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Announcements

Homework 1 will be out tonight. Due on August 31, 11:59pm. Please start early.

Project ideas will be posted by tomorrow.

Project group formation deadline extended to August 25.

Piazza has a “Search for Teammates” features (the very first pinned post)

Please sign-up on Piazza (we won’t sign you up if you are waiting for that :-))

TA office hours and office locations posted on Piazza (under resources/staff section)
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Recap: Probabilistic Modeling

A probabilistic model is specified by two key components

An observation model p(y |θ), a.k.a. the likelihood model

(Optionally) A prior distribution p(θ) over the unknown parameters

Note that these two components specify the joint distribution p(y , θ) of data and unknowns

We can incorporate our assumptions about the data via the observation/likelihood model

We can incorporate our assumptions about the parameters via the prior distribution

Note: Likelihood and/or prior may depend on additional “hyperparamers” (fixed/unknown)
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Recap: Parameter Estimation

Can do point estimation (via MLE/MAP) for θ or infer its full posterior (via Bayesian inference)

MLE maximizes the (log of) likelihood w.r.t. the parameters θ. For i.i.d. data,

θ̂MLE = arg max
θ

N∑
n=1

log p(yn | θ) = arg min
θ

NLL(θ)

MLE is akin to empirical/training loss minimization (no regularization)

MAP estimation maximizes the (log of) posterior w.r.t. the parameters θ. For i.i.d. data,

θ̂MAP = arg max
θ

[
N∑

n=1

log p(yn | θ) + log p(θ)] = arg min
θ

[NLL(θ)− log p(θ)]

MAP is akin to regularized loss minimization (prior acts as a regularizer)

Bayesian inference computes the full posterior distribution of θ

p(θ|y) =
p(y |θ)p(θ)

p(y)
=

p(y |θ)p(θ)∫
p(y |θ)p(θ)dθ

(intractable in general)
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Recap: Predictive Distribution

Using estimated θ, we usually want the predictive distribution p(y∗|y) for some future data y∗

The proper, exact way of getting the predictive distribution (assuming i.i.d. data) is

p(y∗|y) =

∫
p(y∗, θ|y)dθ︸ ︷︷ ︸

sum rule of probability

=

∫
p(y∗|θ, y)p(θ|y)dθ︸ ︷︷ ︸

chain/product rule of probability

=

∫
p(y∗|θ)p(θ|y)dθ (assuming i.i.d. data)

If using a point estimate θ̂ (e.g., MLE/MAP), p(θ|y) ≈ δθ̂(θ), where δ() denotes Dirac function

p(y∗|y) =

∫
p(y∗|θ)p(θ|y)dθ ≈ p(y∗|θ̂MLE ) (MLE based prediction)

p(y∗|y) =

∫
p(y∗|θ)p(θ|y)dθ ≈ p(y∗|θ̂MAP) (MAP based prediction)

If using the fully Bayesian inference, p(y∗|y) =
∫
p(y∗|θ)p(θ|y)dθ ⇐ uses the proper way!

The integral here may not always be tractable and may need to be approximated
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Recap: Predictive Distribution
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Probabilistic Models for
Supervised Learning

Want models that give us p(y |x)
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Why Probabilistic Models for Supervised Learning?

Often, we want the distribution p(y |x) over possible outputs y , given an input x

0.6

0.4

0.2

Regression Classification (say 5 classes)

(mean)

Possible output values

The distribution p(y |x) is more informative, since it can tell us

What is the “expected” or “most likely” value of the predicted output y?

What is the “uncertainty” in the predicted output y?

.. and gives “soft” predictions (e.g., rather than yes/no prediction, gives prob. of “yes”)

Moreover, we can use priors over model parameters, perform fully Bayesian inference, etc.
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Probabilistic Models for Supervised Learning

Usually two ways to model the conditional distribution p(y |x) of outputs given inputs

Approach 1: Don’t model x , and model p(y |x) directly using a prob. distribution, e.g.,

p(y |w , x) = N (w>x , β−1) (prob. linear regression)

p(y |w , x) = Bernoulli[σ(w>x)] (prob. linear binary classification)

(note: w>x above only for linear prob. model; can even replace it by a possibly nonlinear f (x))

Approach 2: Model both x and y via the joint distr. p(x , y), and then get the conditional as

p(y |x , θ) =
p(x , y |θ)

p(x |θ)
(note: θ collectively denotes all the parameters)

p(y = k|x , θ) =
p(x , y = k|θ)

p(x |θ)
=

p(x |y = k, θ)p(y = k|θ)∑K
`=1 p(x |y = `, θ)p(y = `|θ)

(for K class classification)

Approach 1 called Discriminative Modeling; Approach 2 called fully Generative Modeling

Discriminative models only model y , not x , Generative Models model both y and x
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Today: Discriminative Models for
Probabilistic Regression/Classification

1: Probabilistic Linear Regression
p(y |w , x) = N (w>x , β−1)

2: Logistic Regression for Binary Classification
p(y |w , x) = Bernoulli[σ(w>x)]

(Remember that these do NOT model x , but only model y)

(Also, both are linear models (note the w>x))
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Gaussian Distribution: Brief Review
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Univariate Gaussian Distribution

Distribution over real-valued scalar r.v. x

Defined by a scalar mean µ and a scalar variance σ2

Distribution defined as
N (x ;µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2

Mean: E[x ] = µ

Variance: var[x ] = σ2

Precision (inverse variance) β = 1/σ2
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Multivariate Gaussian Distribution

Distribution over a multivariate r.v. vector x ∈ RD of real numbers

Defined by a mean vector µ ∈ RD and a D × D covariance matrix Σ

N (x;µ,Σ) =
1√

(2π)D |Σ|
e−

1
2 (x−µ)>Σ−1(x−µ)

The covariance matrix Σ must be symmetric and positive definite

All eigenvalues are positive

z>Σz > 0 for any real vector z
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Linear Regression: A Probabilistic View
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Linear Regression: A Probabilistic View

Mean Variance
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Linear Regression: A Probabilistic View

Mean Variance

Gaussian

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning 13



Linear Regression: A Probabilistic View

Mean Variance
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Linear Regression: A Probabilistic View

Mean Variance

Equivalently
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Probabilistic Linear Regression: Some Comments

Modeling p(y |w , x) as a Gaussian p(y |w , x) = N (w>x , β−1) is just one possibility

Can model p(y |w , x) using other distributions too, e.g., Laplace (better handles outliers)

Mean Variance

Gaussian

Mean Variance

Laplace

Even with Gaussian, can assume each output to have a different variance (heteroscedastic noise)

p(y |w , xn) = N (w>xn, β
−1
n )
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MLE for Probabilistic Linear Regression

Since each likelihood term is a Gaussian, we have

p(yn|xn,w) = N (w>xn, β
−1) =

√
β

2π
exp

[
−β

2
(yn −w>xn)2

]

Thus the likelihood (assuming i.i.d. responses) will be

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =

(
β

2π

)N/2

exp

[
−β

2

N∑
n=1

(yn −w>xn)2

]
Note: xn (features) assumed given/fixed. Only modeling the response yn

Log-likelihood (ignoring constants w.r.t. w)

log p(y |X,w) ∝ −β
2

N∑
n=1

(yn −w>xn)2

Note that negative log likelihood (NLL) in this case is similar to squared loss function

Therefor MLE with this model will give the same solution as (unregularized) least squares
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Log-likelihood (ignoring constants w.r.t. w)

log p(y |X,w) ∝ −β
2

N∑
n=1

(yn −w>xn)2

Note that negative log likelihood (NLL) in this case is similar to squared loss function

Therefor MLE with this model will give the same solution as (unregularized) least squares
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MAP Estimation for Probabilistic Linear Regression

Let’s assume a zero-mean multivariate Gaussian prior on weight vector w

p(w) = N (0, λ−1ID) ∝ exp

[
−λ

2
w>w

]
= exp

[
−λ

2

D∑
d=1

w2
d

]

This prior encourages each weight wd to be small (close to zero), similar to `2 regularization

The MAP objective (log-posterior) will be the log-likelihood + log p(w)

−β
2

N∑
n=1

(yn −w>xn)2−λ
2
w>w

Maximizing this is equivalent to minimizing the following w.r.t. w

ŵMAP = arg min
w

N∑
n=1

(yn −w>xn)2 +
λ

β
w>w

Note that λ
β is like a regularization hyperparam (as in ridge regression)
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Fully Bayesian Inference for Probabilistic Linear Regression

Can also compute the full posterior distribution over w

p(w |y ,X) =
p(w)p(y |X,w)

p(y |X)

Since the likelihood (Gaussian) and prior (Gaussian) are conjugate, posterior is easy to compute

After some algebra, it can be shown that (will provide a note)

p(w |y ,X) = N (µN ,ΣN)

ΣN = (βX>X + λID)−1

µN = (X>X +
λ

β
ID)−1X>y

Note: We are assuming the hyperparameters β and λ to be known

Note: For brevity, we have omitted the hyperparams from the conditioning in various distributions
such as p(w), p(y |X,w), p(y |X), p(w |y ,X)
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Predictive Distribution

Now we want the predictive distribution p(y∗|x∗,X, y) of the output y∗ for a new input x∗

With MLE/MAP estimate of w , the prediction can be made by simply plugging in the estimate

p(y∗|x∗,X, y) ≈ p(y∗|x∗,wMLE ) = N (w>MLEx∗, β−1) - MLE prediction

p(y∗|x∗,X, y) ≈ p(y∗|x∗,wMAP) = N (w>MAPx∗, β−1) - MAP prediction

When doing fully Bayesian inference, we can compute the posterior predictive distribution

p(y∗|x∗,X, y) =

∫
p(y∗|x∗,w)p(w |X, y)dw

Due to Gaussian conjugacy, this too will be a Gaussian (note the form, ignore the proof :-))

p(y∗|x∗,X, y) = N (µ>Nx∗, β−1+x>∗ ΣNx∗)

In this case, we also get an input-specific predictive variance (unlike MLE/MAP prediction)

Very useful in applications where we want confidence estimates of the predictions made by the model
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MLE, MAP/Fully Bayesian Linear Regression: Summary

MLE/MAP give point estimate of w

Fully Bayesian approach gives the full posterior

MLE/MAP based prediction uses a single best estimate of w

Fully Bayesian prediction does posterior averaging

Some things to keep in mind:

MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions

A Gaussian likelihood model corresponds to using squared loss

A Gaussian prior on parameters acts as an `2 regularizer

Other likelihoods/priors can be chosen (result in other loss functions and regularizers)
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Discriminative Models for
Probabilistic Classification

(Again, only y will be modeled, x treated as “fixed”)
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Logistic Regression

Perhaps the simplest discriminative probabilistic model for linear binary classification

Defines µ = p(y = 1|x) using the sigmoid function

µ = σ(w>x) =
1

1 + exp(−w>x)
=

exp(w>x)
1 + exp(w>x)

Here w>x is the score for input x . The sigmoid turns it into a probability. Thus we have

p(y = 1|x,w) = µ = σ(w>x) =
1

1 + exp(−w>x)
=

exp(w>x)
1 + exp(w>x)

p(y = 0|x,w) = 1− µ = 1− σ(w>x) =
1

1 + exp(w>x)

Note: If we assume y ∈ {−1,+1} instead of y ∈ {0, 1} then p(y |x,w) = 1

1+exp(−yw>x)
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Logistic Regression: A Closer Look..

At the decision boundary where both classes are equiprobable:

p(y = 1|x,w) = p(y = 0|x,w)

exp(w>x)
1 + exp(w>x)

=
1

1 + exp(w>x)

exp(w>x) = 1

w>x = 0

Thus the decision boundary of LR is a linear hyperplane

Therefore y = 1 if w>x ≥ 0, otherwise y = 0

High positive (negative) score w>x : High (low) probability of label 1
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MLE for Logistic Regression

Each label yn = 1 with probability µn = exp(w>xn)
1+exp(w>xn)

Assuming i.i.d. labels, likelihood is product of Bernoullis

p(y |X,w) =
N∏

n=1

p(yn|xn,w) =
N∏

n=1

µyn
n (1− µn)1−yn

Negative log-likelihood: NLL(w) = − log p(y |X,w) = −
∑N

n=1(yn logµn + (1− yn) log(1− µn))

Note: The NLL in this case is the same as cross-entropy loss function (a classification loss fn)

Plugging in µn = exp(w>xn)
1+exp(w>xn)

and chugging, we get (verify yourself)

NLL(w) = −
N∑

n=1

(ynw
>xn − log(1 + exp(w>xn)))

MLE solution: ŵMLE = arg minw NLL(w). No closed form solution (you can verify)

Requires iterative methods (e.g., gradient descent). We will look at these later.

Exercise: Try computing the gradient of NLL(w) and note the form of the gradient
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MAP Estimation for Logisic Regression

To do MAP estimation for w , can use a prior p(w) on w

Just like the probabilistic linear regression case, let’s put a Gausian prior on w

p(w) = N (0, λ−1ID) ∝ exp(−λ
2
w>w)

MAP objective (log of posterior) = MLE objective + log p(w)

The MAP estimate of w will be

ŵMAP = arg min
w

[
NLL(w) +

λ

2
w>w

]
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Fully Bayesian Estimation for Logistic Regression

Doing fully Bayesian inference would require computing the posterior

p(w |X, y) =
p(y |X,w)p(w)∫
p(y |X,w)p(w)dw

=

∏N
n=1 p(yn|xn,w)p(w)∫ ∏N
n=1 p(yn|xn,w)p(w)dw

Intractable. Reason: likelihood (logistic-Bernoulli) and prior (Gaussian) here are not conjugate

Need to do approximate inference in this case

A crude approximation: Laplace approximation: Approximate a posterior by a Gaussian with
mean =wMAP and covariance = inverse hessian (hessian = second derivative of log p(w |X, y))

p(w |X, y) = N (wMAP ,H
−1)
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Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMLE )

= σ(w>MLEx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MLEx∗))

When using MAP, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMAP) = σ(w>MAPx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MAPx∗))

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

p(y∗ = 1|x∗,X, y) =

∫
p(y∗ = 1|x∗,w)p(w |X, y)dw =

∫
σ(w>x∗)p(w |X, y)dw

Note: Unlike the linear regression case, for logistic regression (and for non-conjugate models in
general), posterior averaging can be intractable (and may require approximations)

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning 26



Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMLE ) = σ(w>MLEx∗)

p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MLEx∗))

When using MAP, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMAP) = σ(w>MAPx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MAPx∗))

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

p(y∗ = 1|x∗,X, y) =

∫
p(y∗ = 1|x∗,w)p(w |X, y)dw =

∫
σ(w>x∗)p(w |X, y)dw

Note: Unlike the linear regression case, for logistic regression (and for non-conjugate models in
general), posterior averaging can be intractable (and may require approximations)

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning 26



Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMLE ) = σ(w>MLEx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MLEx∗))

When using MAP, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMAP) = σ(w>MAPx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MAPx∗))

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

p(y∗ = 1|x∗,X, y) =

∫
p(y∗ = 1|x∗,w)p(w |X, y)dw =

∫
σ(w>x∗)p(w |X, y)dw

Note: Unlike the linear regression case, for logistic regression (and for non-conjugate models in
general), posterior averaging can be intractable (and may require approximations)

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning 26



Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMLE ) = σ(w>MLEx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MLEx∗))

When using MAP, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMAP)

= σ(w>MAPx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MAPx∗))

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

p(y∗ = 1|x∗,X, y) =

∫
p(y∗ = 1|x∗,w)p(w |X, y)dw =

∫
σ(w>x∗)p(w |X, y)dw

Note: Unlike the linear regression case, for logistic regression (and for non-conjugate models in
general), posterior averaging can be intractable (and may require approximations)

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning 26



Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMLE ) = σ(w>MLEx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MLEx∗))

When using MAP, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMAP) = σ(w>MAPx∗)

p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MAPx∗))

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

p(y∗ = 1|x∗,X, y) =

∫
p(y∗ = 1|x∗,w)p(w |X, y)dw =

∫
σ(w>x∗)p(w |X, y)dw

Note: Unlike the linear regression case, for logistic regression (and for non-conjugate models in
general), posterior averaging can be intractable (and may require approximations)

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning 26



Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMLE ) = σ(w>MLEx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MLEx∗))

When using MAP, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMAP) = σ(w>MAPx∗)
p(y∗|x∗,X, y)

≈ Bernoulli(σ(w>MAPx∗))

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

p(y∗ = 1|x∗,X, y) =

∫
p(y∗ = 1|x∗,w)p(w |X, y)dw =

∫
σ(w>x∗)p(w |X, y)dw

Note: Unlike the linear regression case, for logistic regression (and for non-conjugate models in
general), posterior averaging can be intractable (and may require approximations)

Intro to Machine Learning (CS771A) Probabilistic Models for Supervised Learning 26



Logistic Regression: Predictive Distributions

When using MLE, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMLE ) = σ(w>MLEx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MLEx∗))

When using MAP, the predictive distribution will be

p(y∗ = 1|x∗,X, y) ≈ p(y∗ = 1|x∗,wMAP) = σ(w>MAPx∗)
p(y∗|x∗,X, y) ≈ Bernoulli(σ(w>MAPx∗))

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging
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∫
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σ(w>x∗)p(w |X, y)dw

Note: Unlike the linear regression case, for logistic regression (and for non-conjugate models in
general), posterior averaging can be intractable (and may require approximations)
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Multiclass Logistic (a.k.a. Softmax) Regression

Also called multinoulli/multinomial regression: Basically, logistic regression for K > 2 classes

In this case, yn ∈ {1, 2, . . . ,K} and label probabilities are defined as

p(yn = k|xn,W) =
exp(w>k xn)∑K
`=1 exp(w>` xn)

= µnk and
K∑

`=1

µn` = 1

W = [w 1 w 2 . . . wK ] is D × K weight matrix. w 1 = 0D×1 (assumed for identifiability)

Popularly known as the softmax function

Each likelihood p(yn|xn,W) is a multinoulli distribution. Therefore

p(y |X,W) =
N∏

n=1

K∏
`=1

µ
yn`
n`

where yn` = 1 if true class of example n is ` and yn`′ = 0 for all other `′ 6= `

Can do MLE/MAP/fully Bayesian estimation for W similar to the logistic regression model

Will look at optimization methods for this and other loss functions later.
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Summary

Looked at probabilistic models for supervised learning (regression and classification)

Can do MLE/MAP, of fully Bayesian inference in these models

MLE/MAP is like loss function (or regularized loss function) minimization

Fully Bayesian inference is usually harder/expensive but often considered better

We get the full posterior over the parameters

We can do posterior averagring when computing the predictive distribution

Can get variance/confidence estimate in our predictions

Can model p(y |x) direcly (discriminative models) or via p(x , y) (generative models)

Looked at discriminative models for regression and classification

Will look at generative models for learning p(y |x) next week
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