are waiting for that :-))

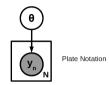
- Homework 1 will be out tonight. Due on August 31, 11:59pm. Please start early.
- Project ideas will be posted by tomorrow.
- Project group formation deadline extended to August 25.
 - Piazza has a "Search for Teammates" features (the very first pinned post)
- Please sign-up on Piazza (we won't sign you up if you are waiting for that :-))
- TA office hours and office locations posted on Piazza (under resources/staff section)



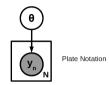
- A probabilistic model is specified by two key components
 - An observation model $p(y|\theta)$, a.k.a. the likelihood model
 - (Optionally) A prior distribution $p(\theta)$ over the unknown parameters



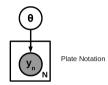
- A probabilistic model is specified by two key components
 - An observation model $p(y|\theta)$, a.k.a. the likelihood model
 - (Optionally) A prior distribution $p(\theta)$ over the unknown parameters
- Note that these two components specify the joint distribution $p(y, \theta)$ of data and unknowns



- A probabilistic model is specified by two key components
 - An observation model $p(y|\theta)$, a.k.a. the likelihood model
 - (Optionally) A prior distribution $p(\theta)$ over the unknown parameters
- Note that these two components specify the joint distribution $p(y, \theta)$ of data and unknowns
- We can incorporate our assumptions about the data via the observation/likelihood model



- A probabilistic model is specified by two key components
 - An observation model $p(y|\theta)$, a.k.a. the likelihood model
 - (Optionally) A prior distribution $p(\theta)$ over the unknown parameters
- Note that these two components specify the joint distribution $p(y, \theta)$ of data and unknowns
- We can incorporate our assumptions about the data via the observation/likelihood model
- We can incorporate our assumptions about the parameters via the prior distribution



- A probabilistic model is specified by two key components
 - An observation model $p(y|\theta)$, a.k.a. the likelihood model
 - (Optionally) A prior distribution $p(\theta)$ over the unknown parameters
- Note that these two components specify the joint distribution $p(y, \theta)$ of data and unknowns
- We can incorporate our assumptions about the data via the observation/likelihood model
- We can incorporate our assumptions about the parameters via the prior distribution
- Note: Likelihood and/or prior may depend on additional "hyperparamers" (fixed/unknown)

• Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)

・ロト ・四ト ・モト ・モト

- Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)
- MLE maximizes the (log of) likelihood w.r.t. the parameters θ . For i.i.d. data,

$$\hat{ heta}_{\textit{MLE}} = rg\max_{ heta} \sum_{n=1}^{N} \log p(y_n \mid heta)$$

- Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)
- MLE maximizes the (log of) likelihood w.r.t. the parameters θ . For i.i.d. data,

$$\hat{ heta}_{\textit{MLE}} = rg\max_{ heta} \sum_{n=1}^{N} \log p(y_n \mid heta) = rg\min_{ heta} \textit{NLL}(heta)$$

- Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)
- MLE maximizes the (log of) likelihood w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid \theta) = \arg \min_{\theta} NLL(\theta)$$

• MLE is akin to empirical/training loss minimization (no regularization)

- Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)
- MLE maximizes the (log of) likelihood w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid \theta) = \arg \min_{\theta} NLL(\theta)$$

- MLE is akin to empirical/training loss minimization (no regularization)
- MAP estimation maximizes the (log of) posterior w.r.t. the parameters θ . For i.i.d. data,

$$\hat{ heta}_{MAP} = \arg\max_{ heta} [\sum_{n=1}^{N} \log p(y_n \mid heta) + \log p(heta)]$$

- Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)
- MLE maximizes the (log of) likelihood w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid \theta) = \arg \min_{\theta} NLL(\theta)$$

- MLE is akin to empirical/training loss minimization (no regularization)
- MAP estimation maximizes the (log of) posterior w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MAP} = \arg \max_{\theta} [\sum_{n=1}^{N} \log p(y_n \mid \theta) + \log p(\theta)] = \arg \min_{\theta} [NLL(\theta) - \log p(\theta)]$$

- Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)
- MLE maximizes the (log of) likelihood w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid \theta) = \arg \min_{\theta} NLL(\theta)$$

- MLE is akin to empirical/training loss minimization (no regularization)
- MAP estimation maximizes the (log of) posterior w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MAP} = \arg \max_{\theta} [\sum_{n=1}^{N} \log p(y_n \mid \theta) + \log p(\theta)] = \arg \min_{\theta} [NLL(\theta) - \log p(\theta)]$$

• MAP is akin to regularized loss minimization (prior acts as a regularizer)

- Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)
- MLE maximizes the (log of) likelihood w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid \theta) = \arg \min_{\theta} NLL(\theta)$$

- MLE is akin to empirical/training loss minimization (no regularization)
- MAP estimation maximizes the (log of) posterior w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MAP} = \arg \max_{\theta} [\sum_{n=1}^{N} \log p(y_n \mid \theta) + \log p(\theta)] = \arg \min_{\theta} [NLL(\theta) - \log p(\theta)]$$

- MAP is akin to regularized loss minimization (prior acts as a regularizer)
- $\bullet\,$ Bayesian inference computes the full posterior distribution of θ

$$p(heta|m{y}) = rac{p(m{y}| heta)p(heta)}{p(m{y})}$$

- Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)
- MLE maximizes the (log of) likelihood w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \sum_{n=1}^{N} \log p(y_n \mid \theta) = \arg \min_{\theta} NLL(\theta)$$

- MLE is akin to empirical/training loss minimization (no regularization)
- MAP estimation maximizes the (log of) posterior w.r.t. the parameters θ . For i.i.d. data,

$$\hat{\theta}_{MAP} = \arg \max_{\theta} [\sum_{n=1}^{N} \log p(y_n \mid \theta) + \log p(\theta)] = \arg \min_{\theta} [NLL(\theta) - \log p(\theta)]$$

- MAP is akin to regularized loss minimization (prior acts as a regularizer)
- $\bullet\,$ Bayesian inference computes the full posterior distribution of θ

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})} = \frac{p(\mathbf{y}|\theta)p(\theta)}{\int p(\mathbf{y}|\theta)p(\theta)d\theta} \quad \text{(intractable in general)}$$

• Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$p(y_*|\boldsymbol{y}) = \int p(y_*, \theta|\boldsymbol{y}) d\theta$$

sum rule of probability

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$p(y_*|\mathbf{y}) = \int p(y_*, \theta|\mathbf{y})d\theta = \int p(y_*|\theta, \mathbf{y})p(\theta|\mathbf{y})d\theta$$

sum rule of probability

chain/product rule of probability

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$y_*|\mathbf{y}) = \underbrace{\int p(y_*, \theta|\mathbf{y}) d\theta}_{\text{sum rule of probability}} = \underbrace{\int p(y_*|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta}_{\text{chain/product rule of probability}}$$
$$= \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \quad (\text{assuming i.i.d. data})$$

p(

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$p(y_*|\mathbf{y}) = \underbrace{\int p(y_*, \theta|\mathbf{y}) d\theta}_{\text{sum rule of probability}} = \underbrace{\int p(y_*|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta}_{\text{chain/product rule of probability}} = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \quad \text{(assuming i.i.d. data)}$$

• If using a point estimate $\hat{\theta}$ (e.g., MLE/MAP), $p(\theta|\mathbf{y}) \approx \delta_{\hat{\theta}}(\theta)$

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$p(y_*|\mathbf{y}) = \underbrace{\int p(y_*, \theta|\mathbf{y}) d\theta}_{\text{sum rule of probability}} = \underbrace{\int p(y_*|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta}_{\text{chain/product rule of probability}}$$
$$= \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \quad (\text{assuming i.i.d. data})$$

• If using a point estimate $\hat{\theta}$ (e.g., MLE/MAP), $p(\theta|\mathbf{y}) \approx \delta_{\hat{\theta}}(\theta)$, where $\delta($) denotes Dirac function

$$p(y_*|m{y}) = \int p(y_*| heta) p(heta|m{y}) d heta ~ pprox p(y_*|\hat{ heta}_{MLE})$$
 (MLE based prediction)

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$p(y_*|\mathbf{y}) = \underbrace{\int p(y_*, \theta|\mathbf{y}) d\theta}_{\text{sum rule of probability}} = \underbrace{\int p(y_*|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta}_{\text{chain/product rule of probability}}$$

= $\int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta$ (assuming i.i.d. data)
• If using a point estimate $\hat{\theta}$ (e.g., MLE/MAP), $p(\theta|\mathbf{y}) \approx \delta_{\hat{\theta}}(\theta)$, where δ () denotes Dirac function
 $p(y_*|\mathbf{y}) = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \approx p(y_*|\hat{\theta}_{MLE})$ (MLE based prediction)
 $p(y_*|\mathbf{y}) = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \approx p(y_*|\hat{\theta}_{MAP})$ (MAP based prediction)

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$p(y_*|\mathbf{y}) = \underbrace{\int p(y_*, \theta|\mathbf{y}) d\theta}_{\text{sum rule of probability}} = \underbrace{\int p(y_*|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta}_{\text{chain/product rule of probability}}$$

= $\int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta$ (assuming i.i.d. data)
• If using a point estimate $\hat{\theta}$ (e.g., MLE/MAP), $p(\theta|\mathbf{y}) \approx \delta_{\hat{\theta}}(\theta)$, where $\delta()$ denotes Dirac function
 $p(y_*|\mathbf{y}) = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \approx p(y_*|\hat{\theta}_{MLE})$ (MLE based prediction)
 $p(y_*|\mathbf{y}) = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \approx p(y_*|\hat{\theta}_{MAP})$ (MAP based prediction)

• If using the fully Bayesian inference, $p(y_*|y) = \int p(y_*|\theta) p(\theta|y) d\theta$

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$p(y_*|\mathbf{y}) = \underbrace{\int p(y_*, \theta|\mathbf{y}) d\theta}_{\text{sum rule of probability}} = \underbrace{\int p(y_*|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta}_{\text{chain/product rule of probability}}$$

= $\int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta$ (assuming i.i.d. data)
• If using a point estimate $\hat{\theta}$ (e.g., MLE/MAP), $p(\theta|\mathbf{y}) \approx \delta_{\hat{\theta}}(\theta)$, where $\delta()$ denotes Dirac function
 $p(y_*|\mathbf{y}) = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \approx p(y_*|\hat{\theta}_{MLE})$ (MLE based prediction)
 $p(y_*|\mathbf{y}) = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \approx p(y_*|\hat{\theta}_{MAP})$ (MAP based prediction)

• If using the fully Bayesian inference, $p(y_*|y) = \int p(y_*|\theta)p(\theta|y)d\theta \leftarrow$ uses the proper way!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ∛

- Using estimated θ , we usually want the predictive distribution $p(y_*|y)$ for some future data y_*
- The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

$$p(y_*|\mathbf{y}) = \underbrace{\int p(y_*, \theta|\mathbf{y}) d\theta}_{\text{sum rule of probability}} = \underbrace{\int p(y_*|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta}_{\text{chain/product rule of probability}}$$

$$= \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \quad (\text{assuming i.i.d. data})$$
• If using a point estimate $\hat{\theta}$ (e.g., MLE/MAP), $p(\theta|\mathbf{y}) \approx \delta_{\hat{\theta}}(\theta)$, where $\delta()$ denotes Dirac function
$$p(y_*|\mathbf{y}) = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \quad \approx \quad p(y_*|\hat{\theta}_{MLE}) \quad (\text{MLE based prediction})$$

$$p(y_*|\mathbf{y}) = \int p(y_*|\theta) p(\theta|\mathbf{y}) d\theta \quad \approx \quad p(y_*|\hat{\theta}_{MAP}) \quad (\text{MAP based prediction})$$

- If using the fully Bayesian inference, $p(y_*|y) = \int p(y_*|\theta)p(\theta|y)d\theta \leftarrow$ uses the proper way!
 - The integral here may not always be tractable and may need to be approximated

Probabilistic Models for Supervised Learning

Probabilistic Models for Supervised Learning

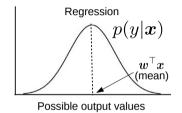
Want models that give us p(y|x)

→ ∃ → < ∃ →</p>

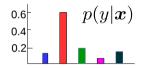
Intro to Machine Learning (CS771A)

Why Probabilistic Models for Supervised Learning?

• Often, we want the distribution p(y|x) over possible outputs y, given an input x

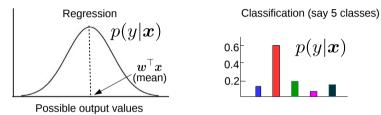


Classification (say 5 classes)



Why Probabilistic Models for Supervised Learning?

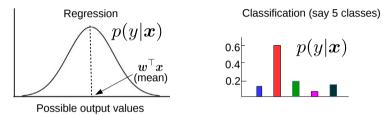
• Often, we want the distribution p(y|x) over possible outputs y, given an input x



• The distribution p(y|x) is more informative, since it can tell us

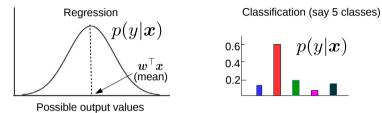
Why Probabilistic Models for Supervised Learning?

• Often, we want the distribution p(y|x) over possible outputs y, given an input x



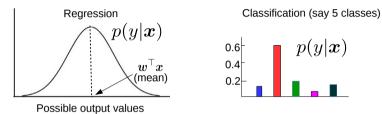
- The distribution p(y|x) is more informative, since it can tell us
 - What is the "expected" or "most likely" value of the predicted output y?

• Often, we want the distribution p(y|x) over possible outputs y, given an input x



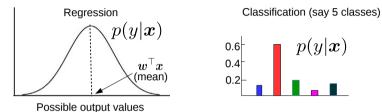
- The distribution p(y|x) is more informative, since it can tell us
 - What is the "expected" or "most likely" value of the predicted output y?
 - What is the "uncertainty" in the predicted output y?

• Often, we want the distribution p(y|x) over possible outputs y, given an input x



- The distribution p(y|x) is more informative, since it can tell us
 - What is the "expected" or "most likely" value of the predicted output y?
 - What is the "uncertainty" in the predicted output y?
 - .. and gives "soft" predictions (e.g., rather than yes/no prediction, gives prob. of "yes")

• Often, we want the distribution p(y|x) over possible outputs y, given an input x



- The distribution $p(y|\mathbf{x})$ is more informative, since it can tell us
 - What is the "expected" or "most likely" value of the predicted output y?
 - What is the "uncertainty" in the predicted output y?
 - .. and gives "soft" predictions (e.g., rather than yes/no prediction, gives prob. of "yes")
- Moreover, we can use priors over model parameters, perform fully Bayesian inference, etc.

イロト イヨト イヨト

• Usually two ways to model the conditional distribution p(y|x) of outputs given inputs

・ロト ・四ト ・モト ・モト

- Usually two ways to model the conditional distribution $p(y|\mathbf{x})$ of outputs given inputs
- Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution, e.g.,

 $p(y|\boldsymbol{w}, \boldsymbol{x}) = \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x}, \beta^{-1})$ (prob. linear regression)

- Usually two ways to model the conditional distribution p(y|x) of outputs given inputs
- Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution, e.g.,

$$\begin{array}{lll} p(y|\boldsymbol{w},\boldsymbol{x}) &=& \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x},\beta^{-1}) & (\text{prob. linear regression}) \\ p(y|\boldsymbol{w},\boldsymbol{x}) &=& \text{Bernoulli}[\sigma(\boldsymbol{w}^{\top}\boldsymbol{x})] & (\text{prob. linear binary classification}) \end{array}$$

- Usually two ways to model the conditional distribution p(y|x) of outputs given inputs
- Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution, e.g.,

 $\begin{array}{lll} p(y|\boldsymbol{w},\boldsymbol{x}) &=& \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x},\beta^{-1}) & (\text{prob. linear regression}) \\ p(y|\boldsymbol{w},\boldsymbol{x}) &=& \text{Bernoulli}[\sigma(\boldsymbol{w}^{\top}\boldsymbol{x})] & (\text{prob. linear binary classification}) \end{array}$

(note: $\mathbf{w}^{\top}\mathbf{x}$ above only for linear prob. model; can even replace it by a possibly nonlinear $f(\mathbf{x})$)

- Usually two ways to model the conditional distribution $p(y|\mathbf{x})$ of outputs given inputs
- Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution, e.g.,

$$\begin{array}{lll} p(y|\boldsymbol{w},\boldsymbol{x}) &=& \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x},\beta^{-1}) & (\text{prob. linear regression}) \\ p(y|\boldsymbol{w},\boldsymbol{x}) &=& \text{Bernoulli}[\sigma(\boldsymbol{w}^{\top}\boldsymbol{x})] & (\text{prob. linear binary classification}) \end{array}$$

(note: $\mathbf{w}^{\top}\mathbf{x}$ above only for linear prob. model; can even replace it by a possibly nonlinear $f(\mathbf{x})$)

• Approach 2: Model both x and y via the joint distr. p(x, y), and then get the conditional as

$$p(y|x, \theta) = \frac{p(x, y|\theta)}{p(x|\theta)}$$
 (note: θ collectively denotes all the parameters)

- Usually two ways to model the conditional distribution $p(y|\mathbf{x})$ of outputs given inputs
- Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution, e.g.,

$$\begin{array}{lll} p(y|\boldsymbol{w},\boldsymbol{x}) &=& \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x},\beta^{-1}) & (\text{prob. linear regression}) \\ p(y|\boldsymbol{w},\boldsymbol{x}) &=& \text{Bernoulli}[\sigma(\boldsymbol{w}^{\top}\boldsymbol{x})] & (\text{prob. linear binary classification}) \end{array}$$

(note: $\mathbf{w}^{\top}\mathbf{x}$ above only for linear prob. model; can even replace it by a possibly nonlinear $f(\mathbf{x})$)

• Approach 2: Model both x and y via the joint distr. p(x, y), and then get the conditional as

$$p(y|x, \theta) = rac{p(x, y| heta)}{p(x| heta)}$$
 (note: $heta$ collectively denotes all the parameters)
 $p(y = k|x, heta) = rac{p(x, y = k| heta)}{p(x| heta)}$

(日) (四) (日) (日) (日)

- Usually two ways to model the conditional distribution $p(y|\mathbf{x})$ of outputs given inputs
- Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution, e.g.,

$$\begin{array}{lll} p(y|\boldsymbol{w},\boldsymbol{x}) &=& \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x},\beta^{-1}) & (\text{prob. linear regression}) \\ p(y|\boldsymbol{w},\boldsymbol{x}) &=& \text{Bernoulli}[\sigma(\boldsymbol{w}^{\top}\boldsymbol{x})] & (\text{prob. linear binary classification}) \end{array}$$

(note: $\mathbf{w}^{\top}\mathbf{x}$ above only for linear prob. model; can even replace it by a possibly nonlinear $f(\mathbf{x})$)

• Approach 2: Model both x and y via the joint distr. p(x, y), and then get the conditional as

$$p(y|\mathbf{x},\theta) = \frac{p(\mathbf{x},y|\theta)}{p(\mathbf{x}|\theta)} \quad \text{(note: } \theta \text{ collectively denotes all the parameters)}$$

$$p(y=k|\mathbf{x},\theta) = \frac{p(\mathbf{x},y=k|\theta)}{p(\mathbf{x}|\theta)} = \frac{p(\mathbf{x}|y=k,\theta)p(y=k|\theta)}{\sum_{\ell=1}^{K} p(\mathbf{x}|y=\ell,\theta)p(y=\ell|\theta)} \quad \text{(for } K \text{ class classification)}$$

(日) (四) (日) (日) (日)

- Usually two ways to model the conditional distribution p(y|x) of outputs given inputs
- Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution, e.g.,

$$\begin{array}{lll} p(y|\boldsymbol{w},\boldsymbol{x}) &=& \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x},\beta^{-1}) & (\text{prob. linear regression}) \\ p(y|\boldsymbol{w},\boldsymbol{x}) &=& \text{Bernoulli}[\sigma(\boldsymbol{w}^{\top}\boldsymbol{x})] & (\text{prob. linear binary classification}) \end{array}$$

(note: $\mathbf{w}^{\top}\mathbf{x}$ above only for linear prob. model; can even replace it by a possibly nonlinear $f(\mathbf{x})$)

• Approach 2: Model both x and y via the joint distr. p(x, y), and then get the conditional as

$$p(y|x,\theta) = \frac{p(x,y|\theta)}{p(x|\theta)} \quad (\text{note: } \theta \text{ collectively denotes all the parameters})$$

$$p(y=k|x,\theta) = \frac{p(x,y=k|\theta)}{p(x|\theta)} = \frac{p(x|y=k,\theta)p(y=k|\theta)}{\sum_{\ell=1}^{K} p(x|y=\ell,\theta)p(y=\ell|\theta)} \quad (\text{for } K \text{ class classification})$$

• Approach 1 called Discriminative Modeling; Approach 2 called fully Generative Modeling

ŀ

(日) (四) (日) (日) (日)

- Usually two ways to model the conditional distribution p(y|x) of outputs given inputs
- Approach 1: Don't model x, and model p(y|x) directly using a prob. distribution, e.g.,

$$\begin{array}{lll} p(y|\boldsymbol{w},\boldsymbol{x}) &=& \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x},\beta^{-1}) & (\text{prob. linear regression}) \\ p(y|\boldsymbol{w},\boldsymbol{x}) &=& \text{Bernoulli}[\sigma(\boldsymbol{w}^{\top}\boldsymbol{x})] & (\text{prob. linear binary classification}) \end{array}$$

(note: $\mathbf{w}^{\top}\mathbf{x}$ above only for linear prob. model; can even replace it by a possibly nonlinear $f(\mathbf{x})$)

• Approach 2: Model both x and y via the joint distr. p(x, y), and then get the conditional as

$$p(y|x,\theta) = \frac{p(x,y|\theta)}{p(x|\theta)} \quad (\text{note: } \theta \text{ collectively denotes all the parameters})$$

$$p(y=k|x,\theta) = \frac{p(x,y=k|\theta)}{p(x|\theta)} = \frac{p(x|y=k,\theta)p(y=k|\theta)}{\sum_{\ell=1}^{K} p(x|y=\ell,\theta)p(y=\ell|\theta)} \quad (\text{for } K \text{ class classification})$$

- Approach 1 called Discriminative Modeling; Approach 2 called fully Generative Modeling
 - Discriminative models only model y, not x, Generative Models model both y and x

ŀ

1: Probabilistic Linear Regression

$$p(y|w, x) = \mathcal{N}(w^{\top}x, \beta^{-1})$$

1: Probabilistic Linear Regression
$$p(y|w, x) = \mathcal{N}(w^{\top}x, \beta^{-1})$$

2: Logistic Regression for Binary Classification $p(y|w, x) = \text{Bernoulli}[\sigma(w^{\top}x)]$

1: Probabilistic Linear Regression

$$p(y|w, x) = \mathcal{N}(w^{\top}x, \beta^{-1})$$

2: Logistic Regression for Binary Classification $p(y|w, x) = \text{Bernoulli}[\sigma(w^{\top}x)]$

(Remember that these do NOT model x, but only model y)

1: Probabilistic Linear Regression

$$p(y|w, x) = \mathcal{N}(w^{\top}x, \beta^{-1})$$

2: Logistic Regression for Binary Classification $p(y|w, x) = \text{Bernoulli}[\sigma(w^{\top}x)]$

(Remember that these do NOT model x, but only model y)

(Also, both are linear models (note the $w^{\top}x$))

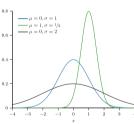
イロト 人間 とくほとく ほど

Gaussian Distribution: Brief Review

Univariate Gaussian Distribution

- Distribution over real-valued scalar r.v. x
- \bullet Defined by a scalar mean μ and a scalar variance σ^2
- Distribution defined as

$$\mathcal{N}(x;\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

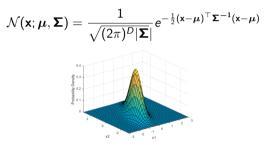


- Mean: $\mathbb{E}[x] = \mu$
- Variance: $var[x] = \sigma^2$
- Precision (inverse variance) $\beta = 1/\sigma^2$

< 注→ < 注→

Multivariate Gaussian Distribution

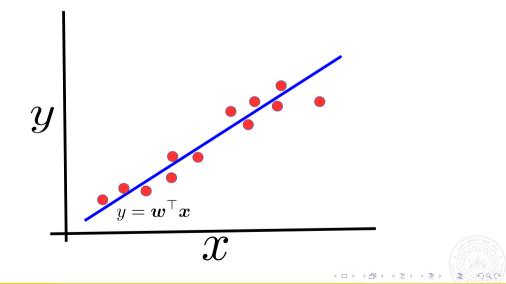
- Distribution over a multivariate r.v. vector $\mathbf{x} \in \mathbb{R}^D$ of real numbers
- Defined by a mean vector $oldsymbol{\mu} \in \mathbb{R}^D$ and a D imes D covariance matrix $oldsymbol{\Sigma}$



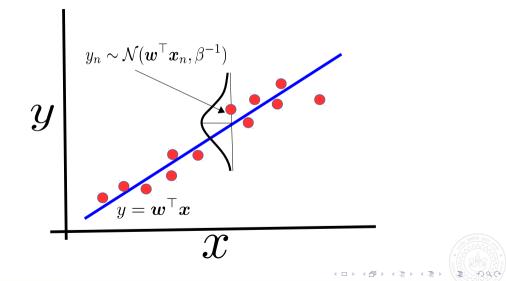
 \bullet The covariance matrix $\pmb{\Sigma}$ must be symmetric and positive definite

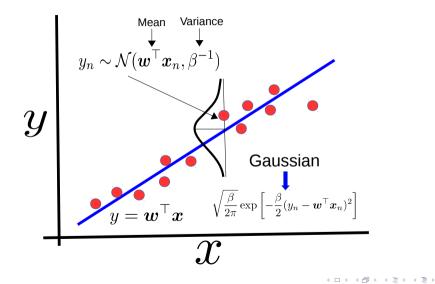
- All eigenvalues are positive
- $\boldsymbol{z}^{\top} \boldsymbol{\Sigma} \boldsymbol{z} > 0$ for any real vector \boldsymbol{z}

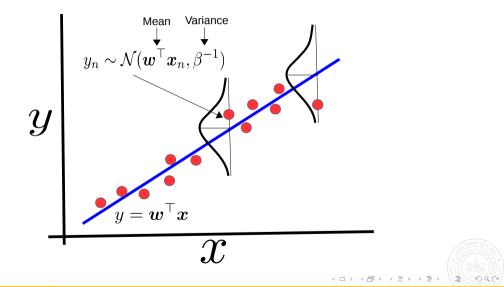
э.

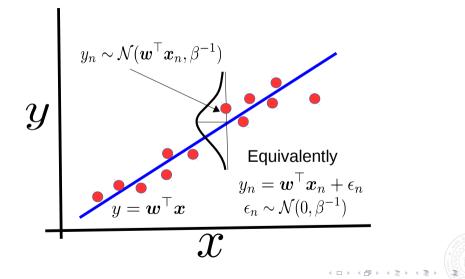






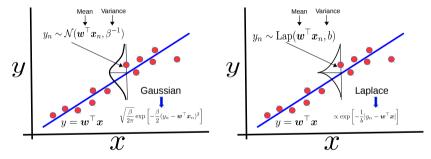






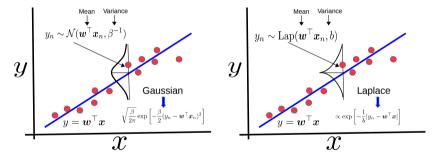
Probabilistic Linear Regression: Some Comments

- Modeling p(y|w, x) as a Gaussian $p(y|w, x) = \mathcal{N}(w^{\top}x, \beta^{-1})$ is just one possibility
- Can model p(y|w, x) using other distributions too, e.g., Laplace (better handles outliers)



Probabilistic Linear Regression: Some Comments

- Modeling p(y|w, x) as a Gaussian $p(y|w, x) = \mathcal{N}(w^{\top}x, \beta^{-1})$ is just one possibility
- Can model p(y|w, x) using other distributions too, e.g., Laplace (better handles outliers)



• Even with Gaussian, can assume each output to have a different variance (heteroscedastic noise)

$$p(y|\boldsymbol{w},\boldsymbol{x}_n) = \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x}_n,\beta_n^{-1})$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Since each likelihood term is a Gaussian, we have

$$p(y_n|\boldsymbol{x}_n, \boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}^{\top} \boldsymbol{x}_n, \beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\left[-\frac{\beta}{2}(y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2\right]$$

• Since each likelihood term is a Gaussian, we have

$$p(y_n|\boldsymbol{x}_n, \boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x}_n, \beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\left[-\frac{\beta}{2}(y_n - \boldsymbol{w}^{\top}\boldsymbol{x}_n)^2\right]$$

• Thus the likelihood (assuming i.i.d. responses) will be

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = \prod_{n=1}^{N} p(y_n | \boldsymbol{x}_n, \boldsymbol{w}) = \left(\frac{\beta}{2\pi}\right)^{N/2} \exp\left[-\frac{\beta}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2\right]$$

• Note: x_n (features) assumed given/fixed. Only modeling the response y_n

• Since each likelihood term is a Gaussian, we have

$$p(y_n|\boldsymbol{x}_n, \boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x}_n, \beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\left[-\frac{\beta}{2}(y_n - \boldsymbol{w}^{\top}\boldsymbol{x}_n)^2\right]$$

• Thus the likelihood (assuming i.i.d. responses) will be

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = \prod_{n=1}^{N} p(y_n | \boldsymbol{x}_n, \boldsymbol{w}) = \left(\frac{\beta}{2\pi}\right)^{N/2} \exp\left[-\frac{\beta}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2\right]$$

- Note: x_n (features) assumed given/fixed. Only modeling the response y_n
- Log-likelihood (ignoring constants w.r.t. w)

$$\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) \propto -rac{eta}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{ op} \boldsymbol{x}_n)^2$$

• Since each likelihood term is a Gaussian, we have

$$p(y_n|\boldsymbol{x}_n, \boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x}_n, \beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\left[-\frac{\beta}{2}(y_n - \boldsymbol{w}^{\top}\boldsymbol{x}_n)^2\right]$$

• Thus the likelihood (assuming i.i.d. responses) will be

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = \prod_{n=1}^{N} p(y_n | \boldsymbol{x}_n, \boldsymbol{w}) = \left(\frac{\beta}{2\pi}\right)^{N/2} \exp\left[-\frac{\beta}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2\right]$$

- Note: \boldsymbol{x}_n (features) assumed given/fixed. Only modeling the response y_n
- Log-likelihood (ignoring constants w.r.t. w)

$$\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) \propto -rac{eta}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{ op} \boldsymbol{x}_n)^2$$

• Note that negative log likelihood (NLL) in this case is similar to squared loss function

• Since each likelihood term is a Gaussian, we have

$$p(y_n|\boldsymbol{x}_n, \boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}^{\top}\boldsymbol{x}_n, \beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\left[-\frac{\beta}{2}(y_n - \boldsymbol{w}^{\top}\boldsymbol{x}_n)^2\right]$$

• Thus the likelihood (assuming i.i.d. responses) will be

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = \prod_{n=1}^{N} p(y_n | \boldsymbol{x}_n, \boldsymbol{w}) = \left(\frac{\beta}{2\pi}\right)^{N/2} \exp\left[-\frac{\beta}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2\right]$$

- Note: \boldsymbol{x}_n (features) assumed given/fixed. Only modeling the response y_n
- Log-likelihood (ignoring constants w.r.t. w)

$$\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) \propto -rac{eta}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{ op} \boldsymbol{x}_n)^2$$

- Note that negative log likelihood (NLL) in this case is similar to squared loss function
- Therefor MLE with this model will give the same solution as (unregularized) least squares

MAP Estimation for Probabilistic Linear Regression

• Let's assume a zero-mean multivariate Gaussian prior on weight vector w

$$p(oldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} oldsymbol{l}_D) \propto \exp\left[-rac{\lambda}{2}oldsymbol{w}^ op oldsymbol{w}
ight] = \exp\left[-rac{\lambda}{2}\sum_{d=1}^D w_d^2
ight]$$

MAP Estimation for Probabilistic Linear Regression

• Let's assume a zero-mean multivariate Gaussian prior on weight vector w

$$p(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} \boldsymbol{\mathsf{I}}_D) \propto \exp\left[-\frac{\lambda}{2} \boldsymbol{w}^\top \boldsymbol{w}\right] = \exp\left[-\frac{\lambda}{2} \sum_{d=1}^D w_d^2\right]$$

• This prior encourages each weight w_d to be small (close to zero), similar to ℓ_2 regularization

MAP Estimation for Probabilistic Linear Regression

• Let's assume a zero-mean multivariate Gaussian prior on weight vector w

$$p(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} \boldsymbol{I}_D) \propto \exp\left[-\frac{\lambda}{2} \boldsymbol{w}^\top \boldsymbol{w}\right] = \exp\left[-\frac{\lambda}{2} \sum_{d=1}^D w_d^2\right]$$

- This prior encourages each weight w_d to be small (close to zero), similar to ℓ_2 regularization
- The MAP objective (log-posterior) will be the log-likelihood + log p(w)

$$-rac{eta}{2}\sum_{n=1}^{N}(y_n-oldsymbol{w}^{ op}oldsymbol{x}_n)^2-rac{\lambda}{2}oldsymbol{w}^{ op}oldsymbol{w}$$

MAP Estimation for Probabilistic Linear Regression

• Let's assume a zero-mean multivariate Gaussian prior on weight vector w

$$p(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} \boldsymbol{I}_D) \propto \exp\left[-\frac{\lambda}{2} \boldsymbol{w}^\top \boldsymbol{w}\right] = \exp\left[-\frac{\lambda}{2} \sum_{d=1}^D w_d^2\right]$$

- This prior encourages each weight w_d to be small (close to zero), similar to ℓ_2 regularization
- The MAP objective (log-posterior) will be the log-likelihood + log p(w)

$$-rac{eta}{2}\sum_{n=1}^{N}(y_n-oldsymbol{w}^{ op}oldsymbol{x}_n)^2-rac{\lambda}{2}oldsymbol{w}^{ op}oldsymbol{w}$$

• Maximizing this is equivalent to minimizing the following w.r.t. \boldsymbol{w}

$$\hat{oldsymbol{w}}_{MAP} = rg\min_{oldsymbol{w}} \sum_{n=1}^{N} (y_n - oldsymbol{w}^{ op} oldsymbol{x}_n)^2 + rac{\lambda}{eta} oldsymbol{w}^{ op} oldsymbol{w}$$

MAP Estimation for Probabilistic Linear Regression

• Let's assume a zero-mean multivariate Gaussian prior on weight vector w

$$p(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} \boldsymbol{I}_D) \propto \exp\left[-\frac{\lambda}{2} \boldsymbol{w}^\top \boldsymbol{w}\right] = \exp\left[-\frac{\lambda}{2} \sum_{d=1}^D w_d^2\right]$$

- This prior encourages each weight w_d to be small (close to zero), similar to ℓ_2 regularization
- The MAP objective (log-posterior) will be the log-likelihood + $\log p(w)$

$$-rac{eta}{2}\sum_{n=1}^{N}(y_n-oldsymbol{w}^{ op}oldsymbol{x}_n)^2-rac{\lambda}{2}oldsymbol{w}^{ op}oldsymbol{w}$$

• Maximizing this is equivalent to minimizing the following w.r.t. \boldsymbol{w}

$$\hat{oldsymbol{w}}_{MAP} = rg\min_{oldsymbol{w}} \sum_{n=1}^{N} (y_n - oldsymbol{w}^{ op} oldsymbol{x}_n)^2 + rac{\lambda}{eta} oldsymbol{w}^{ op} oldsymbol{w}$$

• Note that $\frac{\lambda}{\beta}$ is like a regularization hyperparam (as in ridge regression)

• Can also compute the full posterior distribution over ${\it w}$

$$p(\boldsymbol{w}|\boldsymbol{y}, \boldsymbol{X}) = rac{p(\boldsymbol{w})p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w})}{p(\boldsymbol{y}|\boldsymbol{X})}$$

• Can also compute the full posterior distribution over ${\it w}$

$$p(oldsymbol{w}|oldsymbol{y},oldsymbol{X}) = rac{p(oldsymbol{w}) p(oldsymbol{y}|oldsymbol{X},oldsymbol{w})}{p(oldsymbol{y}|oldsymbol{X})}$$

• Since the likelihood (Gaussian) and prior (Gaussian) are conjugate, posterior is easy to compute

• Can also compute the full posterior distribution over ${\it w}$

$$p(oldsymbol{w}|oldsymbol{y},oldsymbol{X}) = rac{p(oldsymbol{w}) p(oldsymbol{y}|oldsymbol{X},oldsymbol{w})}{p(oldsymbol{y}|oldsymbol{X})}$$

- Since the likelihood (Gaussian) and prior (Gaussian) are conjugate, posterior is easy to compute
- After some algebra, it can be shown that (will provide a note)

$$p(\boldsymbol{w}|\boldsymbol{y},\boldsymbol{\mathsf{X}}) = \mathcal{N}(\boldsymbol{\mu}_N,\boldsymbol{\Sigma}_N)$$

Intro to Machine Learning (CS771A)

・ロト ・ 日 ト ・ モ ト ・ モ ト

• Can also compute the full posterior distribution over ${\it w}$

$$p(oldsymbol{w}|oldsymbol{y},oldsymbol{X}) = rac{p(oldsymbol{w}) p(oldsymbol{y}|oldsymbol{X},oldsymbol{w})}{p(oldsymbol{y}|oldsymbol{X})}$$

- Since the likelihood (Gaussian) and prior (Gaussian) are conjugate, posterior is easy to compute
- After some algebra, it can be shown that (will provide a note)

$$p(\boldsymbol{w}|\boldsymbol{y},\boldsymbol{X}) = \mathcal{N}(\boldsymbol{\mu}_N,\boldsymbol{\Sigma}_N)$$
$$\boldsymbol{\Sigma}_N = (\beta \boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I}_D)^{-1}$$

・ロト ・ 日 ト ・ モ ト ・ モ ト

• Can also compute the full posterior distribution over ${\it w}$

$$p(oldsymbol{w}|oldsymbol{y},oldsymbol{X}) = rac{p(oldsymbol{w}) p(oldsymbol{y}|oldsymbol{X},oldsymbol{w})}{p(oldsymbol{y}|oldsymbol{X})}$$

- Since the likelihood (Gaussian) and prior (Gaussian) are conjugate, posterior is easy to compute
- After some algebra, it can be shown that (will provide a note)

$$\begin{aligned} \boldsymbol{p}(\boldsymbol{w}|\boldsymbol{y},\boldsymbol{X}) &= \mathcal{N}(\boldsymbol{\mu}_N,\boldsymbol{\Sigma}_N) \\ \boldsymbol{\Sigma}_N &= (\boldsymbol{\beta}\boldsymbol{X}^\top\boldsymbol{X} + \lambda\boldsymbol{I}_D)^{-1} \\ \boldsymbol{\mu}_N &= (\boldsymbol{X}^\top\boldsymbol{X} + \frac{\lambda}{\boldsymbol{\beta}}\boldsymbol{I}_D)^{-1}\boldsymbol{X}^\top\boldsymbol{y} \end{aligned}$$

(日) (四) (三) (三) (三)

• Can also compute the full posterior distribution over ${\it w}$

$$p(oldsymbol{w}|oldsymbol{y},oldsymbol{X}) = rac{p(oldsymbol{w}) p(oldsymbol{y}|oldsymbol{X},oldsymbol{w})}{p(oldsymbol{y}|oldsymbol{X})}$$

- Since the likelihood (Gaussian) and prior (Gaussian) are conjugate, posterior is easy to compute
- After some algebra, it can be shown that (will provide a note)

$$p(\boldsymbol{w}|\boldsymbol{y},\boldsymbol{X}) = \mathcal{N}(\boldsymbol{\mu}_{N},\boldsymbol{\Sigma}_{N})$$

$$\boldsymbol{\Sigma}_{N} = (\beta \boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{D})^{-1}$$

$$\boldsymbol{\mu}_{N} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \frac{\lambda}{\beta} \boldsymbol{I}_{D})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

 \bullet Note: We are assuming the hyperparameters β and λ to be known

(日) (四) (日) (日)

• Can also compute the full posterior distribution over \boldsymbol{w}

$$p(oldsymbol{w}|oldsymbol{y},oldsymbol{X}) = rac{p(oldsymbol{w}) p(oldsymbol{y}|oldsymbol{X},oldsymbol{w})}{p(oldsymbol{y}|oldsymbol{X})}$$

- Since the likelihood (Gaussian) and prior (Gaussian) are conjugate, posterior is easy to compute
- After some algebra, it can be shown that (will provide a note)

$$p(\boldsymbol{w}|\boldsymbol{y},\boldsymbol{\mathsf{X}}) = \mathcal{N}(\boldsymbol{\mu}_N,\boldsymbol{\mathsf{\Sigma}}_N)$$
$$\boldsymbol{\Sigma}_N = (\beta\boldsymbol{\mathsf{X}}^\top\boldsymbol{\mathsf{X}} + \lambda\boldsymbol{\mathsf{I}}_D)^{-1}$$
$$\boldsymbol{\mu}_N = (\boldsymbol{\mathsf{X}}^\top\boldsymbol{\mathsf{X}} + \frac{\lambda}{\beta}\boldsymbol{\mathsf{I}}_D)^{-1}\boldsymbol{\mathsf{X}}^\top\boldsymbol{y}$$

- $\bullet\,$ Note: We are assuming the hyperparameters β and λ to be known
- Note: For brevity, we have omitted the hyperparams from the conditioning in various distributions such as p(w), p(y|X, w), p(y|X), p(w|y, X)

• Now we want the predictive distribution $p(y_*|x_*, \mathbf{X}, \mathbf{y})$ of the output y_* for a new input x_*

メロト メロト メヨト メヨト

- Now we want the predictive distribution $p(y_*|x_*, \mathbf{X}, \mathbf{y})$ of the output y_* for a new input x_*
- With MLE/MAP estimate of \boldsymbol{w} , the prediction can be made by simply plugging in the estimate

$$\begin{array}{ll} p(y_*|\boldsymbol{x}_*,\boldsymbol{X},\boldsymbol{y}) \approx p(y_*|\boldsymbol{x}_*,\boldsymbol{w}_{MLE}) &= \mathcal{N}(\boldsymbol{w}_{MLE}^\top\boldsymbol{x}_*,\beta^{-1}) & - \text{MLE prediction} \\ p(y_*|\boldsymbol{x}_*,\boldsymbol{X},\boldsymbol{y}) \approx p(y_*|\boldsymbol{x}_*,\boldsymbol{w}_{MAP}) &= \mathcal{N}(\boldsymbol{w}_{MAP}^\top\boldsymbol{x}_*,\beta^{-1}) & - \text{MAP prediction} \end{array}$$

・ロト ・ 日 ト ・ モ ト ・ モ ト

- Now we want the predictive distribution $p(y_*|x_*, \mathbf{X}, \mathbf{y})$ of the output y_* for a new input x_*
- With MLE/MAP estimate of \boldsymbol{w} , the prediction can be made by simply plugging in the estimate

$$\begin{aligned} \rho(y_*|\boldsymbol{x}_*,\boldsymbol{X},\boldsymbol{y}) &\approx \rho(y_*|\boldsymbol{x}_*,\boldsymbol{w}_{MLE}) &= \mathcal{N}(\boldsymbol{w}_{MLE}^\top\boldsymbol{x}_*,\beta^{-1}) & - \text{MLE prediction} \\ \rho(y_*|\boldsymbol{x}_*,\boldsymbol{X},\boldsymbol{y}) &\approx \rho(y_*|\boldsymbol{x}_*,\boldsymbol{w}_{MAP}) &= \mathcal{N}(\boldsymbol{w}_{MAP}^\top\boldsymbol{x}_*,\beta^{-1}) & - \text{MAP prediction} \end{aligned}$$

• When doing fully Bayesian inference, we can compute the posterior predictive distribution

$$p(y_*|x_*,\mathbf{X},\mathbf{y}) = \int p(y_*|x_*,\mathbf{w})p(\mathbf{w}|\mathbf{X},\mathbf{y})d\mathbf{w}$$

- Now we want the predictive distribution $p(y_*|x_*, \mathbf{X}, \mathbf{y})$ of the output y_* for a new input x_*
- With MLE/MAP estimate of \boldsymbol{w} , the prediction can be made by simply plugging in the estimate

$$\begin{aligned} \rho(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) &\approx \rho(y_*|\mathbf{x}_*,\mathbf{w}_{MLE}) &= \mathcal{N}(\mathbf{w}_{MLE}^\top \mathbf{x}_*,\beta^{-1}) &\quad \text{-MLE prediction} \\ \rho(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) &\approx \rho(y_*|\mathbf{x}_*,\mathbf{w}_{MAP}) &= \mathcal{N}(\mathbf{w}_{MAP}^\top \mathbf{x}_*,\beta^{-1}) &\quad \text{-MAP prediction} \end{aligned}$$

• When doing fully Bayesian inference, we can compute the posterior predictive distribution

$$p(y_*|x_*,\mathbf{X},\mathbf{y}) = \int p(y_*|x_*,\mathbf{w}) p(\mathbf{w}|\mathbf{X},\mathbf{y}) d\mathbf{w}$$

• Due to Gaussian conjugacy, this too will be a Gaussian (note the form, ignore the proof :-))

$$p(y_*|\boldsymbol{x}_*,\boldsymbol{X},\boldsymbol{y}) = \mathcal{N}(\boldsymbol{\mu}_N^{\top}\boldsymbol{x}_*,\beta^{-1} + \boldsymbol{x}_*^{\top}\boldsymbol{\Sigma}_N\boldsymbol{x}_*)$$

(日) (四) (日) (日) (日)

- Now we want the predictive distribution $p(y_*|x_*, \mathbf{X}, \mathbf{y})$ of the output y_* for a new input x_*
- With MLE/MAP estimate of \boldsymbol{w} , the prediction can be made by simply plugging in the estimate

$$\begin{aligned} \rho(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) &\approx \rho(y_*|\mathbf{x}_*,\mathbf{w}_{MLE}) &= \mathcal{N}(\mathbf{w}_{MLE}^\top \mathbf{x}_*,\beta^{-1}) &\quad \text{-MLE prediction} \\ \rho(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) &\approx \rho(y_*|\mathbf{x}_*,\mathbf{w}_{MAP}) &= \mathcal{N}(\mathbf{w}_{MAP}^\top \mathbf{x}_*,\beta^{-1}) &\quad \text{-MAP prediction} \end{aligned}$$

• When doing fully Bayesian inference, we can compute the posterior predictive distribution

$$p(y_*|x_*,\mathbf{X},\mathbf{y}) = \int p(y_*|x_*,\mathbf{w})p(\mathbf{w}|\mathbf{X},\mathbf{y})d\mathbf{w}$$

• Due to Gaussian conjugacy, this too will be a Gaussian (note the form, ignore the proof :-))

$$p(y_*|\boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \mathcal{N}(\boldsymbol{\mu}_N^{\top} \boldsymbol{x}_*, \beta^{-1} + \boldsymbol{x}_*^{\top} \boldsymbol{\Sigma}_N \boldsymbol{x}_*)$$

• In this case, we also get an input-specific predictive variance (unlike MLE/MAP prediction)

- Now we want the predictive distribution $p(y_*|x_*, \mathbf{X}, \mathbf{y})$ of the output y_* for a new input x_*
- With MLE/MAP estimate of \boldsymbol{w} , the prediction can be made by simply plugging in the estimate

$$\begin{aligned} \rho(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) &\approx \rho(y_*|\mathbf{x}_*,\mathbf{w}_{MLE}) &= \mathcal{N}(\mathbf{w}_{MLE}^\top \mathbf{x}_*,\beta^{-1}) &\quad \text{-MLE prediction} \\ \rho(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) &\approx \rho(y_*|\mathbf{x}_*,\mathbf{w}_{MAP}) &= \mathcal{N}(\mathbf{w}_{MAP}^\top \mathbf{x}_*,\beta^{-1}) &\quad \text{-MAP prediction} \end{aligned}$$

• When doing fully Bayesian inference, we can compute the posterior predictive distribution

$$p(y_*|x_*,\mathbf{X},\mathbf{y}) = \int p(y_*|x_*,\mathbf{w})p(\mathbf{w}|\mathbf{X},\mathbf{y})d\mathbf{w}$$

• Due to Gaussian conjugacy, this too will be a Gaussian (note the form, ignore the proof :-))

$$p(y_*|\boldsymbol{x}_*,\boldsymbol{X},\boldsymbol{y}) = \mathcal{N}(\boldsymbol{\mu}_N^{\top}\boldsymbol{x}_*,\beta^{-1} + \boldsymbol{x}_*^{\top}\boldsymbol{\Sigma}_N\boldsymbol{x}_*)$$

- In this case, we also get an input-specific predictive variance (unlike MLE/MAP prediction)
 - Very useful in applications where we want confidence estimates of the predictions made by the model

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior
- MLE/MAP based prediction uses a single best estimate of \pmb{w}

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior
- MLE/MAP based prediction uses a single best estimate of \pmb{w}
- Fully Bayesian prediction does posterior averaging

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior
- MLE/MAP based prediction uses a single best estimate of \pmb{w}
- Fully Bayesian prediction does posterior averaging
- Some things to keep in mind:

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior
- $\bullet\,$ MLE/MAP based prediction uses a single best estimate of $\textbf{\textit{w}}$
- Fully Bayesian prediction does posterior averaging
- Some things to keep in mind:
 - MLE estimation of a parameter leads to unregularized solutions

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior
- MLE/MAP based prediction uses a single best estimate of \pmb{w}
- Fully Bayesian prediction does posterior averaging
- Some things to keep in mind:
 - MLE estimation of a parameter leads to unregularized solutions
 - MAP estimation of a parameter leads to regularized solutions

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior
- MLE/MAP based prediction uses a single best estimate of \pmb{w}
- Fully Bayesian prediction does posterior averaging
- Some things to keep in mind:
 - MLE estimation of a parameter leads to unregularized solutions
 - MAP estimation of a parameter leads to regularized solutions
 - A Gaussian likelihood model corresponds to using squared loss

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior
- MLE/MAP based prediction uses a single best estimate of \pmb{w}
- Fully Bayesian prediction does posterior averaging
- Some things to keep in mind:
 - MLE estimation of a parameter leads to unregularized solutions
 - MAP estimation of a parameter leads to regularized solutions
 - A Gaussian likelihood model corresponds to using squared loss
 - \bullet A Gaussian prior on parameters acts as an ℓ_2 regularizer

- MLE/MAP give point estimate of \boldsymbol{w}
- Fully Bayesian approach gives the full posterior
- MLE/MAP based prediction uses a single best estimate of \pmb{w}
- Fully Bayesian prediction does posterior averaging
- Some things to keep in mind:
 - MLE estimation of a parameter leads to unregularized solutions
 - MAP estimation of a parameter leads to regularized solutions
 - A Gaussian likelihood model corresponds to using squared loss
 - \bullet A Gaussian prior on parameters acts as an ℓ_2 regularizer
 - Other likelihoods/priors can be chosen (result in other loss functions and regularizers)

Discriminative Models for Probabilistic Classification

Discriminative Models for Probabilistic Classification

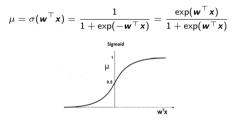
(Again, only y will be modeled, x treated as "fixed")

• Perhaps the simplest discriminative probabilistic model for linear binary classification

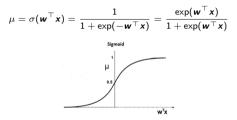
- Perhaps the simplest discriminative probabilistic model for linear binary classification
- Defines $\mu = p(y = 1 | x)$ using the sigmoid function

$$\mu = \sigma(\boldsymbol{w}^{\top}\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{w}^{\top}\boldsymbol{x})} = \frac{\exp(\boldsymbol{w}^{\top}\boldsymbol{x})}{1 + \exp(\boldsymbol{w}^{\top}\boldsymbol{x})}$$

- Perhaps the simplest discriminative probabilistic model for linear binary classification
- Defines $\mu = p(y = 1 | \mathbf{x})$ using the sigmoid function

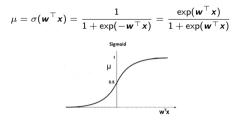


- Perhaps the simplest discriminative probabilistic model for linear binary classification
- Defines $\mu = p(y = 1 | \mathbf{x})$ using the sigmoid function



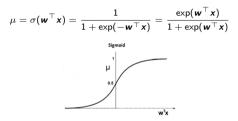
• Here $\boldsymbol{w}^{\top}\boldsymbol{x}$ is the score for input \boldsymbol{x} .

- Perhaps the simplest discriminative probabilistic model for linear binary classification
- Defines $\mu = p(y = 1 | \mathbf{x})$ using the sigmoid function



• Here $w^{\top}x$ is the score for input x. The sigmoid turns it into a probability.

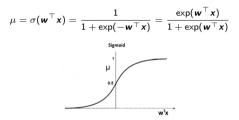
- Perhaps the simplest discriminative probabilistic model for linear binary classification
- Defines $\mu = p(y = 1 | x)$ using the sigmoid function



• Here $w^{\top}x$ is the score for input x. The sigmoid turns it into a probability. Thus we have

$$p(y=1|\mathbf{x}, \mathbf{w}) = \mu = \sigma(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x})} = \frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}$$

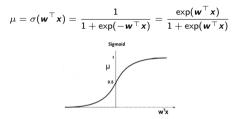
- Perhaps the simplest discriminative probabilistic model for linear binary classification
- Defines $\mu = p(y = 1 | \mathbf{x})$ using the sigmoid function



• Here $w^{\top}x$ is the score for input x. The sigmoid turns it into a probability. Thus we have

$$p(y = 1 | \mathbf{x}, \mathbf{w}) = \mu = \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top} \mathbf{x})} = \frac{\exp(\mathbf{w}^{\top} \mathbf{x})}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$
$$p(y = 0 | \mathbf{x}, \mathbf{w}) = 1 - \mu = 1 - \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$

- Perhaps the simplest discriminative probabilistic model for linear binary classification
- Defines $\mu = p(y = 1 | \mathbf{x})$ using the sigmoid function



• Here $w^{\top}x$ is the score for input x. The sigmoid turns it into a probability. Thus we have

$$p(y = 1 | \mathbf{x}, \mathbf{w}) = \mu = \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top} \mathbf{x})} = \frac{\exp(\mathbf{w}^{\top} \mathbf{x})}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$

$$p(y = 0 | \mathbf{x}, \mathbf{w}) = 1 - \mu = 1 - \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$

$$\mathbf{w} = 1 - \mu = 1 - \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$

$$\mathbf{w} = 1 - \mu = 1 - \sigma(\mathbf{w}^{\top} \mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top} \mathbf{x})}$$

Logistic Regression: A Closer Look..

• At the decision boundary where both classes are equiprobable:

$$p(y = 1|\mathbf{x}, \mathbf{w}) = p(y = 0|\mathbf{x}, \mathbf{w})$$

$$\frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})} = \frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}$$

$$\exp(\mathbf{w}^{\top}\mathbf{x}) = 1$$

$$\mathbf{w}^{\top}\mathbf{x} = 0$$

Logistic Regression: A Closer Look..

• At the decision boundary where both classes are equiprobable:

$$p(y = 1|\mathbf{x}, \mathbf{w}) = p(y = 0|\mathbf{x}, \mathbf{w})$$
$$\frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})} = \frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}$$
$$\exp(\mathbf{w}^{\top}\mathbf{x}) = 1$$
$$\mathbf{w}^{\top}\mathbf{x} = 0$$

- Thus the decision boundary of LR is a linear hyperplane
- Therefore y = 1 if $\boldsymbol{w}^{\top} \boldsymbol{x} \ge 0$, otherwise y = 0

Image: A match the second s

Logistic Regression: A Closer Look..

• At the decision boundary where both classes are equiprobable:

$$p(y = 1|\mathbf{x}, \mathbf{w}) = p(y = 0|\mathbf{x}, \mathbf{w})$$

$$\frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})} = \frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}$$

$$\exp(\mathbf{w}^{\top}\mathbf{x}) = 1$$

$$\mathbf{w}^{\top}\mathbf{x} = 0$$

- Thus the decision boundary of LR is a linear hyperplane
- Therefore y = 1 if $\boldsymbol{w}^{\top} \boldsymbol{x} \ge 0$, otherwise y = 0

• High positive (negative) score $w^{\top}x$: High (low) probability of label 1

• Each label $y_n = 1$ with probability $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$

• Assuming i.i.d. labels, likelihood is product of Bernoullis

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y_n|\mathbf{x}_n, \mathbf{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1-\mu_n)^{1-y_n}$$

- Each label $y_n = 1$ with probability $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$
- Assuming i.i.d. labels, likelihood is product of Bernoullis

$$p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n, \boldsymbol{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1-\mu_n)^{1-y_n}$$

• Negative log-likelihood: NLL(\boldsymbol{w}) = $-\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n))$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Each label $y_n = 1$ with probability $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$
- Assuming i.i.d. labels, likelihood is product of Bernoullis

$$p(\boldsymbol{y}|\boldsymbol{\mathsf{X}},\boldsymbol{w}) = \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n,\boldsymbol{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1-\mu_n)^{1-y_n}$$

- Negative log-likelihood: NLL(\boldsymbol{w}) = $-\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \log \mu_n + (1 y_n) \log(1 \mu_n))$
- Note: The NLL in this case is the same as cross-entropy loss function (a classification loss fn)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Each label $y_n = 1$ with probability $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$
- Assuming i.i.d. labels, likelihood is product of Bernoullis

$$p(\boldsymbol{y}|\boldsymbol{\mathsf{X}},\boldsymbol{w}) = \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n,\boldsymbol{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1-\mu_n)^{1-y_n}$$

• Negative log-likelihood: NLL(\boldsymbol{w}) = $-\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n))$

• Note: The NLL in this case is the same as cross-entropy loss function (a classification loss fn)

• Plugging in
$$\mu_n = \frac{\exp(\mathbf{w}^{\top} \mathbf{x}_n)}{1 + \exp(\mathbf{w}^{\top} \mathbf{x}_n)}$$
 and chugging, we get (verify yourself)
$$\boxed{\text{NLL}(\mathbf{w}) = -\sum_{n=1}^{N} (y_n \mathbf{w}^{\top} \mathbf{x}_n - \log(1 + \exp(\mathbf{w}^{\top} \mathbf{x}_n)))}$$

(日) (四) (日) (日) (日)

- Each label $y_n = 1$ with probability $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$
- Assuming i.i.d. labels, likelihood is product of Bernoullis

$$p(\boldsymbol{y}|\boldsymbol{\mathsf{X}},\boldsymbol{w}) = \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n,\boldsymbol{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1-\mu_n)^{1-y_n}$$

• Negative log-likelihood: NLL(\boldsymbol{w}) = $-\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n))$

• Note: The NLL in this case is the same as cross-entropy loss function (a classification loss fn)

• Plugging in
$$\mu_n = \frac{\exp(\mathbf{w}^{\top} \mathbf{x}_n)}{1 + \exp(\mathbf{w}^{\top} \mathbf{x}_n)}$$
 and chugging, we get (verify yourself)
$$\boxed{\text{NLL}(\mathbf{w}) = -\sum_{n=1}^{N} (y_n \mathbf{w}^{\top} \mathbf{x}_n - \log(1 + \exp(\mathbf{w}^{\top} \mathbf{x}_n)))}$$

• MLE solution: $\hat{\boldsymbol{w}}_{MLE} = \arg\min_{\boldsymbol{w}} \text{NLL}(\boldsymbol{w})$

・ロン ・四 と ・ 日 と ・ 日 と

- Each label $y_n = 1$ with probability $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$
- Assuming i.i.d. labels, likelihood is product of Bernoullis

$$p(\boldsymbol{y}|\boldsymbol{\mathsf{X}},\boldsymbol{w}) = \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n,\boldsymbol{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1-\mu_n)^{1-y_n}$$

• Negative log-likelihood: NLL(\boldsymbol{w}) = $-\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n))$

• Note: The NLL in this case is the same as cross-entropy loss function (a classification loss fn)

• Plugging in
$$\mu_n = \frac{\exp(\mathbf{w}^{\top} \mathbf{x}_n)}{1 + \exp(\mathbf{w}^{\top} \mathbf{x}_n)}$$
 and chugging, we get (verify yourself)
$$\boxed{\text{NLL}(\mathbf{w}) = -\sum_{n=1}^{N} (y_n \mathbf{w}^{\top} \mathbf{x}_n - \log(1 + \exp(\mathbf{w}^{\top} \mathbf{x}_n)))}$$

• MLE solution: $\hat{\boldsymbol{w}}_{MLE} = \arg\min_{\boldsymbol{w}} \text{NLL}(\boldsymbol{w})$. No closed form solution (you can verify)

(日) (四) (日) (日) (日)

- Each label $y_n = 1$ with probability $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$
- Assuming i.i.d. labels, likelihood is product of Bernoullis

$$p(\boldsymbol{y}|\boldsymbol{\mathsf{X}},\boldsymbol{w}) = \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n,\boldsymbol{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1-\mu_n)^{1-y_n}$$

• Negative log-likelihood: NLL(\boldsymbol{w}) = $-\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n))$

• Note: The NLL in this case is the same as cross-entropy loss function (a classification loss fn)

• Plugging in
$$\mu_n = \frac{\exp(\boldsymbol{w}^\top \boldsymbol{x}_n)}{1+\exp(\boldsymbol{w}^\top \boldsymbol{x}_n)}$$
 and chugging, we get (verify yourself)
$$\boxed{\text{NLL}(\boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \boldsymbol{w}^\top \boldsymbol{x}_n - \log(1 + \exp(\boldsymbol{w}^\top \boldsymbol{x}_n)))}$$

- MLE solution: $\hat{\boldsymbol{w}}_{MLE} = \arg\min_{\boldsymbol{w}} \text{NLL}(\boldsymbol{w})$. No closed form solution (you can verify)
- Requires iterative methods (e.g., gradient descent). We will look at these later.

- Each label $y_n = 1$ with probability $\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1 + \exp(\mathbf{w}^\top \mathbf{x}_n)}$
- Assuming i.i.d. labels, likelihood is product of Bernoullis

$$p(\boldsymbol{y}|\boldsymbol{\mathsf{X}},\boldsymbol{w}) = \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n,\boldsymbol{w}) = \prod_{n=1}^{N} \mu_n^{y_n} (1-\mu_n)^{1-y_n}$$

• Negative log-likelihood: NLL(\boldsymbol{w}) = $-\log p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n))$

• Note: The NLL in this case is the same as cross-entropy loss function (a classification loss fn)

• Plugging in
$$\mu_n = \frac{\exp(\mathbf{w}^\top \mathbf{x}_n)}{1+\exp(\mathbf{w}^\top \mathbf{x}_n)}$$
 and chugging, we get (verify yourself)
$$\boxed{\text{NLL}(\mathbf{w}) = -\sum_{n=1}^{N} (y_n \mathbf{w}^\top \mathbf{x}_n - \log(1 + \exp(\mathbf{w}^\top \mathbf{x}_n)))}$$

- MLE solution: $\hat{\boldsymbol{w}}_{MLE} = \arg\min_{\boldsymbol{w}} \text{NLL}(\boldsymbol{w})$. No closed form solution (you can verify)
- Requires iterative methods (e.g., gradient descent). We will look at these later.
 - Exercise: Try computing the gradient of NLL(*w*) and note the form of the gradient

• To do MAP estimation for \boldsymbol{w} , can use a prior $p(\boldsymbol{w})$ on \boldsymbol{w}

- To do MAP estimation for \boldsymbol{w} , can use a prior $p(\boldsymbol{w})$ on \boldsymbol{w}
- Just like the probabilistic linear regression case, let's put a Gausian prior on ${\it w}$

$$p(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} \mathbf{I}_D) \propto \exp(-\frac{\lambda}{2} \boldsymbol{w}^\top \boldsymbol{w})$$

- To do MAP estimation for \boldsymbol{w} , can use a prior $p(\boldsymbol{w})$ on \boldsymbol{w}
- Just like the probabilistic linear regression case, let's put a Gausian prior on ${\it w}$

$$p(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} \boldsymbol{\mathsf{I}}_D) \propto \exp(-\frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w})$$

• MAP objective (log of posterior) = MLE objective + $\log p(w)$

- To do MAP estimation for \boldsymbol{w} , can use a prior $p(\boldsymbol{w})$ on \boldsymbol{w}
- Just like the probabilistic linear regression case, let's put a Gausian prior on ${\it w}$

$$p(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1} \boldsymbol{\mathsf{I}}_D) \propto \exp(-rac{\lambda}{2} \boldsymbol{w}^{ op} \boldsymbol{w})$$

- MAP objective (log of posterior) = MLE objective + $\log p(w)$
- The MAP estimate of \boldsymbol{w} will be

$$\hat{\boldsymbol{w}}_{MAP} = \arg\min_{\boldsymbol{w}} \left[\text{NLL}(\boldsymbol{w}) + \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w} \right]$$

• Doing fully Bayesian inference would require computing the posterior

$$p(\boldsymbol{w}|\boldsymbol{X}, \boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w})p(\boldsymbol{w})}{\int p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w})p(\boldsymbol{w})d\boldsymbol{w}}$$

• Doing fully Bayesian inference would require computing the posterior

$$p(\boldsymbol{w}|\mathbf{X}, \boldsymbol{y}) = \frac{p(\boldsymbol{y}|\mathbf{X}, \boldsymbol{w})p(\boldsymbol{w})}{\int p(\boldsymbol{y}|\mathbf{X}, \boldsymbol{w})p(\boldsymbol{w})d\boldsymbol{w}} = \frac{\prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n, \boldsymbol{w})p(\boldsymbol{w})}{\int \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n, \boldsymbol{w})p(\boldsymbol{w})d\boldsymbol{w}}$$

• Intractable. Reason: likelihood (logistic-Bernoulli) and prior (Gaussian) here are not conjugate

• Doing fully Bayesian inference would require computing the posterior

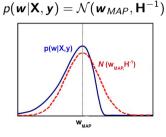
$$p(\boldsymbol{w}|\mathbf{X}, \boldsymbol{y}) = \frac{p(\boldsymbol{y}|\mathbf{X}, \boldsymbol{w})p(\boldsymbol{w})}{\int p(\boldsymbol{y}|\mathbf{X}, \boldsymbol{w})p(\boldsymbol{w})d\boldsymbol{w}} = \frac{\prod_{n=1}^{N} p(y_n|\mathbf{x}_n, \boldsymbol{w})p(\boldsymbol{w})}{\int \prod_{n=1}^{N} p(y_n|\mathbf{x}_n, \boldsymbol{w})p(\boldsymbol{w})d\boldsymbol{w}}$$

- Intractable. Reason: likelihood (logistic-Bernoulli) and prior (Gaussian) here are not conjugate
- Need to do approximate inference in this case

• Doing fully Bayesian inference would require computing the posterior

$$p(\boldsymbol{w}|\mathbf{X}, \boldsymbol{y}) = \frac{p(\boldsymbol{y}|\mathbf{X}, \boldsymbol{w})p(\boldsymbol{w})}{\int p(\boldsymbol{y}|\mathbf{X}, \boldsymbol{w})p(\boldsymbol{w})d\boldsymbol{w}} = \frac{\prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n, \boldsymbol{w})p(\boldsymbol{w})}{\int \prod_{n=1}^{N} p(y_n|\boldsymbol{x}_n, \boldsymbol{w})p(\boldsymbol{w})d\boldsymbol{w}}$$

- Intractable. Reason: likelihood (logistic-Bernoulli) and prior (Gaussian) here are not conjugate
- Need to do approximate inference in this case
- A crude approximation: Laplace approximation: Approximate a posterior by a Gaussian with mean = w_{MAP} and covariance = inverse hessian (hessian = second derivative of log p(w|X, y))



イロト イロト イ

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \quad pprox \quad p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MLE})$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MLE}) = \sigma(\boldsymbol{w}_{MLE}^\top \boldsymbol{x}_*)$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MLE}) = \sigma(\boldsymbol{w}_{MLE}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx \text{Bernoulli}(\sigma(\boldsymbol{w}_{MLE}^\top \boldsymbol{x}_*))$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx p(y_* = 1 | \mathbf{x}_*, \mathbf{w}_{MLE}) = \sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*)$$
$$p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx \text{Bernoulli}(\sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*))$$

• When using MAP, the predictive distribution will be

$$p(y_*=1|oldsymbol{x}_*,oldsymbol{X},oldsymbol{y}) ~pprox p(y_*=1|oldsymbol{x}_*,oldsymbol{w}_{MAP})$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MLE}) = \sigma(\boldsymbol{w}_{MLE}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx \text{Bernoulli}(\sigma(\boldsymbol{w}_{MLE}^\top \boldsymbol{x}_*))$$

• When using MAP, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MAP}) = \sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*)$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MLE}) = \sigma(\boldsymbol{w}_{MLE}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx \text{Bernoulli}(\sigma(\boldsymbol{w}_{MLE}^\top \boldsymbol{x}_*))$$

• When using MAP, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MAP}) = \sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y})$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx p(y_* = 1 | \mathbf{x}_*, \mathbf{w}_{MLE}) = \sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*)$$
$$p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx \text{Bernoulli}(\sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*))$$

• When using MAP, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MAP}) = \sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx \text{Bernoulli}(\sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*))$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx p(y_* = 1 | \mathbf{x}_*, \mathbf{w}_{MLE}) = \sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*)$$
$$p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx \text{Bernoulli}(\sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*))$$

• When using MAP, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MAP}) = \sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx \text{Bernoulli}(\sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*))$$

• When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \int p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}) p(\boldsymbol{w} | \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w}$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx p(y_* = 1 | \mathbf{x}_*, \mathbf{w}_{MLE}) = \sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*)$$
$$p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx \text{Bernoulli}(\sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*))$$

• When using MAP, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MAP}) = \sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx \text{Bernoulli}(\sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*))$$

• When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \int p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}) p(\boldsymbol{w} | \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w} = \int \sigma(\boldsymbol{w}^\top \boldsymbol{x}_*) p(\boldsymbol{w} | \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w}$$

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx p(y_* = 1 | \mathbf{x}_*, \mathbf{w}_{MLE}) = \sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*)$$
$$p(y_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx \text{Bernoulli}(\sigma(\mathbf{w}_{MLE}^\top \mathbf{x}_*))$$

• When using MAP, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MAP}) = \sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) \approx \text{Bernoulli}(\sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*))$$

• When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \int p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}) p(\boldsymbol{w} | \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w} = \int \sigma(\boldsymbol{w}^\top \boldsymbol{x}_*) p(\boldsymbol{w} | \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w}$$

Note: Unlike the linear regression case, for logistic regression (and for non-conjugate models in general), posterior averaging can be intractable (and may require approximations)

• Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- \bullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk}$$

・ロト ・四ト ・日ト ・日ト

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- ullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk} \text{ and } \sum_{\ell=1}^{K} \mu_{n\ell} = 1$$

・ロト ・四ト ・日ト ・日ト

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- ullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk} \text{ and } \sum_{\ell=1}^{K} \mu_{n\ell} = 1$$

• $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_K]$ is $D \times K$ weight matrix.

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- ullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk} \text{ and } \sum_{\ell=1}^{K} \mu_{n\ell} = 1$$

• $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_K]$ is $D \times K$ weight matrix. $\mathbf{w}_1 = \mathbf{0}_{D \times 1}$ (assumed for identifiability)

(日) (四) (三) (三) (三)

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- ullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk} \text{ and } \sum_{\ell=1}^{K} \mu_{n\ell} = 1$$

- $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_K]$ is $D \times K$ weight matrix. $\mathbf{w}_1 = \mathbf{0}_{D \times 1}$ (assumed for identifiability)
- Popularly known as the softmax function

A B > A B > A B >

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- \bullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk} \text{ and } \sum_{\ell=1}^{K} \mu_{n\ell} = 1$$

- $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_K]$ is $D \times K$ weight matrix. $\mathbf{w}_1 = \mathbf{0}_{D \times 1}$ (assumed for identifiability)
- Popularly known as the softmax function
- Each likelihood $p(y_n | \mathbf{x}_n, \mathbf{W})$ is a multinoulli distribution. Therefore

$$p(\mathbf{y}|\mathbf{X},\mathbf{W}) = \prod_{n=1}^{N} \prod_{\ell=1}^{K} \mu_{n\ell}^{\mathbf{y}_{n\ell}}$$

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- \bullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk} \text{ and } \sum_{\ell=1}^{K} \mu_{n\ell} = 1$$

- $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_K]$ is $D \times K$ weight matrix. $\mathbf{w}_1 = \mathbf{0}_{D \times 1}$ (assumed for identifiability)
- Popularly known as the softmax function
- Each likelihood $p(y_n | \mathbf{x}_n, \mathbf{W})$ is a multinoulli distribution. Therefore

$$p(\mathbf{y}|\mathbf{X},\mathbf{W}) = \prod_{n=1}^{N} \prod_{\ell=1}^{K} \mu_{n\ell}^{\mathbf{y}_{n\ell}}$$

where $y_{n\ell} = 1$ if true class of example *n* is ℓ and $y_{n\ell'} = 0$ for all other $\ell' \neq \ell$

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- \bullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk} \text{ and } \sum_{\ell=1}^{K} \mu_{n\ell} = 1$$

- $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_K]$ is $D \times K$ weight matrix. $\mathbf{w}_1 = \mathbf{0}_{D \times 1}$ (assumed for identifiability)
- Popularly known as the softmax function
- Each likelihood $p(y_n | \mathbf{x}_n, \mathbf{W})$ is a multinoulli distribution. Therefore

$$p(\mathbf{y}|\mathbf{X},\mathbf{W}) = \prod_{n=1}^{N} \prod_{\ell=1}^{K} \mu_{n\ell}^{\mathbf{y}_{n\ell}}$$

where $y_{n\ell} = 1$ if true class of example *n* is ℓ and $y_{n\ell'} = 0$ for all other $\ell' \neq \ell$

• Can do MLE/MAP/fully Bayesian estimation for W similar to the logistic regression model

- Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes
- \bullet In this case, $y_n \in \{1,2,\ldots,K\}$ and label probabilities are defined as

$$p(y_n = k | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \frac{\exp(\boldsymbol{w}_k^\top \boldsymbol{x}_n)}{\sum_{\ell=1}^{K} \exp(\boldsymbol{w}_\ell^\top \boldsymbol{x}_n)} = \mu_{nk} \text{ and } \sum_{\ell=1}^{K} \mu_{n\ell} = 1$$

- $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_K]$ is $D \times K$ weight matrix. $\mathbf{w}_1 = \mathbf{0}_{D \times 1}$ (assumed for identifiability)
- Popularly known as the softmax function
- Each likelihood $p(y_n | \mathbf{x}_n, \mathbf{W})$ is a multinoulli distribution. Therefore

$$p(\mathbf{y}|\mathbf{X},\mathbf{W}) = \prod_{n=1}^{N} \prod_{\ell=1}^{K} \mu_{n\ell}^{\mathbf{y}_{n\ell}}$$

where $y_{n\ell} = 1$ if true class of example *n* is ℓ and $y_{n\ell'} = 0$ for all other $\ell' \neq \ell$

- $\bullet\,$ Can do MLE/MAP/fully Bayesian estimation for W similar to the logistic regression model
- Will look at optimization methods for this and other loss functions later.

• Looked at probabilistic models for supervised learning (regression and classification)

メロト メロト メヨト メヨト

- Looked at probabilistic models for supervised learning (regression and classification)
- Can do MLE/MAP, of fully Bayesian inference in these models

< ロ > < 回 > < 回 > < 回 > < 回 >

- Looked at probabilistic models for supervised learning (regression and classification)
- $\bullet\,$ Can do MLE/MAP, of fully Bayesian inference in these models
- MLE/MAP is like loss function (or regularized loss function) minimization

- Looked at probabilistic models for supervised learning (regression and classification)
- $\bullet\,$ Can do MLE/MAP, of fully Bayesian inference in these models
- MLE/MAP is like loss function (or regularized loss function) minimization
- Fully Bayesian inference is usually harder/expensive but often considered better

- Looked at probabilistic models for supervised learning (regression and classification)
- $\bullet\,$ Can do MLE/MAP, of fully Bayesian inference in these models
- MLE/MAP is like loss function (or regularized loss function) minimization
- Fully Bayesian inference is usually harder/expensive but often considered better
 - We get the full posterior over the parameters

- Looked at probabilistic models for supervised learning (regression and classification)
- $\bullet\,$ Can do MLE/MAP, of fully Bayesian inference in these models
- MLE/MAP is like loss function (or regularized loss function) minimization
- Fully Bayesian inference is usually harder/expensive but often considered better
 - We get the full posterior over the parameters
 - We can do posterior averagring when computing the predictive distribution

- Looked at probabilistic models for supervised learning (regression and classification)
- $\bullet\,$ Can do MLE/MAP, of fully Bayesian inference in these models
- MLE/MAP is like loss function (or regularized loss function) minimization
- Fully Bayesian inference is usually harder/expensive but often considered better
 - We get the full posterior over the parameters
 - We can do posterior averagring when computing the predictive distribution
 - Can get variance/confidence estimate in our predictions

- Looked at probabilistic models for supervised learning (regression and classification)
- $\bullet\,$ Can do MLE/MAP, of fully Bayesian inference in these models
- MLE/MAP is like loss function (or regularized loss function) minimization
- Fully Bayesian inference is usually harder/expensive but often considered better
 - We get the full posterior over the parameters
 - We can do posterior averagring when computing the predictive distribution
 - Can get variance/confidence estimate in our predictions
- Can model p(y|x) directly (discriminative models) or via p(x, y) (generative models)

- Looked at probabilistic models for supervised learning (regression and classification)
- $\bullet\,$ Can do MLE/MAP, of fully Bayesian inference in these models
- MLE/MAP is like loss function (or regularized loss function) minimization
- Fully Bayesian inference is usually harder/expensive but often considered better
 - We get the full posterior over the parameters
 - We can do posterior averagring when computing the predictive distribution
 - Can get variance/confidence estimate in our predictions
- Can model p(y|x) directly (discriminative models) or via p(x, y) (generative models)
- Looked at discriminative models for regression and classification

- Looked at probabilistic models for supervised learning (regression and classification)
- $\bullet\,$ Can do MLE/MAP, of fully Bayesian inference in these models
- MLE/MAP is like loss function (or regularized loss function) minimization
- Fully Bayesian inference is usually harder/expensive but often considered better
 - We get the full posterior over the parameters
 - We can do posterior averagring when computing the predictive distribution
 - Can get variance/confidence estimate in our predictions
- Can model p(y|x) directly (discriminative models) or via p(x, y) (generative models)
- Looked at discriminative models for regression and classification
- Will look at generative models for learning p(y|x) next week

イロト 不得 とうせい うけん