Linear Models and Learning via Optimization

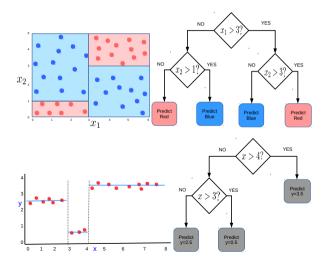
Piyush Rai

Introduction to Machine Learning (CS771A)

August 9, 2018

Recap

Decision Trees: Learning by asking questions. Ask the "important" questions first!

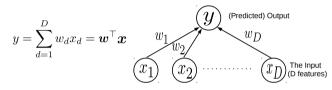


Intro to Machine Learning (CS771A)

Linear Models

Linear Models

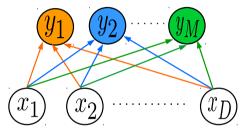
- Consider learning to map an input $x \in \mathbb{R}^D$ to its output y (say real-valued)
- Assume the output to be a linear weighted combination of the D input features



- This is an example of a linear model with D parameters $\boldsymbol{w} = [w_1, w_2, \dots, w_D]$
- Inspired by linear models of neurons
- $\boldsymbol{w} \in \mathbb{R}^D$ is also known as the weight vector
- Here w_d denotes how important the *d*-th input feature is for predicting y
- The above is basically a linear model for simple regression (single, real-valued output y)
- This basic model can also be used as building blocks in many more complex models

Linear Models for Multi-output Regression

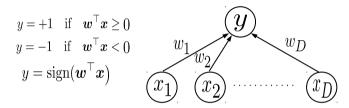
• Can assume <u>each</u> of the *M* outputs in $\boldsymbol{y} \in \mathbb{R}^M$ to be modeled by a linear model



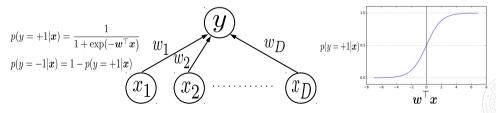
- Each output y_m (m = 1, ..., M) modeled by a weight vector $\boldsymbol{w}_m \in \mathbb{R}^D$: $y_m = \boldsymbol{w}_m^\top \boldsymbol{x}$
- The entire model for all M outputs can be represented as $y = \mathbf{W}^{\top} \mathbf{x}$
- $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_M]$ is a $D \times M$ matrix

Linear Models for Binary Classification

• Use the sign of the "score" $w^{\top}x$ to do predict binary label

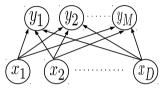


• If desired, can turn the score $w^{\top}x$ into the probability of the label being +1 (logistic regression)



Linear Models for Multi-class/Multi-label Classification

• Recall that, in multi-class/multi-label classification, $\mathbf{y} = [y_1, y_2, \dots, y_M]$ is a vector of length M



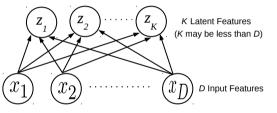
- Just like multi-output regression, each component y_m of y can be modeled by a weight vector w_m
- Need a way to convert $\boldsymbol{y} \in \mathbb{R}^{M}$ to one-hot (for multi-class)/binary vector (for multi-label)
- Note: In some cases, the score need not be converted, e.g.,
 - Can use the index of largest entry in \boldsymbol{y} as the predicted class in multi-class classification

0.25 0.6 0.1 0.4 0.2

• Can use the indices of top few entries in y as the predicted labels in multi-label classification

Linear Models for Dimensionality Reduction

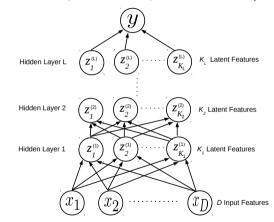
• Linear models can be used to reduce data-dimensionality (e.g., Principal Component Analysis)



- Note that it looks similar to multi-output regression but the output vector z is latent
 - An example of an unsupervised learning problem
- Need to learn both z and W in these problems

Linear Models to construct Deep Neural Networks

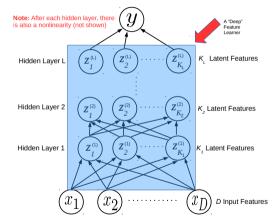
• Linear models are used as basic components of deep neural networks (nonlinear models)



• Each hidden layer has a learned latent features based representation of the original input x

Linear Models to construct Deep Neural Networks

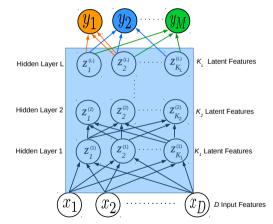
• Linear models are used as basic components of deep neural networks (nonlinear models)



• Each hidden layer has a learned latent features based representation of the original input x

Linear Models to construct Deep Neural Networks

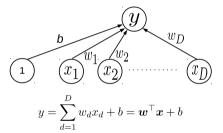
• Can even construct multiple-output versions of deep neural network



• These can be used for multi-output regression, multi-class/multi-label classification, etc.

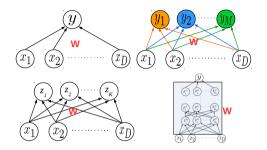
Linear Models with Offset (Bias) Parameter

• Some linear models use an additional bias parameter b



- Can append a constant feature "1" for each input and rewrite as $y = \mathbf{w}^{\top} \mathbf{x}$, with $\mathbf{x}, \mathbf{w} \in \mathbb{R}^{D+1}$
- We will assume the same and omit the explicit bias for simplicity of notation

Learning Linear Models

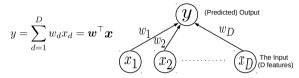


Linear Models are ubiquitous! How do we <u>learn</u> them from data?

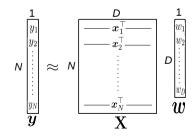
For linear models, learning = Learning the model parameters (the weights) We will formulate learning as an optimization problem w.r.t. these parameters

Learning a Linear Model for Regression

• Let's focus on learning the simplest linear model for now: Linear Regression

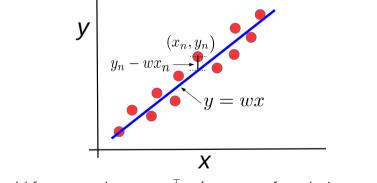


- Suppose we are given regression training data $\{(\boldsymbol{x}_n,y_n)\}_{n=1}^N$ with $\boldsymbol{x}_n \in \mathbb{R}^D$, and $y_n \in \mathbb{R}$
- Let's model the training data using \boldsymbol{w} and assume $\boldsymbol{y}_n \approx \boldsymbol{w}^\top \boldsymbol{x}_n$, $\forall n$ (equivalently $\boldsymbol{y} \approx \boldsymbol{X} \boldsymbol{w}$)



Linear Regression: Pictorially

• With one-dimensional inputs, linear regression would look like



• Error of the model for an example $= y_n - \boldsymbol{w}^\top \boldsymbol{x}_n$ ($= y_n - w x_n$ for scalar input case)

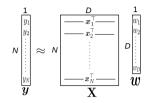
Linear Regression

• Define the total error or "loss" on the training data, when using \boldsymbol{w} as our model, as

$$\mathcal{L}(\boldsymbol{w}) = \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2$$

- Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)
- The best \boldsymbol{w} will be the one that minimizes the above error (requires optimization w.r.t. \boldsymbol{w}) $\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}) = \arg\min_{\boldsymbol{w}} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2$
- This is known as "least squares" linear regression (Gauss/Legendre, early 18th century)
- Taking derivative (gradient) of $\mathcal{L}(\boldsymbol{w})$ w.r.t. \boldsymbol{w} and setting to zero $\sum_{n=1}^{N} 2(y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n) \frac{\partial}{\partial \boldsymbol{w}} (y_n - \boldsymbol{x}_n^{\top} \boldsymbol{w}) = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} \boldsymbol{x}_n (y_n - \boldsymbol{x}_n^{\top} \boldsymbol{w}) = 0$
- Simplifying further, we get a closed form solution for $\pmb{w} \in \mathbb{R}^D$

$$\boldsymbol{w} = (\sum_{n=1}^{N} \boldsymbol{x}_n \boldsymbol{x}_n^{\top})^{-1} \sum_{n=1}^{N} y_n \boldsymbol{x}_n = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$



• Consider the closed form solution we obtained for linear regression based on least squares

$$\boldsymbol{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\boldsymbol{y}$$

- The above closed form solution is nice but has some issues
 - The $D \times D$ matrix $\mathbf{X}^{\top} \mathbf{X}$ may not be invertible
 - Based solely on minimizing the training error $\sum_{n=1}^{N} (y_n \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2 \Rightarrow$ can overfit the training data
 - Expensive inversion for large D: Can used iterative optimization techniques (will come to this later)

Regularized Linear Regression (a.k.a. Ridge Regression)

• Consider regularized loss: Training error + ℓ_2 -squared norm of \boldsymbol{w} , i.e., $||\boldsymbol{w}||_2^2 = \boldsymbol{w}^\top \boldsymbol{w} = \sum_{d=1}^D w_d^2$

$$\mathcal{L}_{reg}(oldsymbol{w}) = \left[\sum_{n=1}^{N} (y_n - oldsymbol{w}^{ op} oldsymbol{x}_n)^2 + \lambda oldsymbol{w}^{ op} oldsymbol{w}
ight]$$

- Minimizing the above objective w.r.t. \boldsymbol{w} does two things
 - Keeps the training error small
 - Keeps the ℓ_2 norm of w small (and thus also the individual components of w): Regularization
- There is a trade-off between the two terms: The regularization hyperparam $\lambda > 0$ controls it
 - Very small λ means almost no regularization (can overfit)
 - Very large λ means very high regularization (can underfit high training error)
 - $\bullet\,$ Can use cross-validation to choose the "right" $\,\lambda\,$
- The solution to the above optimization problem is: $\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_D)^{-1}\mathbf{X}^{\top}\mathbf{y}$
- Note that, in this case, regularization also made inversion possible (note the λI_D term)

How ℓ_2 Regularization Helps Here?

- We saw that ℓ_2 regularization encourages the individual weights in ${\it w}$ to be small
- Small weights ensure that the function y = f(x) = w[⊤]x is smooth (i.e., we expect similar x's to have similar y's). Below is an informal justification:
- Consider two points $\mathbf{x}_n \in \mathbb{R}^D$ and $\mathbf{x}_m \in \mathbb{R}^D$ that are exactly similar in all features except the *d*-th feature where they differ by a small value, say ϵ
- Assuming a simple/smooth function $f(\mathbf{x})$, y_n and y_m should also be close
- However, as per the model $y = f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$, y_n and y_m will differ by ϵw_d
- Unless we constrain w_d to have a small value, the difference ϵw_d would also be very large (which isn't what we want).
- That's why regularizing (via ℓ_2 regularization) and making the individual components of the weight vector small helps

Regularization: Some Comments

- Many ways to regularize ML models (for linear as well as other models)
- Some are based on adding a norm of *w* to the loss function (as we already saw)
 - Using ℓ_2 norm in the loss function promotes the individual entries w to be small (we saw that)
 - Using ℓ_0 norm encourages very few non-zero entries in w (thereby promoting "sparse" w)

 $||\boldsymbol{w}||_0 = \# nnz(\boldsymbol{w})$

• Optimizing with ℓ_0 is difficult (NP-hard problem); can use ℓ_1 norm as an approximation

$$||oldsymbol{w}||_1 = \sum_{d=1}^D |w_d|$$

- Note: Since they learn a sparse w, ℓ_0 or ℓ_1 regularization is also useful for doing feature selection $(w_d = 0 \text{ means feature } d \text{ is irrelevant})$. We will revisit ℓ_1 later to formally see why ℓ_1 gives sparsity
- Other techniques for regularization: Early stopping (of training), "dropout", etc (popular in deep neural networks; will revisit these later when discussing deep learning)

Linear/Ridge Regression via Gradient Descent

• Both least squares regression and ridge regression require matrix inversion

Least Squares $\boldsymbol{w} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}, \text{ Ridge } \boldsymbol{w} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \mathbf{I}_D)^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

- Can be computationally expensive when D is very large
- A faster way is to use iterative optimization, such as batch or stochastic gradient descent
- A basic batch gradient-descent based procedure looks like
 - Start with an initial value of $\pmb{w}=\pmb{w}^{(0)}$
 - Update \boldsymbol{w} by moving along the gradient of the loss function $\mathcal L$

$$\boldsymbol{w}^{(t)} = \boldsymbol{w}^{(t-1)} - \eta \frac{\partial \mathcal{L}}{\partial \boldsymbol{w}} \Big|_{\boldsymbol{w} = \boldsymbol{w}^{(t-1)}}$$
 where η is the learning rate

• Repeat until converge

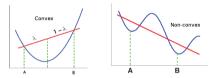
• For least squares, the gradient is $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = -\sum_{n=1}^{N} \mathbf{x}_n (y_n - \mathbf{x}_n^\top \mathbf{w})$ (no matrix inversion involved)

• Such iterative methods for optimizing loss functions are widely used in ML. Will revisit these later

Linear Regression via Gradient-based Methods: Some Notes

We will revisit gradient based methods later but a few things to keep in mind

- Gradient Descent guaranteed to converge to a local minima
- Gradient Descent converges to global minima if the function is convex



- A function is convex if second derivative is non-negative everywhere (for scalar functions) or if Hessian is positive semi-definite (for vector-valued functions). For a convex function, every local minima is also a global minima.
- Note: The squared loss function in linear regression is convex
 - With ℓ_2 regularizer, it becomes strictly convex (single global minima)
- For Gradient Descent, the learning rate is important (should not be too large or too small)

Linear Regression as Solving System of Linear Equations

• Solving y = Xw for w is like solving for D unknowns w_1, \ldots, w_D using N equations

$$y_{1} = x_{11}w_{1} + x_{12}w_{2} + \ldots + x_{1D}w_{D}$$

$$y_{2} = x_{21}w_{1} + x_{22}w_{2} + \ldots + x_{2D}w_{D}$$

$$\vdots$$

$$y_{N} = x_{N1}w_{1} + x_{N2}w_{2} + \ldots + x_{ND}w_{D}$$

- Can therefore view the linear regression problem as a system of linear equations
- However, in linear regression, we would rarely have N = D, but N > D or D > N
- N > D case is an overdetermined system of linear equations (# equations > # unknowns)
- D > N case is an underdetermined system of linear equations (# unknowns > # equations)
- Thus methods to solve over/underdetermined systems can be used to solve linear regression as well
 - Many of these don't require a matrix inversion (will provide a separate note with details)

Linear Regression: Some Other Comments

- A simple and interpretable method. Very widely used.
- Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares
$$\mathbf{w} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}, \quad \mathsf{Ridge} \quad \mathbf{w} = (\mathbf{X}^{ op} \mathbf{X} + \lambda \mathbf{I}_D)^{-1} \mathbf{X}^{ op} \mathbf{y}$$

- Many ML problems can be easily reduced to the form y = Xw or Y = XW
- Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers (a lot of work in the numerical linear algebra community to scale up linear systems solvers)
 - An interesting bit: Note that $w = (X^{\top}X)^{-1}X^{\top}y \Rightarrow Aw = b$ where $A = X^{\top}X$ and $b = X^{\top}y$
 - Using the above relation, can solve for w by solving Aw = b. A standard linear system with D equations and D unknowns; can be solved using efficient linear systems solvers.
- The basic (regularized) linear regression can also be easily extended to
 - Nonlinear Regression y_n ≈ w^Tφ(x_n) by replacing the original feature vector x_n by a nonlinear transformation φ(x_n) (where φ may be pre-defined or itself learned)
 - Generalized Linear Model $y_n = g(\mathbf{w}^\top \mathbf{x}_n)$ when response y_n is not real-valued but binary/categorical/count, etc, and g is a "link function"

General Supervised Learning as Optimization

• We saw that regularized least squares regression required solving

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \mathcal{L}_{reg}(\boldsymbol{w}) = \arg\min_{\boldsymbol{w}} \left[\sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2 + \frac{\lambda}{2} \boldsymbol{w}^{\top} \boldsymbol{w} \right]$$

- This is essentially the training loss (called "empirical loss"), plus the regularization term
- In general, for supervised learning, the goal is to learn a function f, s.t. $f(x_n) \approx y_n, \forall n$
- Moreover, we also want to have a simple f, i.e., have some regularization
- Therefore, learning the best f amounts to solving the following optimization problem

$$\hat{f} = \arg\min_{f} \mathcal{L}_{reg}(f) = \arg\min_{f} \sum_{n=1}^{N} \ell(y_n, f(\mathbf{x}_n)) + \lambda R(f)$$

where $\ell(y_n, f(\mathbf{x}_n))$ measures the model f's training loss on (\mathbf{x}_n, y_n) and R(f) is a regularizer

- For least squares regression, $f(\mathbf{x}_n) = \mathbf{w}^\top \mathbf{x}$, and $R(f) = \mathbf{w}^\top \mathbf{w}$, and $\ell(y_n, f(\mathbf{x}_n)) = (y_n \mathbf{w}^\top \mathbf{x}_n)^2$
- As we'll see later, different supervised learning problems differ in the choice of f, R(.), and ℓ

General Unsupervised Learning as Optimization

- Can we formulate unsupervised learning problems as optimization problems? Yes, of course! :-)
- Consider an unsupervised learning problem with N inputs $\mathbf{X} = {\{\mathbf{x}_n\}}_{n=1}^N$
- Unsupervised, so no labels. Suppose we are interested in learning a new representation $Z = \{z_n\}_{n=1}^N$
- Assume a function f that models the relationship between x_n and z_n

$$\boldsymbol{x}_n \approx f(\boldsymbol{z}_n) \quad \forall n$$

- In this case, we can define a loss function l(x_n, f(z_n)) that measures how well f can "reconstruct" the original x_n from its new representation z_n
- This generic unsup. learning problem can thus be written as the following optimization problem

$$\hat{f} = \arg\min_{f, \mathbf{Z}} \sum_{n=1}^{N} \ell(\mathbf{x}_n, f(\mathbf{z}_n)) + \lambda R(f, \mathbf{Z})$$

• In this case both f and Z need to be learned. Typically learned via alternating optimization