Piyush Rai
Introduction to Machine Learning (CS771A)

August 14, 2018

Recap: Linear Models and Linear Regression

@ Linear model: Each output is a linearly weighted combination of the inputs
D

VYn = Z WoXnd = W' Xp,¥n = y = Xw
d=1

@ The weights are the parameters of the model

@ Can use linear models for doing linear regression. Amounts to fitting a line/plane to the data.

e Finding the best line/plane = finding w that minimizes the total error/loss of the fit

@ This requires optimizing the loss w.r.t. w

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Recap: Least Squares and Ridge Regression

@ Least squares and ridge regression are both linear regression models based on squared loss

@ Least squares regression minimizes the simple sum of squared errors

argmlnz —w' x,, Zx,,x 1Z:y,,x,,— XT X)~ IXTy

o Ridge regression minimizes the ¢, regularized sum of squared errors

A
argmln[z —w'x,) +§WTW] =(XTX+Ap) X"y
——

regularizer

training loss

@ Regularization helps prevent overfitting the training data

T

@ The /5 regularization w' w = 25:1 w3 promotes small individual weights

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Recap: Learning as Optimization

@ Supervised learning is essentially a function approximation problem

e Given training data {(x,,y,)"_;}, find a function f s.t. f(x,) ~ y,,Vn

In addition, we want f to be simple (i.e., want to regularize it)
@ Can learn such a function f by solving the following optimization problem

N
f = argmin Lreg(f) = argmin Zf(ym f(xn))+ AR(F)
f f ——

n=1 A
regularization

training loss
e Different supervised learning problems differ in the choice of f, ¢(.,.) and R(.)

o f depends on the model (e.g., for linear models f(x) = w' x)
e /(.,.): loss function that measures the error of model's prediction (e.g., squared loss)

e R(.) denotes the regularizer chosen to make f simple (e.g., ¢> regularization)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

A Brief Detour: Some Loss Functions

@ Some popular loss functions for regression problems!

Squared Loss:(y — f(z))? Absolute Loss: |y — f(z)| Huber LoSS: squared then Absolute) € -insensitive Loss: |y — f(z)| — ¢

Note: Can also
use squared .
instead of absolute\

zero loss in
this region

€y € f(z)

Y f(z) Y f(z)
@ Absolute/Huber loss preferred if there are outliers in the data
o Less affected by large errors |y — f(x)| as compared to the squared loss
@ Overall objective function = loss func + some regularizer (e.g., £2, ¢1), as we saw for ridge reg.
@ Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

@ Will revisit many of these aspects when we talk about optimization techniques for ML

1

will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Brief Detour: Inductive Bias of ML Algorithms

@ No ML algorithm is “universally good”

Should not expect it to work well on all datasets

Each algorithm makes some assumption about data (“no free lunch")

o Work best when assumptions are correct. May fail in other case.
@ Inductive Bias: Set of assumptions made about outputs of previously unseen inputs
@ Learning is impossible without making assumptions!

@ Some common examples of such assumptions

o Classes are separable by a large margin
e The function is “smooth”

e Only a few features are relevant for the prediction

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Learning via Probabilistic Modeling

5

p(zlc2)

:f p(efer)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Probabilistic Modeling of Data

@ Assume the data y = {y1,y2,...,yn} as generated from a probability model
Yo~ p(yl0) Vn

@ Each y, assumed drawn from distribution p(y|@), with unknown parameters ¢

@ We usually assume data to be independently & identically distributed (i.i.d.)
@ Plate Notation
N

o Parameter Estimation: Estimate 6 given the observed data y

@ Some of the things we may be interested in

e Prediction: Compute predictive distribution p(yx|y) for new data (or mean/variance of p(y«|y))

e Important: Pretty much any ML problem (sup/unsup) can be formulated like this

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Parameter Estimation in Probabilistic Models

@ Since data is i.i.d., the probability (or probability density) of observed data y = {y1,y,...,¥n}
N
p(y10) = p(y1, Y2, - -, yn10) = [| p(val0)
n=1

@ p(y|0) also called the model’s likelihood, p(yn|@) is likelihood w.r.t. a single data point

@ The likelihood will be a function of the parameters 6

~

S)

: g MLE
@ How do we estimate the “best” model parameters 67

@ One option: Find value of 6 that makes observed data most probable (i.e., most likely)

o Maximize the likelihood p(y|0) w.r.t. 8: Maximum Likelihood Estimation (MLE)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Maximum Likelihood Estimation (MLE)

@ We doing MLE, we typically maximize log-likelihood instead of the likelihood, which is easier
(doesn't affect the estimation because log is monotonic)

L(®) = log p(y|©)

o Log-likelihood:

N
L(0) =logp(y | 6) = |ongyn|9 > log p(yn | 0)

@ Maximum Likelihood Estimation (MLE)

N

OpmLe = arg meaxﬁ(ﬁ) =arg mgax; log p(yn | 6)

@ Now this becomes an optimization problem w.r.t. 6

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Maximum Likelihood Estimation (MLE)

@ Maximum Likelihood parameter estimation
N N

Onie = | o | 60) = in—Y) | o | 6
mLe = argmax) _log p(y, | 0) = argmin — " log p(ys |)

n=1 n=1

@ We thus also think of it as minimizing the negative log-likelihood (NLL)

e = arg mein NLL(9)

where NLL(0) = — ZLV:l log p(y, | 6)
@ We can think of the negative log-likelihood as a loss function

@ Thus MLE is equivalent to doing empirical risk (training data loss) minimization
e Important: This view relates/unifies the optimization and probabilistic modeling approaches

@ Something is still missing (we will look at that shortly)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 11

MLE: An Example

e Consider a sequence of N coin toss outcomes (observations)
@ Each observation y,, is a binary random variable. Head = 1, Tail = 0

@ Since each y, is binary, let's use a Bernoulli distribution to model it

p(yn | 0) =67 (1—0)' ™
@ Here 6 is the unknown parameter (probability of head). Want to learn 6 using MLE
o Log-likelihood: Zyzl log p(yn |) = ZLVZI Ynlog 0+ (1 — y,) log(1l —)

o Taking derivative of the log-likelihood w.r.t. 6, and setting it to zero gives

N
Omie = L1V
N

o Ouie in this example is simply the fraction of heads!
e What can go wrong with this approach (or MLE in general)?
e We haven't “regularized” 6. Can do badly (i.e., overfit), e.g., if we don't have enough data

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Prior Distributions

@ In probabilistic models, we can specify a prior distribution p(#) on parameters

10

P(©)

05

0

0 20 e 40 60
@ The prior distribution expresses our a priori belief about the unknown 6. Plays two key roles

e The prior helps us specify that some values of 6§ are more likely than others

e The prior also works as a regularizer for 6 (we will see this soon)

@ Note: A uniform prior distribution is the same as using no prior!

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

Using a Prior in Parameter Estimation

@ We can combine the prior p(6) with the likelihood p(y|#) using Bayes rule and define the posterior
distribution over the parameters 6 (y10)p(0)

_h

H e/ POW)

/ \ \P(Yle)

6 6

MAP MLE

@ Now, instead of doing MLE which maximizes the likelihood, we can find the 6 that is most likely
given the data, i.e., which maximizes the posterior probability p(6|y)

Omap = arg max p(fly)
@ Note that the prior sort of “pulls” 0y g toward's the prior distribution's mean/mode

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 14

Maximum-a-Posteriori (MAP) Estimation

@ We will work with the log posterior probability (it is easier)
Omap = argmax p(dly) = argmaxlogp(d]y)

p(y[0)p(0)
p(y)
= argmaxlog p(y|0) + log p(0)

= argmax log

N
Ouap = argmax)y _ log p(ya|0) + log p(0)

n=1

@ Same as MLE with an extra log-prior-distribution term (acts as a regularizer)

@ Can also write the same as the following (equivalent) minimization problem

Opap = arg mein NLL() — log p(0)

@ When p() is a uniform prior, MAP reduces to MLE

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

15

MAP: An Example

@ Let's again consider the coin-toss problem (estimating the bias of the coin)

@ Each likelihood term is Bernoulli: p(y,|0) = 67(1 —)t

@ Since 6 € (0,1), we assume a Beta prior: 6 ~ Beta(a, 3)
r(O[+ 5) a—1 -1
0) = ————=10 -0
PO~ Fayrg” 7

o Note: I is the gamma function. «, 8 are called hyperparameters of the prior

25

0 0.2 0.4 0.6 08 1

@ For Beta, using @ = 8 = 1 corresponds to using a uniform prior distribution

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling

16

MAP: An Example
@ The log posterior probability for the coin-toss model
N
>~ log p(ynl6)+ log p(0)
n=1
@ Ignoring the constants w.r.t. @, the log posterior probability simplifies to
SN {ynlogf+ (1 — y,)log(l — 6)} + (o — 1) log# + (3 — 1) log(1 — 6)
o Taking derivative w.r.t. 6 and setting to zero gives
Zglzl Ynta-—1
N+a+p-2

e Note: Fora =1,5 =1, i.e,, p(f) = Beta(1,1) (which is equivalent to a uniform prior, hence no
regularization). Thus, for & = 1,8 = 1, we get the same solution as Oy

Omap =

@ Note: Hyperparameters of a prior distribution usually have intuitive meaning. E.g., in the coin-toss
example, « — 1, 8 — 1 are like “pseudo-observations” - expected numbers of heads and tails,
respectively, before tossing the coin

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 17

Inferring the Full Posterior (a.k.a. Fully Bayesian Inference)

e MLE/MAP only give us a point estimate of . Doesn't capture the uncertainty in 6

] /f\ pely)

@ The Bayes rule (at least in theory) also allows us to compute the full posterior

_ ply|9)p(0) p(y|0)p(0)

PO ==00) = Tolyl0)p(6)d0

@ In general, much harder problem than MLE/MAP! Easy if the prior and likelihood are “conjugate”
to each other (then the posterior will then have the same “form" as the prior)

@ Many pairs of distributions are conjugate to each other (e.g., Beta-Bernoulli, Gaussian is conjugate
to itself, etc.). May refer to Wikipedia for a list of conjugate pairs of distributions

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 18

e Fully Bayesian inference fits naturally into an “online” learning setting

Bayesian Inference
%

N =10

N=2

=1

Prior
P(6) Old posterior becomes
the new prior

@ Our belief about 0 keeps getting updated as we see more and more data

Fully Bayesian Inference: An Example

@ Let's again consider the coin-toss example

e With Bernoulli likelihood and Beta prior (a conjugate pair), the posterior is also Beta (exercise)
Beta(ar + Ny, 8+ Np)

where Nj is the number of heads and Ny = N — Ny is the number of tails

@ Can verify the above by simply plugging in the expressions of likelihood and prior into the Bayes
rule and identifying the form of resulting posterior (note: this may not always be easy)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 20

Making Predictions: MLE/MAP /Fully Bayesian

@ Once 6 is learned, we can use it to make predictions about the future observations

o E.g., for the coin-toss example, we can predict the probability of next toss being head

@ This can be done using the MLE/MAP estimate, or using the full posterior (harder)

@ In the coin-toss example, Oy e = % Omap = ,\/\’J:;rij‘ﬁ_; and p(f]y) = Beta(f|a+ Ny, 8+ No)

@ Thus for this example (where observations are assumed to come from a Bernoulli)

. N;
MLE prediction: p(yn+1 =1ly) = /P(YN+1 =1|0)p(0ly)d0 =~ p(yn+1 = 1|0mie) = Ome = Wl
.. Ny +a—1
MAP prediction: p(yn+1 = 1ly) = /P(YN+1 =10)p(0ly)do ~ p(yn+1 = 1|0map) = Omap = —————
. N+a+p—-2
. : " Nt + «
Fully Bayesian: p(yn+1 = 1ly) = /P(}’N+1 =1|0)p(0]y)do = / Op(0]y)do = / 0Beta(0]c + N1, B + No)dO = m

@ Note that the fully Bayesian approach to prediction averages over all possible values of 8, weighted
by their respective posterior probabilities (easy in this example, but a hard problem in general)

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 21

Probabilistic Modeling: Summary

A flexible way to model data by specifying a proper probabilistic model

@ Likelihood corresponds to a loss function; prior corresponds to a regularizer

Can choose likelihoods and priors based on the nature/property of data/parameters

MLE estimation = unregularized loss function minimization

@ MAP estimation = regularized loss function minimization

Allows us to do fully Bayesian learning

e Allows learning the full distribution of the parameters (note that MLE/MAP only give a “single best”
answer as a point estimate of the parameters)

e Makes more robust predictions by posterior averaging (rather than using a single point estimate)
e Many other benefits, such as

o Estimate of confidence in the model’s prediction (useful for doing Active Learning)

o Can do automatic model selection, hyperparameter estimation, handle missing data, etc.

@ .. and many other benefits (a proper treatment deserves a separate course :))

e MLE/MAP estimation is also related to the optimization view of ML

Intro to Machine Learning (CS771A) Learning via Probabilistic Modeling 22

