
Linear Models and Learning via Optimization

Piyush Rai

Introduction to Machine Learning (CS771A)

August 9, 2018

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 1

Recap

Decision Trees: Learning by asking questions. Ask the “important” questions first!

0 1 2 3 4 5 6

5

4

3

2

1

0

Predict
Red

Predict
Blue

Predict
Blue

Predict
Red

YES

YESYES

NO

NO NO

0 1 2 3 4 5 6 7 8

4

3

2

1

0

x

y

Predict
y=2.5

Predict
y=0.5

Predict
y=3.5

YES

YES

NO

NO

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 2

Linear Models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 3

Linear Models

Consider learning to map an input x ∈ RD to its output y (say real-valued)

Assume the output to be a linear weighted combination of the D input features

 (Predicted) Output

 The Input
(D features)

This is an example of a linear model with D parameters w = [w1,w2, . . . ,wD]

Inspired by linear models of neurons

w ∈ RD is also known as the weight vector

Here wd denotes how important the d-th input feature is for predicting y

The above is basically a linear model for simple regression (single, real-valued output y)

This basic model can also be used as building blocks in many more complex models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 4

Linear Models

Consider learning to map an input x ∈ RD to its output y (say real-valued)

Assume the output to be a linear weighted combination of the D input features

 (Predicted) Output

 The Input
(D features)

This is an example of a linear model with D parameters w = [w1,w2, . . . ,wD]

Inspired by linear models of neurons

w ∈ RD is also known as the weight vector

Here wd denotes how important the d-th input feature is for predicting y

The above is basically a linear model for simple regression (single, real-valued output y)

This basic model can also be used as building blocks in many more complex models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 4

Linear Models

Consider learning to map an input x ∈ RD to its output y (say real-valued)

Assume the output to be a linear weighted combination of the D input features

 (Predicted) Output

 The Input
(D features)

This is an example of a linear model with D parameters w = [w1,w2, . . . ,wD]

Inspired by linear models of neurons

w ∈ RD is also known as the weight vector

Here wd denotes how important the d-th input feature is for predicting y

The above is basically a linear model for simple regression (single, real-valued output y)

This basic model can also be used as building blocks in many more complex models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 4

Linear Models

Consider learning to map an input x ∈ RD to its output y (say real-valued)

Assume the output to be a linear weighted combination of the D input features

 (Predicted) Output

 The Input
(D features)

This is an example of a linear model with D parameters w = [w1,w2, . . . ,wD]

Inspired by linear models of neurons

w ∈ RD is also known as the weight vector

Here wd denotes how important the d-th input feature is for predicting y

The above is basically a linear model for simple regression (single, real-valued output y)

This basic model can also be used as building blocks in many more complex models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 4

Linear Models

Consider learning to map an input x ∈ RD to its output y (say real-valued)

Assume the output to be a linear weighted combination of the D input features

 (Predicted) Output

 The Input
(D features)

This is an example of a linear model with D parameters w = [w1,w2, . . . ,wD]

Inspired by linear models of neurons

w ∈ RD is also known as the weight vector

Here wd denotes how important the d-th input feature is for predicting y

The above is basically a linear model for simple regression (single, real-valued output y)

This basic model can also be used as building blocks in many more complex models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 4

Linear Models

Consider learning to map an input x ∈ RD to its output y (say real-valued)

Assume the output to be a linear weighted combination of the D input features

 (Predicted) Output

 The Input
(D features)

This is an example of a linear model with D parameters w = [w1,w2, . . . ,wD]

Inspired by linear models of neurons

w ∈ RD is also known as the weight vector

Here wd denotes how important the d-th input feature is for predicting y

The above is basically a linear model for simple regression (single, real-valued output y)

This basic model can also be used as building blocks in many more complex models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 4

Linear Models

Consider learning to map an input x ∈ RD to its output y (say real-valued)

Assume the output to be a linear weighted combination of the D input features

 (Predicted) Output

 The Input
(D features)

This is an example of a linear model with D parameters w = [w1,w2, . . . ,wD]

Inspired by linear models of neurons

w ∈ RD is also known as the weight vector

Here wd denotes how important the d-th input feature is for predicting y

The above is basically a linear model for simple regression (single, real-valued output y)

This basic model can also be used as building blocks in many more complex models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 4

Linear Models

Consider learning to map an input x ∈ RD to its output y (say real-valued)

Assume the output to be a linear weighted combination of the D input features

 (Predicted) Output

 The Input
(D features)

This is an example of a linear model with D parameters w = [w1,w2, . . . ,wD]

Inspired by linear models of neurons

w ∈ RD is also known as the weight vector

Here wd denotes how important the d-th input feature is for predicting y

The above is basically a linear model for simple regression (single, real-valued output y)

This basic model can also be used as building blocks in many more complex models

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 4

Linear Models for Multi-output Regression

Can assume each of the M outputs in y ∈ RM to be modeled by a linear model

Each output ym (m = 1, . . . ,M) modeled by a weight vector wm ∈ RD : ym = w>mx

The entire model for all M outputs can be represented as y = W>x

W = [w 1,w 2, . . . ,wM] is a D ×M matrix

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 5

Linear Models for Multi-output Regression

Can assume each of the M outputs in y ∈ RM to be modeled by a linear model

Each output ym (m = 1, . . . ,M) modeled by a weight vector wm ∈ RD : ym = w>mx

The entire model for all M outputs can be represented as y = W>x

W = [w 1,w 2, . . . ,wM] is a D ×M matrix

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 5

Linear Models for Multi-output Regression

Can assume each of the M outputs in y ∈ RM to be modeled by a linear model

Each output ym (m = 1, . . . ,M) modeled by a weight vector wm ∈ RD : ym = w>mx

The entire model for all M outputs can be represented as y = W>x

W = [w 1,w 2, . . . ,wM] is a D ×M matrix

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 5

Linear Models for Multi-output Regression

Can assume each of the M outputs in y ∈ RM to be modeled by a linear model

Each output ym (m = 1, . . . ,M) modeled by a weight vector wm ∈ RD : ym = w>mx

The entire model for all M outputs can be represented as y = W>x

W = [w 1,w 2, . . . ,wM] is a D ×M matrix

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 5

Linear Models for Binary Classification

Use the sign of the “score” w>x to do predict binary label

If desired, can turn the score w>x into the probability of the label being +1 (logistic regression)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 6

Linear Models for Binary Classification

Use the sign of the “score” w>x to do predict binary label

If desired, can turn the score w>x into the probability of the label being +1

(logistic regression)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 6

Linear Models for Binary Classification

Use the sign of the “score” w>x to do predict binary label

If desired, can turn the score w>x into the probability of the label being +1 (logistic regression)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 6

Linear Models for Multi-class/Multi-label Classification

Recall that, in multi-class/multi-label classification, y = [y1, y2, . . . , yM] is a vector of length M

Just like multi-output regression, each component ym of y can be modeled by a weight vector wm

Need a way to convert y ∈ RM to one-hot (for multi-class)/binary vector (for multi-label)

Note: In some cases, the score need not be converted, e.g.,

Can use the index of largest entry in y as the predicted class in multi-class classification

0.25 0.6 0.1 0.4 0.2

Can use the indices of top few entries in y as the predicted labels in multi-label classification

0.25 0.6 0.1 0.4 0.2

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 7

Linear Models for Multi-class/Multi-label Classification

Recall that, in multi-class/multi-label classification, y = [y1, y2, . . . , yM] is a vector of length M

Just like multi-output regression, each component ym of y can be modeled by a weight vector wm

Need a way to convert y ∈ RM to one-hot (for multi-class)/binary vector (for multi-label)

Note: In some cases, the score need not be converted, e.g.,

Can use the index of largest entry in y as the predicted class in multi-class classification

0.25 0.6 0.1 0.4 0.2

Can use the indices of top few entries in y as the predicted labels in multi-label classification

0.25 0.6 0.1 0.4 0.2

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 7

Linear Models for Multi-class/Multi-label Classification

Recall that, in multi-class/multi-label classification, y = [y1, y2, . . . , yM] is a vector of length M

Just like multi-output regression, each component ym of y can be modeled by a weight vector wm

Need a way to convert y ∈ RM to one-hot (for multi-class)/binary vector (for multi-label)

Note: In some cases, the score need not be converted, e.g.,

Can use the index of largest entry in y as the predicted class in multi-class classification

0.25 0.6 0.1 0.4 0.2

Can use the indices of top few entries in y as the predicted labels in multi-label classification

0.25 0.6 0.1 0.4 0.2

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 7

Linear Models for Multi-class/Multi-label Classification

Recall that, in multi-class/multi-label classification, y = [y1, y2, . . . , yM] is a vector of length M

Just like multi-output regression, each component ym of y can be modeled by a weight vector wm

Need a way to convert y ∈ RM to one-hot (for multi-class)/binary vector (for multi-label)

Note: In some cases, the score need not be converted

, e.g.,

Can use the index of largest entry in y as the predicted class in multi-class classification

0.25 0.6 0.1 0.4 0.2

Can use the indices of top few entries in y as the predicted labels in multi-label classification

0.25 0.6 0.1 0.4 0.2

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 7

Linear Models for Multi-class/Multi-label Classification

Recall that, in multi-class/multi-label classification, y = [y1, y2, . . . , yM] is a vector of length M

Just like multi-output regression, each component ym of y can be modeled by a weight vector wm

Need a way to convert y ∈ RM to one-hot (for multi-class)/binary vector (for multi-label)

Note: In some cases, the score need not be converted, e.g.,

Can use the index of largest entry in y as the predicted class in multi-class classification

0.25 0.6 0.1 0.4 0.2

Can use the indices of top few entries in y as the predicted labels in multi-label classification

0.25 0.6 0.1 0.4 0.2

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 7

Linear Models for Multi-class/Multi-label Classification

Recall that, in multi-class/multi-label classification, y = [y1, y2, . . . , yM] is a vector of length M

Just like multi-output regression, each component ym of y can be modeled by a weight vector wm

Need a way to convert y ∈ RM to one-hot (for multi-class)/binary vector (for multi-label)

Note: In some cases, the score need not be converted, e.g.,

Can use the index of largest entry in y as the predicted class in multi-class classification

0.25 0.6 0.1 0.4 0.2

Can use the indices of top few entries in y as the predicted labels in multi-label classification

0.25 0.6 0.1 0.4 0.2

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 7

Linear Models for Dimensionality Reduction

Linear models can be used to reduce data-dimensionality (e.g., Principal Component Analysis)

z
1

z
2

z
K

 K

Latent Features

(K may be less than D)

D Input Features

Note that it looks similar to multi-output regression but the output vector z is latent

An example of an unsupervised learning problem

Need to learn both z and W in these problems

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 8

Linear Models for Dimensionality Reduction

Linear models can be used to reduce data-dimensionality (e.g., Principal Component Analysis)

z
1

z
2

z
K

 K

Latent Features

(K may be less than D)

D Input Features

Note that it looks similar to multi-output regression but the output vector z is latent

An example of an unsupervised learning problem

Need to learn both z and W in these problems

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 8

Linear Models for Dimensionality Reduction

Linear models can be used to reduce data-dimensionality (e.g., Principal Component Analysis)

z
1

z
2

z
K

 K

Latent Features

(K may be less than D)

D Input Features

Note that it looks similar to multi-output regression but the output vector z is latent

An example of an unsupervised learning problem

Need to learn both z and W in these problems

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 8

Linear Models for Dimensionality Reduction

Linear models can be used to reduce data-dimensionality (e.g., Principal Component Analysis)

z
1

z
2

z
K

 K

Latent Features

(K may be less than D)

D Input Features

Note that it looks similar to multi-output regression but the output vector z is latent

An example of an unsupervised learning problem

Need to learn both z and W in these problems

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 8

Linear Models to construct Deep Neural Networks

Linear models are used as basic components of deep neural networks (nonlinear models)

z
1

z
2

z
K1

(1)(1)(1)

z
1
(2)

z
1
(L)

z
2
(2)

z
2
(L)

z
K2

(2)

z
KL

(L)
Hidden Layer L

 Hidden Layer 2

 Hidden Layer 1

K
L
 Latent Features

K
2

Latent Features

K
1

Latent Features

D Input Features

Each hidden layer has a learned latent features based representation of the original input x

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 9

Linear Models to construct Deep Neural Networks

Linear models are used as basic components of deep neural networks (nonlinear models)

z
1

z
2

z
K1

(1)(1)(1)

z
1
(2)

z
1
(L)

z
2
(2)

z
2
(L)

z
K2

(2)

z
KL

(L)
Hidden Layer L

 Hidden Layer 2

 Hidden Layer 1

K
L
 Latent Features

K
2

Latent Features

K
1

Latent Features

D Input Features

A “Deep”
Feature
Learner

Note: After each hidden layer, there
is also a nonlinearity (not shown)

Each hidden layer has a learned latent features based representation of the original input x

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 9

Linear Models to construct Deep Neural Networks

Can even construct multiple-output versions of deep neural network

z
1

z
2

z
K1

(1)(1)(1)

z
1
(2)

z
1
(L)

z
2
(2)

z
2
(L)

z
K2

(2)

z
KL

(L)
Hidden Layer L

 Hidden Layer 2

 Hidden Layer 1

K
L
 Latent Features

K
2

Latent Features

K
1

Latent Features

D Input Features

These can be used for multi-output regression, multi-class/multi-label classification, etc.

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 10

Linear Models to construct Deep Neural Networks

Can even construct multiple-output versions of deep neural network

z
1

z
2

z
K1

(1)(1)(1)

z
1
(2)

z
1
(L)

z
2
(2)

z
2
(L)

z
K2

(2)

z
KL

(L)
Hidden Layer L

 Hidden Layer 2

 Hidden Layer 1

K
L
 Latent Features

K
2

Latent Features

K
1

Latent Features

D Input Features

These can be used for multi-output regression, multi-class/multi-label classification, etc.

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 10

Linear Models with Offset (Bias) Parameter

Some linear models use an additional bias parameter b

1

b

Can append a constant feature “1” for each input and rewrite as y = w>x , with x ,w ∈ RD+1

We will assume the same and omit the explicit bias for simplicity of notation

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 11

Linear Models with Offset (Bias) Parameter

Some linear models use an additional bias parameter b

1

b

Can append a constant feature “1” for each input and rewrite as y = w>x , with x ,w ∈ RD+1

We will assume the same and omit the explicit bias for simplicity of notation

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 11

Linear Models with Offset (Bias) Parameter

Some linear models use an additional bias parameter b

1

b

Can append a constant feature “1” for each input and rewrite as y = w>x , with x ,w ∈ RD+1

We will assume the same and omit the explicit bias for simplicity of notation

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 11

Learning Linear Models

z
1

z
2

z
K

W

W

W

W

Linear Models are ubiquitous!

How do we learn them from data?

For linear models, learning = Learning the model parameters (the weights)

We will formulate learning as an optimization problem w.r.t. these parameters

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 12

Learning Linear Models

z
1

z
2

z
K

W

W

W

W

Linear Models are ubiquitous!
How do we learn them from data?

For linear models, learning = Learning the model parameters (the weights)

We will formulate learning as an optimization problem w.r.t. these parameters

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 12

Learning Linear Models

z
1

z
2

z
K

W

W

W

W

Linear Models are ubiquitous!
How do we learn them from data?

For linear models, learning = Learning the model parameters (the weights)

We will formulate learning as an optimization problem w.r.t. these parameters

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 12

Learning a Linear Model for Regression

Let’s focus on learning the simplest linear model for now: Linear Regression

 (Predicted) Output

 The Input
(D features)

Suppose we are given regression training data {(xn, yn)}Nn=1 with xn ∈ RD , and yn ∈ R
Let’s model the training data using w and assume yn ≈ w>xn, ∀n (equivalently y ≈ Xw)

N N

D

D

11

Linear System of Equations

Can solve it to find optimal

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 13

Learning a Linear Model for Regression

Let’s focus on learning the simplest linear model for now: Linear Regression

 (Predicted) Output

 The Input
(D features)

Suppose we are given regression training data {(xn, yn)}Nn=1 with xn ∈ RD , and yn ∈ R

Let’s model the training data using w and assume yn ≈ w>xn, ∀n (equivalently y ≈ Xw)

N N

D

D

11

Linear System of Equations

Can solve it to find optimal

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 13

Learning a Linear Model for Regression

Let’s focus on learning the simplest linear model for now: Linear Regression

 (Predicted) Output

 The Input
(D features)

Suppose we are given regression training data {(xn, yn)}Nn=1 with xn ∈ RD , and yn ∈ R
Let’s model the training data using w and assume yn ≈ w>xn, ∀n

(equivalently y ≈ Xw)

N N

D

D

11

Linear System of Equations

Can solve it to find optimal

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 13

Learning a Linear Model for Regression

Let’s focus on learning the simplest linear model for now: Linear Regression

 (Predicted) Output

 The Input
(D features)

Suppose we are given regression training data {(xn, yn)}Nn=1 with xn ∈ RD , and yn ∈ R
Let’s model the training data using w and assume yn ≈ w>xn, ∀n (equivalently y ≈ Xw)

N N

D

D

11

Linear System of Equations

Can solve it to find optimal

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 13

Learning a Linear Model for Regression

Let’s focus on learning the simplest linear model for now: Linear Regression

 (Predicted) Output

 The Input
(D features)

Suppose we are given regression training data {(xn, yn)}Nn=1 with xn ∈ RD , and yn ∈ R
Let’s model the training data using w and assume yn ≈ w>xn, ∀n (equivalently y ≈ Xw)

N N

D

D

11

Linear System of Equations

Can solve it to find optimal

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 13

Linear Regression: Pictorially

With one-dimensional inputs, linear regression would look like

y

x
Error of the model for an example = yn −w>xn (= yn − wxn for scalar input case)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 14

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero

N∑
n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0

⇒
N∑

n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn

= (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

Define the total error or “loss” on the training data, when using w as our model, as

L(w) =
N∑

n=1

(yn − w>xn)2

Note: Squared loss chosen for simplicity. Can define other type of losses too (more on this later)

The best w will be the one that minimizes the above error (requires optimization w.r.t. w)

ŵ = arg min
w
L(w) = arg min

w

N∑
n=1

(yn − w>xn)2

This is known as “least squares” linear regression (Gauss/Legendre, early 18th century)

Taking derivative (gradient) of L(w) w.r.t. w and setting to zero
N∑

n=1

2(yn − w>xn)
∂

∂w
(yn − x>n w) = 0 ⇒

N∑
n=1

xn(yn − x>n w) = 0

Simplifying further, we get a closed form solution for w ∈ RD

w = (
N∑

n=1

xnx>n)−1
N∑

n=1

ynxn = (X>X)−1X>y

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 15

Linear Regression

N N

D

D

11

Consider the closed form solution we obtained for linear regression based on least squares

The above closed form solution is nice but has some issues

The D × D matrix X>X may not be invertible

Based solely on minimizing the training error
∑N

n=1(yn − w>xn)2 ⇒ can overfit the training data

Expensive inversion for large D: Can used iterative optimization techniques (will come to this later)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 16

Linear Regression

N N

D

D

11

Consider the closed form solution we obtained for linear regression based on least squares

The above closed form solution is nice but has some issues

The D × D matrix X>X may not be invertible

Based solely on minimizing the training error
∑N

n=1(yn − w>xn)2 ⇒ can overfit the training data

Expensive inversion for large D: Can used iterative optimization techniques (will come to this later)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 16

Linear Regression

N N

D

D

11

Consider the closed form solution we obtained for linear regression based on least squares

The above closed form solution is nice but has some issues

The D × D matrix X>X may not be invertible

Based solely on minimizing the training error
∑N

n=1(yn − w>xn)2 ⇒ can overfit the training data

Expensive inversion for large D: Can used iterative optimization techniques (will come to this later)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 16

Linear Regression

N N

D

D

11

Consider the closed form solution we obtained for linear regression based on least squares

The above closed form solution is nice but has some issues

The D × D matrix X>X may not be invertible

Based solely on minimizing the training error
∑N

n=1(yn − w>xn)2 ⇒ can overfit the training data

Expensive inversion for large D: Can used iterative optimization techniques (will come to this later)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 16

Linear Regression

N N

D

D

11

Consider the closed form solution we obtained for linear regression based on least squares

The above closed form solution is nice but has some issues

The D × D matrix X>X may not be invertible

Based solely on minimizing the training error
∑N

n=1(yn − w>xn)2 ⇒ can overfit the training data

Expensive inversion for large D: Can used iterative optimization techniques (will come to this later)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 16

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]

Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w)

: Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

Regularized Linear Regression (a.k.a. Ridge Regression)

Consider regularized loss: Training error + `2-squared norm of w , i.e., ||w ||22 = w>w =
∑D

d=1 w
2
d

Lreg (w) =

[
N∑

n=1

(yn −w>xn)2 + λw>w

]
Minimizing the above objective w.r.t. w does two things

Keeps the training error small

Keeps the `2 norm of w small (and thus also the individual components of w): Regularization

There is a trade-off between the two terms: The regularization hyperparam λ > 0 controls it

Very small λ means almost no regularization (can overfit)

Very large λ means very high regularization (can underfit - high training error)

Can use cross-validation to choose the “right” λ

The solution to the above optimization problem is: w = (X>X + λID)−1X>y

Note that, in this case, regularization also made inversion possible (note the λID term)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 17

How `2 Regularization Helps Here?

We saw that `2 regularization encourages the individual weights in w to be small

Small weights ensure that the function y = f (x) = w>x is smooth (i.e., we expect similar x ’s to
have similar y ’s). Below is an informal justification:

Consider two points xn ∈ RD and xm ∈ RD that are exactly similar in all features except the d-th
feature where they differ by a small value, say ε

Assuming a simple/smooth function f (x), yn and ym should also be close

However, as per the model y = f (x) = w>x , yn and ym will differ by εwd

Unless we constrain wd to have a small value, the difference εwd would also be very large (which
isn’t what we want).

That’s why regularizing (via `2 regularization) and making the individual components of the weight
vector small helps

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 18

Regularization: Some Comments

Many ways to regularize ML models (for linear as well as other models)

Some are based on adding a norm of w to the loss function (as we already saw)

Using `2 norm in the loss function promotes the individual entries w to be small (we saw that)

Using `0 norm encourages very few non-zero entries in w (thereby promoting “sparse” w)

||w ||0 = #nnz(w)

Optimizing with `0 is difficult (NP-hard problem); can use `1 norm as an approximation

||w ||1 =
D∑

d=1

|wd |

Note: Since they learn a sparse w , `0 or `1 regularization is also useful for doing feature selection
(wd = 0 means feature d is irrelevant). We will revisit `1 later to formally see why `1 gives sparsity

Other techniques for regularization: Early stopping (of training), “dropout”, etc (popular in deep
neural networks; will revisit these later when discussing deep learning)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 19

Regularization: Some Comments

Many ways to regularize ML models (for linear as well as other models)

Some are based on adding a norm of w to the loss function (as we already saw)

Using `2 norm in the loss function promotes the individual entries w to be small (we saw that)

Using `0 norm encourages very few non-zero entries in w (thereby promoting “sparse” w)

||w ||0 = #nnz(w)

Optimizing with `0 is difficult (NP-hard problem); can use `1 norm as an approximation

||w ||1 =
D∑

d=1

|wd |

Note: Since they learn a sparse w , `0 or `1 regularization is also useful for doing feature selection
(wd = 0 means feature d is irrelevant). We will revisit `1 later to formally see why `1 gives sparsity

Other techniques for regularization: Early stopping (of training), “dropout”, etc (popular in deep
neural networks; will revisit these later when discussing deep learning)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 19

Regularization: Some Comments

Many ways to regularize ML models (for linear as well as other models)

Some are based on adding a norm of w to the loss function (as we already saw)

Using `2 norm in the loss function promotes the individual entries w to be small (we saw that)

Using `0 norm encourages very few non-zero entries in w (thereby promoting “sparse” w)

||w ||0 = #nnz(w)

Optimizing with `0 is difficult (NP-hard problem); can use `1 norm as an approximation

||w ||1 =
D∑

d=1

|wd |

Note: Since they learn a sparse w , `0 or `1 regularization is also useful for doing feature selection
(wd = 0 means feature d is irrelevant). We will revisit `1 later to formally see why `1 gives sparsity

Other techniques for regularization: Early stopping (of training), “dropout”, etc (popular in deep
neural networks; will revisit these later when discussing deep learning)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 19

Regularization: Some Comments

Many ways to regularize ML models (for linear as well as other models)

Some are based on adding a norm of w to the loss function (as we already saw)

Using `2 norm in the loss function promotes the individual entries w to be small (we saw that)

Using `0 norm encourages very few non-zero entries in w (thereby promoting “sparse” w)

||w ||0 = #nnz(w)

Optimizing with `0 is difficult (NP-hard problem); can use `1 norm as an approximation

||w ||1 =
D∑

d=1

|wd |

Note: Since they learn a sparse w , `0 or `1 regularization is also useful for doing feature selection
(wd = 0 means feature d is irrelevant). We will revisit `1 later to formally see why `1 gives sparsity

Other techniques for regularization: Early stopping (of training), “dropout”, etc (popular in deep
neural networks; will revisit these later when discussing deep learning)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 19

Regularization: Some Comments

Many ways to regularize ML models (for linear as well as other models)

Some are based on adding a norm of w to the loss function (as we already saw)

Using `2 norm in the loss function promotes the individual entries w to be small (we saw that)

Using `0 norm encourages very few non-zero entries in w (thereby promoting “sparse” w)

||w ||0 = #nnz(w)

Optimizing with `0 is difficult (NP-hard problem); can use `1 norm as an approximation

||w ||1 =
D∑

d=1

|wd |

Note: Since they learn a sparse w , `0 or `1 regularization is also useful for doing feature selection
(wd = 0 means feature d is irrelevant). We will revisit `1 later to formally see why `1 gives sparsity

Other techniques for regularization: Early stopping (of training), “dropout”, etc (popular in deep
neural networks; will revisit these later when discussing deep learning)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 19

Regularization: Some Comments

Many ways to regularize ML models (for linear as well as other models)

Some are based on adding a norm of w to the loss function (as we already saw)

Using `2 norm in the loss function promotes the individual entries w to be small (we saw that)

Using `0 norm encourages very few non-zero entries in w (thereby promoting “sparse” w)

||w ||0 = #nnz(w)

Optimizing with `0 is difficult (NP-hard problem); can use `1 norm as an approximation

||w ||1 =
D∑

d=1

|wd |

Note: Since they learn a sparse w , `0 or `1 regularization is also useful for doing feature selection
(wd = 0 means feature d is irrelevant). We will revisit `1 later to formally see why `1 gives sparsity

Other techniques for regularization: Early stopping (of training), “dropout”, etc (popular in deep
neural networks; will revisit these later when discussing deep learning)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 19

Regularization: Some Comments

Many ways to regularize ML models (for linear as well as other models)

Some are based on adding a norm of w to the loss function (as we already saw)

Using `2 norm in the loss function promotes the individual entries w to be small (we saw that)

Using `0 norm encourages very few non-zero entries in w (thereby promoting “sparse” w)

||w ||0 = #nnz(w)

Optimizing with `0 is difficult (NP-hard problem); can use `1 norm as an approximation

||w ||1 =
D∑

d=1

|wd |

Note: Since they learn a sparse w , `0 or `1 regularization is also useful for doing feature selection
(wd = 0 means feature d is irrelevant). We will revisit `1 later to formally see why `1 gives sparsity

Other techniques for regularization: Early stopping (of training), “dropout”, etc (popular in deep
neural networks; will revisit these later when discussing deep learning)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 19

Linear/Ridge Regression via Gradient Descent

Both least squares regression and ridge regression require matrix inversion

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Can be computationally expensive when D is very large

A faster way is to use iterative optimization, such as batch or stochastic gradient descent

A basic batch gradient-descent based procedure looks like

Start with an initial value of w = w (0)

Update w by moving along the gradient of the loss function L

w (t) = w (t−1) − η ∂L
∂w

∣∣∣∣
w=w (t−1)

where η is the learning rate

Repeat until converge

For least squares, the gradient is ∂L
∂w = −

∑N
n=1 xn(yn − x>n w) (no matrix inversion involved)

Such iterative methods for optimizing loss functions are widely used in ML. Will revisit these later

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 20

Linear/Ridge Regression via Gradient Descent

Both least squares regression and ridge regression require matrix inversion

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Can be computationally expensive when D is very large

A faster way is to use iterative optimization, such as batch or stochastic gradient descent

A basic batch gradient-descent based procedure looks like

Start with an initial value of w = w (0)

Update w by moving along the gradient of the loss function L

w (t) = w (t−1) − η ∂L
∂w

∣∣∣∣
w=w (t−1)

where η is the learning rate

Repeat until converge

For least squares, the gradient is ∂L
∂w = −

∑N
n=1 xn(yn − x>n w) (no matrix inversion involved)

Such iterative methods for optimizing loss functions are widely used in ML. Will revisit these later

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 20

Linear/Ridge Regression via Gradient Descent

Both least squares regression and ridge regression require matrix inversion

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Can be computationally expensive when D is very large

A faster way is to use iterative optimization, such as batch or stochastic gradient descent

A basic batch gradient-descent based procedure looks like

Start with an initial value of w = w (0)

Update w by moving along the gradient of the loss function L

w (t) = w (t−1) − η ∂L
∂w

∣∣∣∣
w=w (t−1)

where η is the learning rate

Repeat until converge

For least squares, the gradient is ∂L
∂w = −

∑N
n=1 xn(yn − x>n w) (no matrix inversion involved)

Such iterative methods for optimizing loss functions are widely used in ML. Will revisit these later

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 20

Linear/Ridge Regression via Gradient Descent

Both least squares regression and ridge regression require matrix inversion

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Can be computationally expensive when D is very large

A faster way is to use iterative optimization, such as batch or stochastic gradient descent

A basic batch gradient-descent based procedure looks like

Start with an initial value of w = w (0)

Update w by moving along the gradient of the loss function L

w (t) = w (t−1) − η ∂L
∂w

∣∣∣∣
w=w (t−1)

where η is the learning rate

Repeat until converge

For least squares, the gradient is ∂L
∂w = −

∑N
n=1 xn(yn − x>n w) (no matrix inversion involved)

Such iterative methods for optimizing loss functions are widely used in ML. Will revisit these later

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 20

Linear/Ridge Regression via Gradient Descent

Both least squares regression and ridge regression require matrix inversion

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Can be computationally expensive when D is very large

A faster way is to use iterative optimization, such as batch or stochastic gradient descent

A basic batch gradient-descent based procedure looks like

Start with an initial value of w = w (0)

Update w by moving along the gradient of the loss function L

w (t) = w (t−1) − η ∂L
∂w

∣∣∣∣
w=w (t−1)

where η is the learning rate

Repeat until converge

For least squares, the gradient is ∂L
∂w = −

∑N
n=1 xn(yn − x>n w) (no matrix inversion involved)

Such iterative methods for optimizing loss functions are widely used in ML. Will revisit these later

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 20

Linear/Ridge Regression via Gradient Descent

Both least squares regression and ridge regression require matrix inversion

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Can be computationally expensive when D is very large

A faster way is to use iterative optimization, such as batch or stochastic gradient descent

A basic batch gradient-descent based procedure looks like

Start with an initial value of w = w (0)

Update w by moving along the gradient of the loss function L

w (t) = w (t−1) − η ∂L
∂w

∣∣∣∣
w=w (t−1)

where η is the learning rate

Repeat until converge

For least squares, the gradient is ∂L
∂w = −

∑N
n=1 xn(yn − x>n w) (no matrix inversion involved)

Such iterative methods for optimizing loss functions are widely used in ML. Will revisit these later

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 20

Linear/Ridge Regression via Gradient Descent

Both least squares regression and ridge regression require matrix inversion

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Can be computationally expensive when D is very large

A faster way is to use iterative optimization, such as batch or stochastic gradient descent

A basic batch gradient-descent based procedure looks like

Start with an initial value of w = w (0)

Update w by moving along the gradient of the loss function L

w (t) = w (t−1) − η ∂L
∂w

∣∣∣∣
w=w (t−1)

where η is the learning rate

Repeat until converge

For least squares, the gradient is ∂L
∂w = −

∑N
n=1 xn(yn − x>n w) (no matrix inversion involved)

Such iterative methods for optimizing loss functions are widely used in ML. Will revisit these later

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 20

Linear Regression via Gradient-based Methods: Some Notes

We will revisit gradient based methods later but a few things to keep in mind

Gradient Descent guaranteed to converge to a local minima

Gradient Descent converges to global minima if the function is convex

A function is convex if second derivative is non-negative everywhere (for scalar functions) or if
Hessian is positive semi-definite (for vector-valued functions). For a convex function, every local
minima is also a global minima.

Note: The squared loss function in linear regression is convex

With `2 regularizer, it becomes strictly convex (single global minima)

For Gradient Descent, the learning rate is important (should not be too large or too small)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 21

Linear Regression via Gradient-based Methods: Some Notes

We will revisit gradient based methods later but a few things to keep in mind

Gradient Descent guaranteed to converge to a local minima

Gradient Descent converges to global minima if the function is convex

A function is convex if second derivative is non-negative everywhere (for scalar functions) or if
Hessian is positive semi-definite (for vector-valued functions). For a convex function, every local
minima is also a global minima.

Note: The squared loss function in linear regression is convex

With `2 regularizer, it becomes strictly convex (single global minima)

For Gradient Descent, the learning rate is important (should not be too large or too small)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 21

Linear Regression via Gradient-based Methods: Some Notes

We will revisit gradient based methods later but a few things to keep in mind

Gradient Descent guaranteed to converge to a local minima

Gradient Descent converges to global minima if the function is convex

A function is convex if second derivative is non-negative everywhere (for scalar functions) or if
Hessian is positive semi-definite (for vector-valued functions). For a convex function, every local
minima is also a global minima.

Note: The squared loss function in linear regression is convex

With `2 regularizer, it becomes strictly convex (single global minima)

For Gradient Descent, the learning rate is important (should not be too large or too small)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 21

Linear Regression via Gradient-based Methods: Some Notes

We will revisit gradient based methods later but a few things to keep in mind

Gradient Descent guaranteed to converge to a local minima

Gradient Descent converges to global minima if the function is convex

A function is convex if second derivative is non-negative everywhere (for scalar functions) or if
Hessian is positive semi-definite (for vector-valued functions). For a convex function, every local
minima is also a global minima.

Note: The squared loss function in linear regression is convex

With `2 regularizer, it becomes strictly convex (single global minima)

For Gradient Descent, the learning rate is important (should not be too large or too small)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 21

Linear Regression via Gradient-based Methods: Some Notes

We will revisit gradient based methods later but a few things to keep in mind

Gradient Descent guaranteed to converge to a local minima

Gradient Descent converges to global minima if the function is convex

A function is convex if second derivative is non-negative everywhere (for scalar functions) or if
Hessian is positive semi-definite (for vector-valued functions). For a convex function, every local
minima is also a global minima.

Note: The squared loss function in linear regression is convex

With `2 regularizer, it becomes strictly convex (single global minima)

For Gradient Descent, the learning rate is important (should not be too large or too small)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 21

Linear Regression as Solving System of Linear Equations

Solving y = Xw for w is like solving for D unknowns w1, . . . ,wD using N equations

y1 = x11w1 + x12w2 + . . .+ x1DwD

y2 = x21w1 + x22w2 + . . .+ x2DwD

...

yN = xN1w1 + xN2w2 + . . .+ xNDwD

Can therefore view the linear regression problem as a system of linear equations

However, in linear regression, we would rarely have N = D, but N > D or D > N

N > D case is an overdetermined system of linear equations (# equations > # unknowns)

D > N case is an underdetermined system of linear equations (# unknowns > # equations)

Thus methods to solve over/underdetermined systems can be used to solve linear regression as well

Many of these don’t require a matrix inversion (will provide a separate note with details)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 22

Linear Regression as Solving System of Linear Equations

Solving y = Xw for w is like solving for D unknowns w1, . . . ,wD using N equations

y1 = x11w1 + x12w2 + . . .+ x1DwD

y2 = x21w1 + x22w2 + . . .+ x2DwD

...

yN = xN1w1 + xN2w2 + . . .+ xNDwD

Can therefore view the linear regression problem as a system of linear equations

However, in linear regression, we would rarely have N = D, but N > D or D > N

N > D case is an overdetermined system of linear equations (# equations > # unknowns)

D > N case is an underdetermined system of linear equations (# unknowns > # equations)

Thus methods to solve over/underdetermined systems can be used to solve linear regression as well

Many of these don’t require a matrix inversion (will provide a separate note with details)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 22

Linear Regression as Solving System of Linear Equations

Solving y = Xw for w is like solving for D unknowns w1, . . . ,wD using N equations

y1 = x11w1 + x12w2 + . . .+ x1DwD

y2 = x21w1 + x22w2 + . . .+ x2DwD

...

yN = xN1w1 + xN2w2 + . . .+ xNDwD

Can therefore view the linear regression problem as a system of linear equations

However, in linear regression, we would rarely have N = D, but N > D or D > N

N > D case is an overdetermined system of linear equations (# equations > # unknowns)

D > N case is an underdetermined system of linear equations (# unknowns > # equations)

Thus methods to solve over/underdetermined systems can be used to solve linear regression as well

Many of these don’t require a matrix inversion (will provide a separate note with details)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 22

Linear Regression as Solving System of Linear Equations

Solving y = Xw for w is like solving for D unknowns w1, . . . ,wD using N equations

y1 = x11w1 + x12w2 + . . .+ x1DwD

y2 = x21w1 + x22w2 + . . .+ x2DwD

...

yN = xN1w1 + xN2w2 + . . .+ xNDwD

Can therefore view the linear regression problem as a system of linear equations

However, in linear regression, we would rarely have N = D, but N > D or D > N

N > D case is an overdetermined system of linear equations (# equations > # unknowns)

D > N case is an underdetermined system of linear equations (# unknowns > # equations)

Thus methods to solve over/underdetermined systems can be used to solve linear regression as well

Many of these don’t require a matrix inversion (will provide a separate note with details)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 22

Linear Regression as Solving System of Linear Equations

Solving y = Xw for w is like solving for D unknowns w1, . . . ,wD using N equations

y1 = x11w1 + x12w2 + . . .+ x1DwD

y2 = x21w1 + x22w2 + . . .+ x2DwD

...

yN = xN1w1 + xN2w2 + . . .+ xNDwD

Can therefore view the linear regression problem as a system of linear equations

However, in linear regression, we would rarely have N = D, but N > D or D > N

N > D case is an overdetermined system of linear equations (# equations > # unknowns)

D > N case is an underdetermined system of linear equations (# unknowns > # equations)

Thus methods to solve over/underdetermined systems can be used to solve linear regression as well

Many of these don’t require a matrix inversion (will provide a separate note with details)

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 22

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

Linear Regression: Some Other Comments

A simple and interpretable method. Very widely used.

Least squares and ridge regression are one of the very few ML problems with closed form solutions

Least Squares w = (X>X)−1X>y , Ridge w = (X>X + λID)−1X>y

Many ML problems can be easily reduced to the form y = Xw or Y = XW

Equivalence to over/underdetermined system of linear equations enables us to use efficient solvers
(a lot of work in the numerical linear algebra community to scale up linear systems solvers)

An interesting bit: Note that w = (X>X)−1X>y ⇒ Aw = b where A = X>X and b = X>y

Using the above relation, can solve for w by solving Aw = b. A standard linear system with D
equations and D unknowns; can be solved using efficient linear systems solvers.

The basic (regularized) linear regression can also be easily extended to

Nonlinear Regression yn ≈ w>φ(xn) by replacing the original feature vector xn by a nonlinear
transformation φ(xn) (where φ may be pre-defined or itself learned)

Generalized Linear Model yn = g(w>xn) when response yn is not real-valued but
binary/categorical/count, etc, and g is a “link function”

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 23

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]

This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]
This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]
This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]
This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]
This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]
This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]
This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]
This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

General Supervised Learning as Optimization

We saw that regularized least squares regression required solving

ŵ = arg min
w
Lreg (w) = arg min

w

[
N∑

n=1

(yn − w>xn)2 +
λ

2
w>w

]
This is essentially the training loss (called “empirical loss”), plus the regularization term

In general, for supervised learning, the goal is to learn a function f , s.t. f (xn) ≈ yn,∀n

Moreover, we also want to have a simple f , i.e., have some regularization

Therefore, learning the best f amounts to solving the following optimization problem

f̂ = arg min
f
Lreg (f) = arg min

f

N∑
n=1

`(yn, f (xn)) + λR(f)

where `(yn, f (xn)) measures the model f ’s training loss on (xn, yn) and R(f) is a regularizer

For least squares regression, f (xn) = w>x , and R(f) = w>w , and `(yn, f (xn)) = (yn −w>xn)2

As we’ll see later, different supervised learning problems differ in the choice of f , R(.), and `

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 24

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss:

Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss:

Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss:

Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss: Huber Loss: Squared then Absolute

-insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

A Brief Detour: Some Loss Functions

Some popular loss functions for regression problems1

Squared Loss: Absolute Loss: Huber Loss: Squared then Absolute -insensitive Loss:

 zero loss in
 this region

Note: Can also
use squared
instead of absolute

Absolute/Huber loss preferred if there are outliers in the data

Less affected by large errors |y − f (x)| as compared to the squared loss

Overall objective function = loss func + some regularizer (e.g., `2, `1), as we saw for ridge reg.

Some objectives easy to optimize (convex and differentiable), some not so (e.g., non-differentiable)

Will revisit many of these aspects when we talk about optimization techniques for ML

1
will look at loss functions for classification later when discussing classification in detail

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 25

General Unsupervised Learning as Optimization

Can we formulate unsupervised learning problems as optimization problems?

Yes, of course! :-)

Consider an unsupervised learning problem with N inputs X = {xn}Nn=1

Unsupervised, so no labels. Suppose we are interested in learning a new representation Z = {zn}Nn=1

Assume a function f that models the relationship between xn and zn

xn ≈ f (zn) ∀n

In this case, we can define a loss function `(xn, f (zn)) that measures how well f can “reconstruct”
the original xn from its new representation zn

This generic unsup. learning problem can thus be written as the following optimization problem

f̂ = arg min
f ,Z

N∑
n=1

`(xn, f (zn)) + λR(f ,Z)

In this case both f and Z need to be learned. Typically learned via alternating optimization

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 26

General Unsupervised Learning as Optimization

Can we formulate unsupervised learning problems as optimization problems? Yes, of course! :-)

Consider an unsupervised learning problem with N inputs X = {xn}Nn=1

Unsupervised, so no labels. Suppose we are interested in learning a new representation Z = {zn}Nn=1

Assume a function f that models the relationship between xn and zn

xn ≈ f (zn) ∀n

In this case, we can define a loss function `(xn, f (zn)) that measures how well f can “reconstruct”
the original xn from its new representation zn

This generic unsup. learning problem can thus be written as the following optimization problem

f̂ = arg min
f ,Z

N∑
n=1

`(xn, f (zn)) + λR(f ,Z)

In this case both f and Z need to be learned. Typically learned via alternating optimization

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 26

General Unsupervised Learning as Optimization

Can we formulate unsupervised learning problems as optimization problems? Yes, of course! :-)

Consider an unsupervised learning problem with N inputs X = {xn}Nn=1

Unsupervised, so no labels. Suppose we are interested in learning a new representation Z = {zn}Nn=1

Assume a function f that models the relationship between xn and zn

xn ≈ f (zn) ∀n

In this case, we can define a loss function `(xn, f (zn)) that measures how well f can “reconstruct”
the original xn from its new representation zn

This generic unsup. learning problem can thus be written as the following optimization problem

f̂ = arg min
f ,Z

N∑
n=1

`(xn, f (zn)) + λR(f ,Z)

In this case both f and Z need to be learned. Typically learned via alternating optimization

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 26

General Unsupervised Learning as Optimization

Can we formulate unsupervised learning problems as optimization problems? Yes, of course! :-)

Consider an unsupervised learning problem with N inputs X = {xn}Nn=1

Unsupervised, so no labels. Suppose we are interested in learning a new representation Z = {zn}Nn=1

Assume a function f that models the relationship between xn and zn

xn ≈ f (zn) ∀n

In this case, we can define a loss function `(xn, f (zn)) that measures how well f can “reconstruct”
the original xn from its new representation zn

This generic unsup. learning problem can thus be written as the following optimization problem

f̂ = arg min
f ,Z

N∑
n=1

`(xn, f (zn)) + λR(f ,Z)

In this case both f and Z need to be learned. Typically learned via alternating optimization

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 26

General Unsupervised Learning as Optimization

Can we formulate unsupervised learning problems as optimization problems? Yes, of course! :-)

Consider an unsupervised learning problem with N inputs X = {xn}Nn=1

Unsupervised, so no labels. Suppose we are interested in learning a new representation Z = {zn}Nn=1

Assume a function f that models the relationship between xn and zn

xn ≈ f (zn) ∀n

In this case, we can define a loss function `(xn, f (zn)) that measures how well f can “reconstruct”
the original xn from its new representation zn

This generic unsup. learning problem can thus be written as the following optimization problem

f̂ = arg min
f ,Z

N∑
n=1

`(xn, f (zn)) + λR(f ,Z)

In this case both f and Z need to be learned. Typically learned via alternating optimization

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 26

General Unsupervised Learning as Optimization

Can we formulate unsupervised learning problems as optimization problems? Yes, of course! :-)

Consider an unsupervised learning problem with N inputs X = {xn}Nn=1

Unsupervised, so no labels. Suppose we are interested in learning a new representation Z = {zn}Nn=1

Assume a function f that models the relationship between xn and zn

xn ≈ f (zn) ∀n

In this case, we can define a loss function `(xn, f (zn)) that measures how well f can “reconstruct”
the original xn from its new representation zn

This generic unsup. learning problem can thus be written as the following optimization problem

f̂ = arg min
f ,Z

N∑
n=1

`(xn, f (zn)) + λR(f ,Z)

In this case both f and Z need to be learned. Typically learned via alternating optimization

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 26

General Unsupervised Learning as Optimization

Can we formulate unsupervised learning problems as optimization problems? Yes, of course! :-)

Consider an unsupervised learning problem with N inputs X = {xn}Nn=1

Unsupervised, so no labels. Suppose we are interested in learning a new representation Z = {zn}Nn=1

Assume a function f that models the relationship between xn and zn

xn ≈ f (zn) ∀n

In this case, we can define a loss function `(xn, f (zn)) that measures how well f can “reconstruct”
the original xn from its new representation zn

This generic unsup. learning problem can thus be written as the following optimization problem

f̂ = arg min
f ,Z

N∑
n=1

`(xn, f (zn)) + λR(f ,Z)

In this case both f and Z need to be learned. Typically learned via alternating optimization

Intro to Machine Learning (CS771A) Linear Models and Learning via Optimization 26

