
Learning via Probabilistic Modeling

Piyush Rai

Introduction to Machine Learning (CS771A)

August 14, 2018

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 1



Recap: Linear Models and Linear Regression

Linear model: Each output is a linearly weighted combination of the inputs

yn =
D∑

d=1

wdxnd = w>xn,∀n ⇒ y = Xw

The weights are the parameters of the model

Can use linear models for doing linear regression. Amounts to fitting a line/plane to the data.

y

x
Finding the best line/plane = finding w that minimizes the total error/loss of the fit

This requires optimizing the loss w.r.t. w
Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 2



Recap: Least Squares and Ridge Regression

Least squares and ridge regression are both linear regression models based on squared loss

Least squares regression minimizes the simple sum of squared errors

ŵ = arg min
w

N∑
n=1

(yn −w>xn)2 = (
N∑

n=1

xnx>n )−1
N∑

n=1

ynxn = (X>X)−1X>y

Ridge regression minimizes the `2 regularized sum of squared errors

ŵ = arg min
w

[
N∑

n=1

(yn −w>xn)2

︸ ︷︷ ︸
training loss

+
λ

2
w>w︸ ︷︷ ︸

regularizer

] = (X>X + λID)−1X>y

Regularization helps prevent overfitting the training data

The `2 regularization w>w =
∑D

d=1 w
2
d promotes small individual weights

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 3



Recap: Learning as Optimization

Supervised learning is essentially a function approximation problem

Given training data {(xn, yn)Nn=1}, find a function f s.t. f (xn) ≈ yn,∀n

In addition, we want f to be simple (i.e., want to regularize it)

Can learn such a function f by solving the following optimization problem

f̂ = arg min
f
Lreg (f ) = arg min

f

N∑
n=1

`(yn, f (xn))︸ ︷︷ ︸
training loss

+ λR(f )︸ ︷︷ ︸
regularization

Different supervised learning problems differ in the choice of f , `(., .) and R(.)

f depends on the model (e.g., for linear models f (x) = w>x)

`(., .): loss function that measures the error of model’s prediction (e.g., squared loss)

R(.) denotes the regularizer chosen to make f simple (e.g., `2 regularization)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 4



A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

  zero loss in 
   this region

Note: Can also 
use squared 
instead of absolute 

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 5



Brief Detour: Inductive Bias of ML Algorithms

No ML algorithm is “universally good”

Should not expect it to work well on all datasets

Each algorithm makes some assumption about data (“no free lunch”)

Work best when assumptions are correct. May fail in other case.

Inductive Bias: Set of assumptions made about outputs of previously unseen inputs

Learning is impossible without making assumptions!

Some common examples of such assumptions

Classes are separable by a large margin

The function is “smooth”

Only a few features are relevant for the prediction

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 6



Learning via Probabilistic Modeling

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 7



Probabilistic Modeling of Data

Assume the data y = {y1, y2, . . . , yN} as generated from a probability model

yn ∼ p(y |θ) ∀n
Each yn assumed drawn from distribution p(y |θ), with unknown parameters θ

We usually assume data to be independently & identically distributed (i.i.d.)

Some of the things we may be interested in

Parameter Estimation: Estimate θ given the observed data y

Prediction: Compute predictive distribution p(y∗|y) for new data (or mean/variance of p(y∗|y))

Important: Pretty much any ML problem (sup/unsup) can be formulated like this

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 8



Parameter Estimation in Probabilistic Models

Since data is i.i.d., the probability (or probability density) of observed data y = {y1, y2, . . . , yN}

p(y |θ) = p(y1, y2, . . . , yN |θ) =
N∏

n=1

p(yn|θ)

p(y |θ) also called the model’s likelihood, p(yn|θ) is likelihood w.r.t. a single data point

The likelihood will be a function of the parameters θ

How do we estimate the “best” model parameters θ?

One option: Find value of θ that makes observed data most probable (i.e., most likely)

Maximize the likelihood p(y |θ) w.r.t. θ: Maximum Likelihood Estimation (MLE)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 9



Maximum Likelihood Estimation (MLE)

We doing MLE, we typically maximize log-likelihood instead of the likelihood, which is easier
(doesn’t affect the estimation because log is monotonic)

Log-likelihood:

L(θ) = log p(y | θ) = log
N∏

n=1

p(yn | θ) =
N∑

n=1

log p(yn | θ)

Maximum Likelihood Estimation (MLE)

θ̂MLE = arg max
θ
L(θ) = arg max

θ

N∑
n=1

log p(yn | θ)

Now this becomes an optimization problem w.r.t. θ

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 10



Maximum Likelihood Estimation (MLE)

Maximum Likelihood parameter estimation

θ̂MLE = arg max
θ

N∑
n=1

log p(yn | θ) = arg min
θ
−

N∑
n=1

log p(yn | θ)

We thus also think of it as minimizing the negative log-likelihood (NLL)

θ̂MLE = arg min
θ

NLL(θ)

where NLL(θ) = −
∑N

n=1 log p(yn | θ)

We can think of the negative log-likelihood as a loss function

Thus MLE is equivalent to doing empirical risk (training data loss) minimization

Important: This view relates/unifies the optimization and probabilistic modeling approaches

Something is still missing (we will look at that shortly)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 11



MLE: An Example

Consider a sequence of N coin toss outcomes (observations)

Each observation yn is a binary random variable. Head = 1, Tail = 0

Since each yn is binary, let’s use a Bernoulli distribution to model it

p(yn | θ) = θyn(1− θ)1−yn

Here θ is the unknown parameter (probability of head). Want to learn θ using MLE

Log-likelihood:
∑N

n=1 log p(yn | θ) =
∑N

n=1 yn log θ + (1− yn) log(1− θ)

Taking derivative of the log-likelihood w.r.t. θ, and setting it to zero gives

θ̂MLE =

∑N
n=1 yn
N

θ̂MLE in this example is simply the fraction of heads!

What can go wrong with this approach (or MLE in general)?

We haven’t “regularized” θ. Can do badly (i.e., overfit), e.g., if we don’t have enough data

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 12



Prior Distributions

In probabilistic models, we can specify a prior distribution p(θ) on parameters

The prior distribution expresses our a priori belief about the unknown θ. Plays two key roles

The prior helps us specify that some values of θ are more likely than others

The prior also works as a regularizer for θ (we will see this soon)

Note: A uniform prior distribution is the same as using no prior!

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 13



Using a Prior in Parameter Estimation

We can combine the prior p(θ) with the likelihood p(y |θ) using Bayes rule and define the posterior
distribution over the parameters θ

p(θ|y) =
p(y |θ)p(θ)

p(y)

Now, instead of doing MLE which maximizes the likelihood, we can find the θ that is most likely
given the data, i.e., which maximizes the posterior probability p(θ|y)

θ̂MAP = arg max
θ

p(θ|y)

Note that the prior sort of “pulls” θMLE toward’s the prior distribution’s mean/mode

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 14



Maximum-a-Posteriori (MAP) Estimation

We will work with the log posterior probability (it is easier)

θ̂MAP = arg max
θ

p(θ|y) = arg max
θ

logp(θ|y)

= arg max
θ

log
p(y |θ)p(θ)

p(y)

= arg max
θ

log p(y |θ) + log p(θ)

θ̂MAP = arg max
θ

N∑
n=1

log p(yn|θ) + log p(θ)

Same as MLE with an extra log-prior-distribution term (acts as a regularizer)

Can also write the same as the following (equivalent) minimization problem

θ̂MAP = arg min
θ

NLL(θ)− log p(θ)

When p(θ) is a uniform prior, MAP reduces to MLE

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 15



MAP: An Example

Let’s again consider the coin-toss problem (estimating the bias of the coin)

Each likelihood term is Bernoulli: p(yn|θ) = θyn(1− θ)1−yn

Since θ ∈ (0, 1), we assume a Beta prior: θ ∼ Beta(α, β)

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

Note: Γ is the gamma function. α, β are called hyperparameters of the prior

For Beta, using α = β = 1 corresponds to using a uniform prior distribution

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 16



MAP: An Example

The log posterior probability for the coin-toss model
N∑

n=1

log p(yn|θ)+ log p(θ)

Ignoring the constants w.r.t. θ, the log posterior probability simplifies to∑N
n=1{yn log θ + (1− yn) log(1− θ)} + (α− 1) log θ + (β − 1) log(1− θ)

Taking derivative w.r.t. θ and setting to zero gives

θ̂MAP =

∑N
n=1 yn + α− 1

N + α + β − 2

Note: For α = 1, β = 1, i.e., p(θ) = Beta(1, 1) (which is equivalent to a uniform prior, hence no
regularization). Thus, for α = 1, β = 1, we get the same solution as θ̂MLE

Note: Hyperparameters of a prior distribution usually have intuitive meaning. E.g., in the coin-toss
example, α− 1, β − 1 are like “pseudo-observations” - expected numbers of heads and tails,
respectively, before tossing the coin

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 17



Inferring the Full Posterior (a.k.a. Fully Bayesian Inference)

MLE/MAP only give us a point estimate of θ. Doesn’t capture the uncertainty in θ

The Bayes rule (at least in theory) also allows us to compute the full posterior

p(θ|y) =
p(y |θ)p(θ)

p(y)
=

p(y |θ)p(θ)∫
p(y |θ)p(θ)dθ

In general, much harder problem than MLE/MAP! Easy if the prior and likelihood are “conjugate”
to each other (then the posterior will then have the same “form” as the prior)

Many pairs of distributions are conjugate to each other (e.g., Beta-Bernoulli, Gaussian is conjugate
to itself, etc.). May refer to Wikipedia for a list of conjugate pairs of distributions

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 18



Fully Bayesian Inference

Fully Bayesian inference fits naturally into an “online” learning setting

Our belief about θ keeps getting updated as we see more and more data

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 19



Fully Bayesian Inference: An Example

Let’s again consider the coin-toss example

With Bernoulli likelihood and Beta prior (a conjugate pair), the posterior is also Beta (exercise)

Beta(α + N1, β + N0)

where N1 is the number of heads and N0 = N − N1 is the number of tails

Can verify the above by simply plugging in the expressions of likelihood and prior into the Bayes
rule and identifying the form of resulting posterior (note: this may not always be easy)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 20



Making Predictions: MLE/MAP/Fully Bayesian

Once θ is learned, we can use it to make predictions about the future observations

E.g., for the coin-toss example, we can predict the probability of next toss being head

This can be done using the MLE/MAP estimate, or using the full posterior (harder)

In the coin-toss example, θMLE = N1

N , θMAP = N1+α−1
N+α+β−2 , and p(θ|y) = Beta(θ|α + N1, β + N0)

Thus for this example (where observations are assumed to come from a Bernoulli)

MLE prediction: p(yN+1 = 1|y) =

∫
p(yN+1 = 1|θ)p(θ|y)dθ ≈ p(yN+1 = 1|θMLE ) = θMLE =

N1

N

MAP prediction: p(yN+1 = 1|y) =

∫
p(yN+1 = 1|θ)p(θ|y)dθ ≈ p(yN+1 = 1|θMAP ) = θMAP =

N1 + α− 1

N + α + β − 2

Fully Bayesian: p(yN+1 = 1|y) =

∫
p(yN+1 = 1|θ)p(θ|y)dθ =

∫
θp(θ|y)dθ =

∫
θBeta(θ|α + N1, β + N0)dθ =

N1 + α

N + α + β

Note that the fully Bayesian approach to prediction averages over all possible values of θ, weighted
by their respective posterior probabilities (easy in this example, but a hard problem in general)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 21



Probabilistic Modeling: Summary

A flexible way to model data by specifying a proper probabilistic model

Likelihood corresponds to a loss function; prior corresponds to a regularizer

Can choose likelihoods and priors based on the nature/property of data/parameters

MLE estimation = unregularized loss function minimization

MAP estimation = regularized loss function minimization

Allows us to do fully Bayesian learning

Allows learning the full distribution of the parameters (note that MLE/MAP only give a “single best”
answer as a point estimate of the parameters)

Makes more robust predictions by posterior averaging (rather than using a single point estimate)

Many other benefits, such as

Estimate of confidence in the model’s prediction (useful for doing Active Learning)

Can do automatic model selection, hyperparameter estimation, handle missing data, etc.

.. and many other benefits (a proper treatment deserves a separate course :) )

MLE/MAP estimation is also related to the optimization view of ML

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 22


