Multitask Learning, Overview of Some Other Topics, Conclusion and Take-aways

Piyush Rai

Introduction to Machine Learning (CS771A)

November 15, 2018
Announcement

• Final exam: Nov 29, 4pm-8pm (L18, L19, L20)
Announcement

- Final exam: Nov 29, 4pm-8pm (L18, L19, L20)
- Final exam review Session: Nov 21 (Wed). Timing/venue: TBD

Intro to Machine Learning (CS771A)
Multitask Learning, Overview of Some Other Topics, Conclusion and Take-away
Announcement

- Final exam: Nov 29, 4pm-8pm (L18, L19, L20)
- Final exam review Session: Nov 21 (Wed). Timing/venue: TBD
- Project presentations scheduled between Nov 24-27. Fill-in your preferences ASAP
Announcement

- Final exam: Nov 29, 4pm-8pm (L18, L19, L20)
- Final exam review Session: Nov 21 (Wed). Timing/venue: TBD
- Project presentations scheduled between Nov 24-27. Fill-in your preferences ASAP
- Project final report due on Nov 30
Plan for today

- Very quick walk-through (not a review) of what we have seen in this course
Plan for today

- Very quick walk-through (not a review) of what we have seen in this course
- Multitask Learning
Plan for today

- Very quick walk-through (not a review) of what we have seen in this course
- Multitask Learning
- Overview of some other topics
 - Learning Theory
 - Online Learning
 - Learning from time-series data
 - One-shot/few-shot learning
 - Zero-shot learning
 - Bias and Fairness
 - Interpretability of ML models
 - Model Compression
Things we saw..

- Distance based methods (prototype based and nearest neighbors). Simple but powerful.
Things we saw..

- Distance based methods (**prototype based** and **nearest neighbors**). Simple but powerful
- Learning by asking questions (**Decision Trees**). Simple but powerful (+fast at test time)
Things we saw..

- Distance based methods (prototype based and nearest neighbors). Simple but powerful
- Learning by asking questions (Decision Trees). Simple but powerful (+fast at test time)
- Learning as optimization (loss function and regularizer) and linear models for regression
Things we saw..

- Distance based methods (prototype based and nearest neighbors). Simple but powerful
- Learning by asking questions (Decision Trees). Simple but powerful (+fast at test time)
- Learning as optimization (loss function and regularizer) and linear models for regression
- Learning as probabilistic modeling (loss = NLL, reg. = prior, MLE, MAP, fully Bayesian)
Things we saw..

- Distance based methods (**prototype based** and **nearest neighbors**). Simple but powerful
- Learning by asking questions (**Decision Trees**). Simple but powerful (+fast at test time)
- Learning as **optimization** (**loss function** and **regularizer**) and **linear models** for regression
- Learning as **probabilistic modeling** (**loss = NLL**, **reg. = prior**, MLE, MAP, fully Bayesian)
- Probabilistic models for supervised learning
Things we saw..

- Distance based methods (prototype based and nearest neighbors). Simple but powerful
- Learning by asking questions (Decision Trees). Simple but powerful (+fast at test time)
- Learning as optimization (loss function and regularizer) and linear models for regression
- Learning as probabilistic modeling (loss = NLL, reg. = prior, MLE, MAP, fully Bayesian)
- Probabilistic models for supervised learning
 - Discriminative models: probabilistic linear regression, logistic and softmax classification
Things we saw..

- Distance based methods (prototype based and nearest neighbors). Simple but powerful
- Learning by asking questions (Decision Trees). Simple but powerful (+fast at test time)
- Learning as optimization (loss function and regularizer) and linear models for regression
- Learning as probabilistic modeling (loss = NLL, reg. = prior, MLE, MAP, fully Bayesian)
- Probabilistic models for supervised learning
 - Discriminative models: probabilistic linear regression, logistic and softmax classification
 - Generative models: Generative classification
Things we saw..

- Distance based methods (prototype based and nearest neighbors). Simple but powerful
- Learning by asking questions (Decision Trees). Simple but powerful (+fast at test time)
- Learning as optimization (loss function and regularizer) and linear models for regression
- Learning as probabilistic modeling (loss = NLL, reg. = prior, MLE, MAP, fully Bayesian)
- Probabilistic models for supervised learning
 - Discriminative models: probabilistic linear regression, logistic and softmax classification
 - Generative models: Generative classification
 - Connections to non-probabilistic approaches
Distance based methods (prototype based and nearest neighbors). Simple but powerful
Learning by asking questions (Decision Trees). Simple but powerful (+fast at test time)
Learning as optimization (loss function and regularizer) and linear models for regression
Learning as probabilistic modeling (loss = NLL, reg. = prior, MLE, MAP, fully Bayesian)
Probabilistic models for supervised learning
 - Discriminative models: probabilistic linear regression, logistic and softmax classification
 - Generative models: Generative classification
 - Connections to non-probabilistic approaches
Solving optimization problems arising in machine learning models
Things we saw..

- Distance based methods (**prototype based** and **nearest neighbors**). Simple but powerful
- Learning by asking questions (**Decision Trees**). Simple but powerful (+fast at test time)
- Learning as optimization (**loss function** and **regularizer**) and **linear models** for regression
- Learning as **probabilistic modeling** (**loss = NLL**, **reg. = prior**, MLE, MAP, fully Bayesian)
- Probabilistic models for supervised learning
 - **Discriminative models**: probabilistic linear regression, logistic and softmax classification
 - **Generative models**: Generative classification
 - Connections to non-probabilistic approaches
- Solving optimization problems arising in machine learning models
- Hyperplane and **large-margin** classifiers (Perceptron and SVM)
Things we saw..

- Distance based methods (prototype based and nearest neighbors). Simple but powerful
- Learning by asking questions (Decision Trees). Simple but powerful (+fast at test time)
- Learning as optimization (loss function and regularizer) and linear models for regression
- Learning as probabilistic modeling (loss = NLL, reg. = prior, MLE, MAP, fully Bayesian)
- Probabilistic models for supervised learning
 - **Discriminative models:** probabilistic linear regression, logistic and softmax classification
 - **Generative models:** Generative classification
 - Connections to non-probabilistic approaches
- Solving optimization problems arising in machine learning models
- Hyperplane and **large-margin** classifiers (Perceptron and SVM)
- **Kernel methods** to turn linear models into nonlinear models
Things we saw..

- Distance based methods (**prototype based** and **nearest neighbors**). Simple but powerful
- Learning by asking questions (**Decision Trees**). Simple but powerful (+fast at test time)
- Learning as **optimization** (**loss function** and **regularizer**) and **linear models** for regression
- Learning as **probabilistic modeling** (**loss = NLL**, **reg. = prior**, MLE, MAP, fully Bayesian)
- Probabilistic models for supervised learning
 - **Discriminative models**: probabilistic linear regression, logistic and softmax classification
 - **Generative models**: Generative classification
 - Connections to non-probabilistic approaches
- Solving optimization problems arising in machine learning models
- Hyperplane and **large-margin** classifiers (Perceptron and SVM)
- **Kernel methods** to turn linear models into nonlinear models
- Basic clustering algorithms: **K-means** and extensions (e.g., soft **K-means**, kernel **K-means**)
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
 - **Expectation Maximization** (and **ALT-OPT**) for parameter estimation (MLE/MAP) in LVMs
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
 - *Expectation Maximization* (and *ALT-OPT*) for parameter estimation (MLE/MAP) in LVMs
 - Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

- Various dimensionality reduction methods
 - Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
 - Other variants: Supervised dim-red, dim-red from pairwise distances (e.g., MDS)

- Deep neural networks for supervised and unsupervised learning

- Recommender Systems via Matrix Factorization/Completion

- Model Selection, Evaluation Metrics, Learning from Imbalanced Data

- Reinforcement Learning, Markov Decision Process

- Ensemble Methods (Bagging and Boosting)

- Bias/Variance Trade-off, Some Practical Issues, Semi-supervised and Active Learning

Intro to Machine Learning (CS771A)
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
 - Expectation Maximization (and ALT-OPT) for parameter estimation (MLE/MAP) in LVMs
 - Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

- Various **dimensionality reduction** methods
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
 - **Expectation Maximization** (and ALT-OPT) for parameter estimation (MLE/MAP) in LVMs
 - Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

- Various **dimensionality reduction** methods
 - Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
Latent Variable Models for unsupervised and supervised learning

- Expectation Maximization (and ALT-OPT) for parameter estimation (MLE/MAP) in LVMs
- Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

Various dimensionality reduction methods

- Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
- Other variants: Supervised dim-red, dim-red from pairwise distances (e.g., MDS)
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
 - **Expectation Maximization** (and **ALT-OPT**) for parameter estimation (MLE/MAP) in LVMs
 - Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

- Various **dimensionality reduction** methods
 - Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
 - Other variants: Supervised dim-red, dim-red from **pairwise distances** (e.g., MDS)

- **Deep neural networks** for supervised and unsupervised learning
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
 - Expectation Maximization (and ALT-OPT) for parameter estimation (MLE/MAP) in LVMs
 - Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

- Various **dimensionality reduction** methods
 - Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
 - Other variants: Supervised dim-red, dim-red from pairwise distances (e.g., MDS)

- **Deep neural networks** for supervised and unsupervised learning

- **Recommender Systems** via Matrix Factorization/Completion
Latent Variable Models for unsupervised and supervised learning
- Expectation Maximization (and ALT-OPT) for parameter estimation (MLE/MAP) in LVMs
- Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

Various dimensionality reduction methods
- Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
- Other variants: Supervised dim-red, dim-red from pairwise distances (e.g., MDS)

Deep neural networks for supervised and unsupervised learning

Recommender Systems via Matrix Factorization/Completion

Model Selection, Evaluation Metrics, Learning from Imbalanced Data
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
 - Expectation Maximization (and ALT-OPT) for parameter estimation (MLE/MAP) in LVMs
 - Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

- Various **dimensionality reduction** methods
 - Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
 - Other variants: Supervised dim-red, dim-red from pairwise distances (e.g., MDS)

- **Deep neural networks** for supervised and unsupervised learning

- **Recommender Systems** via Matrix Factorization/Completion

- **Model Selection, Evaluation Metrics**, Learning from Imbalanced Data

- **Reinforcement Learning**, Markov Decision Process
Things we saw..

- **Latent Variable Models** for unsupervised and supervised learning
 - **Expectation Maximization** (and ALT-OPT) for parameter estimation (MLE/MAP) in LVMs
 - Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

- Various **dimensionality reduction** methods
 - Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
 - Other variants: Supervised dim-red, dim-red from pairwise distances (e.g., MDS)

- **Deep neural networks** for supervised and unsupervised learning

- **Recommender Systems** via **Matrix Factorization/Completion**

- **Model Selection**, **Evaluation Metrics**, Learning from **Imbalanced Data**

- **Reinforcement Learning**, Markov Decision Process

- **Ensemble Methods** (Bagging and Boosting)
Latent Variable Models for unsupervised and supervised learning
- Expectation Maximization (and ALT-OPT) for parameter estimation (MLE/MAP) in LVMs
- Examples: Gaussian Mixture Model, Probabilistic PCA, Mixture of Experts, Missing Data Problems

Various dimensionality reduction methods
- Linear: Classical PCA, SVD; Nonlinear: kernel PCA, LLE, tSNE, etc
- Other variants: Supervised dim-red, dim-red from pairwise distances (e.g., MDS)

Deep neural networks for supervised and unsupervised learning
- Recommender Systems via Matrix Factorization/Completion
- Model Selection, Evaluation Metrics, Learning from Imbalanced Data
- Reinforcement Learning, Markov Decision Process
- Ensemble Methods (Bagging and Boosting)
- Bias/Variance Trade-off, Some Practical Issues, Semi-supervised and Active Learning
Machine Learning = Density Estimation?

To a large extent, YES
Machine Learning = Density Estimation ?

To a large extent, YES

Supervised Learning: Learn $p(y|x, \Theta)$
Machine Learning = Density Estimation?

To a large extent, YES

Supervised Learning: Learn $p(y|x, \Theta)$

Unsupervised Learning: Learn $p(x|\Theta)$ or $\int p(x, z|\Theta)dz$
To a large extent, YES

Supervised Learning: Learn $p(y|x, \Theta)$

Unsupervised Learning: Learn $p(x|\Theta)$ or $\int p(x, z|\Theta)dz$

That’s why the probabilistic viewpoint is important!
Multitask Learning
Multitask Learning

- In many learning problems, we wish to learn many models, each having its own data

- Example: We wish to learn spam classifiers for M users using each user’s training data
Multitask Learning

- In many learning problems, we wish to learn many models, each having its own data

Example: We wish to learn spam classifiers for M users using each user’s training data

- Multitask Learning is about designing ways to learn them jointly!
Multitask Learning: Formally

- Suppose we are given M datasets $(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), \ldots, (X^{(M)}, y^{(M)})$

Naïve way: Learn w_1, w_2, \ldots, w_M by minimizing individual loss functions for each dataset

Let's call each learning problem a "task". Here we are learning each task independently

Usually okay to learn independently if we have plenty of training data for each learning task

If training data per-task is very little and if tasks are related, it may not be the most ideal approach
Multitask Learning: Formally

- Suppose we are given M datasets $(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), \ldots, (X^{(M)}, y^{(M)})$

- Assume a linear model for each dataset, with weight vectors w_1, w_2, \ldots, w_M
Multitask Learning: Formally

- Suppose we are given M datasets $(\mathbf{X}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{X}^{(2)}, \mathbf{y}^{(2)}), \ldots, (\mathbf{X}^{(M)}, \mathbf{y}^{(M)})$
- Assume a linear model for each dataset, with weight vectors $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_M$
- Naïve way: Learn $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_M$ by minimizing individual loss functions for each dataset

$$
\text{Let's call each learning problem a "task". Here we are learning each task independently.}
$$

Usually okay to learn independently if we have plenty of training data for each learning task.

If training data per-task is very little and if tasks are related, it may not be the most ideal approach.
Suppose we are given M datasets $(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), \ldots, (X^{(M)}, y^{(M)})$

Assume a linear model for each dataset, with weight vectors w_1, w_2, \ldots, w_M

Naïve way: Learn w_1, w_2, \ldots, w_M by minimizing individual loss functions for each dataset

$$||y^{(1)} - X^{(1)} w_1||^2 + \lambda ||w_1||^2$$

Let's call each learning problem a "task". Here we are learning each task independently.

Usually okay to learn independently if we have plenty of training data for each learning task.

If training data per-task is very little and if tasks are related, it may not be the most ideal approach.
Multitask Learning: Formally

- Suppose we are given M datasets $(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), \ldots, (X^{(M)}, y^{(M)})$
- Assume a linear model for each dataset, with weight vectors w_1, w_2, \ldots, w_M
- Naïve way: Learn w_1, w_2, \ldots, w_M by minimizing individual loss functions for each dataset

$$\|y^{(1)} - X^{(1)}w_1\|^2 + \lambda\|w_1\|^2$$
$$\|y^{(2)} - X^{(2)}w_2\|^2 + \lambda\|w_2\|^2$$
Multitask Learning: Formally

- Suppose we are given M datasets $(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), \ldots, (X^{(M)}, y^{(M)})$
- Assume a linear model for each dataset, with weight vectors w_1, w_2, \ldots, w_M
- Naïve way: Learn w_1, w_2, \ldots, w_M by minimizing individual loss functions for each dataset

\[
\begin{align*}
||y^{(1)} - X^{(1)} w_1||^2 & + \lambda ||w_1||^2 \\
||y^{(2)} - X^{(2)} w_2||^2 & + \lambda ||w_2||^2 \\
& \vdots \\
||y^{(M)} - X^{(M)} w_M||^2 & + \lambda ||w_M||^2
\end{align*}
\]
Multitask Learning: Formally

- Suppose we are given M datasets $(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), \ldots, (X^{(M)}, y^{(M)})$

- Assume a linear model for each dataset, with weight vectors w_1, w_2, \ldots, w_M

- Naïve way: Learn w_1, w_2, \ldots, w_M by minimizing individual loss functions for each dataset

\[
\|y^{(1)} - X^{(1)} w_1\|^2 + \lambda \|w_1\|^2 \\
\|y^{(2)} - X^{(2)} w_2\|^2 + \lambda \|w_2\|^2 \\
\vdots \\
\|y^{(M)} - X^{(M)} w_M\|^2 + \lambda \|w_M\|^2
\]

- Let’s call each learning problem a “task”. Here we are learning each task independently
Multitask Learning: Formally

- Suppose we are given M datasets $(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), \ldots, (X^{(M)}, y^{(M)})$
- Assume a linear model for each dataset, with weight vectors w_1, w_2, \ldots, w_M
- Naïve way: Learn w_1, w_2, \ldots, w_M by minimizing individual loss functions for each dataset

$$
||y^{(1)} - X^{(1)} w_1||^2 + \lambda ||w_1||^2 \\
||y^{(2)} - X^{(2)} w_2||^2 + \lambda ||w_2||^2 \\
\vdots \\
||y^{(M)} - X^{(M)} w_M||^2 + \lambda ||w_M||^2
$$

- Let’s call each learning problem a “task”. Here we are learning each task independently
- Usually okay to learn independently if we have plenty of training data for each learning task
Multitask Learning: Formally

- Suppose we are given M datasets $(X^{(1)}, y^{(1)}), (X^{(2)}, y^{(2)}), \ldots, (X^{(M)}, y^{(M)})$

- Assume a linear model for each dataset, with weight vectors w_1, w_2, \ldots, w_M

- Naïve way: Learn w_1, w_2, \ldots, w_M by minimizing individual loss functions for each dataset

 \[||y^{(1)} - X^{(1)} w_1||^2 + \lambda ||w_1||^2 \]
 \[||y^{(2)} - X^{(2)} w_2||^2 + \lambda ||w_2||^2 \]
 \[\vdots \]
 \[||y^{(M)} - X^{(M)} w_M||^2 + \lambda ||w_M||^2 \]

- Let’s call each learning problem a “task”. Here we are learning each task independently

- Usually okay to learn independently if we have plenty of training data for each learning task

- If training data per-task is very little and if tasks are related, it may not be the most ideal approach
Multitask Learning

- A better alternative will be to learn all the tasks jointly by minimizing the following loss function

\[
\sum_{m=1}^{M} \left\| y^{(m)} - X^{(m)} w_m \right\|^2 + R(w_1, w_2, \ldots, w_M)
\]

\(R(.)\) is a regularizer that encourages these weight vectors to be close to each other

Example 1: Assume all weight vectors to be close to some "global" weight vector

\[
R(w_1, w_2, \ldots, w_M) = \sum_{m=1}^{M} \left\| w_m - \mu_0 \right\|^2
\]

Example 2: Assume \(K\) groups with means \(\mu_1, \ldots, \mu_K\) and each \(w_m\) to belong to one of the groups

\[
R(w_1, w_2, \ldots, w_M) = \sum_{m=1}^{M} \left\| w_m - \mu_{z_m} \right\|^2
\]
A better alternative will be to learn all the tasks jointly by minimizing the following loss function

\[
\sum_{m=1}^{M} \left\| y^{(m)} - X^{(m)} w_m \right\|^2 + R(w_1, w_2, \ldots, w_M)
\]

\(R(\cdot) \) is a regularizer that encourages these weight vectors to be close to each other.
Multitask Learning

- A better alternative will be to learn all the tasks jointly by minimizing the following loss function

\[\sum_{m=1}^{M} \| y^{(m)} - X^{(m)} w_m \|^2 + R(w_1, w_2, \ldots, w_M) \]

- \(R(.) \) is a regularizer that encourages these weight vectors to be close to each other

- Example 1: Assume all weight vectors to be close to some “global” weight vector \(\mu_0 \)

\[R(w_1, w_2, \ldots, w_M) = \sum_{m=1}^{M} \| w_m - \mu_0 \|^2 \]
Multitask Learning

- A better alternative will be to learn all the tasks jointly by minimizing the following loss function

\[
\sum_{m=1}^{M} ||y^{(m)} - x^{(m)}w_m||^2 + R(w_1, w_2, \ldots, w_M)
\]

- \(R(.)\) is a regularizer that encourages these weight vectors to be close to each other

- Example 1: Assume all weight vectors to be close to some “global” weight vector \(\mu_0\)

\[
R(w_1, w_2, \ldots, w_M) = \sum_{m=1}^{M} ||w_m - \mu_0||^2
\]

- Example 2: Assume \(K\) groups with means \(\mu_1, \ldots, \mu_K\) and each \(w_m\) to belong to one of the groups

\[
R(w_1, w_2, \ldots, w_M) = \sum_{m=1}^{M} ||w_m - \mu_{z_m}||^2
\]
Example 3: Assume we have an $M \times M$ task similarity graph G ($G_{mm'}$ large if tasks highly related)

$$R(w_1, w_2, \ldots, w_M) = \sum_{m=1}^{M} \sum_{m' \neq m} G_{mm'} ||w_m - w_{m'}||^2$$
Multitask Learning

Example 3: Assume we have an $M \times M$ task similarity graph G ($G_{mm'}$ large if tasks highly related)

$$R(\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_M) = \sum_{m=1}^{M} \sum_{m' \neq m} G_{mm'} ||\mathbf{w}_m - \mathbf{w}_{m'}||^2$$

Example 4: Assume each \mathbf{w}_m to be a linear combination of K shared “basis” weight vectors

$$\mathbf{w}_m = \sum_{k=1}^{K} z_{mk} \mathbf{u}_k$$

or an alternative $R(\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_M) = \sum_{m=1}^{M} ||\mathbf{w}_m - \sum_{k=1}^{K} z_{nk} \mathbf{u}_k||^2$
Multitask Learning

Example 3: Assume we have an $M \times M$ task similarity graph G ($G_{mm'}$ large if tasks highly related)

$$R(w_1, w_2, \ldots, w_M) = \sum_{m=1}^{M} \sum_{m' \neq m} G_{mm'} ||w_m - w_{m'}||^2$$

Example 4: Assume each w_m to be a linear combination of K shared “basis” weight vectors

$$w_m = \sum_{k=1}^{K} z_{mk} \mu_k$$

.. or an alternative

$$R(w_1, w_2, \ldots, w_M) = \sum_{m=1}^{M} ||w_m - \sum_{k=1}^{K} z_{mk} \mu_k||^2$$

Example 5: Assume all weight vectors to have same/similar sparsity pattern (relevant features)
Multitask Learning vs Multi-output/Multilabel Learning

- Multi-output and multi-label learning problems can also be thought of as multitask learning
- Same inputs and multiple outputs/labels to be predicted
- Here too, we need to learn a weight vector for each output/label
- The standard approach is to simply model these as \(Y \approx XW \) and solve for \(W \)

\[
Y = XW
\]

We have seen that \(W \) has a closed form solution if \(Y \) is real-valued

\[
W = \left(X^\top X \right)^{-1} X^\top Y
\]

However, the above approach is equivalent to treating each output/label independently.

The ideas we saw today can be used to improve multi-output/multi-label learning.

Intro to Machine Learning (CS771A)
Multitask Learning vs Multi-output/Multilabel Learning

- Multi-output and multi-label learning problems can also be thought of as multitask learning
- Same inputs and multiple outputs/labels to be predicted
- Here too, we need to learn a weight vector for each output/label
- The standard approach is to simply model these as $Y \approx XW$ and solve for W

\[
Y = XW
\]

We have seen that W has closed form solution if Y is real-valued

\[
W = (X^TX)^{-1}X^TY \quad \text{(same as } w_m = (X^TX)^{-1}X^T y_m, \text{ for each } m)\n\]
Multi-output and multi-label learning problems can also be thought of as multitask learning.

- Same inputs and multiple outputs/labels to be predicted
- Here too, we need to learn a weight vector for each output/label
- The standard approach is to simply model these as $Y \approx XW$ and solve for W

We have seen that W has closed form solution if Y is real-valued:

$$W = (X^\top X)^{-1}X^\top Y$$

(same as $w_m = (X^\top X)^{-1}X^\top y_m$, for each m)

However, the above approach is equivalent to treating each outputs/labels independently.
Multitask Learning vs Multi-output/Multilabel Learning

- Multi-output and multi-label learning problems can also be thought of as multitask learning
- Same inputs and multiple outputs/labels to be predicted
- Here too, we need to learn a weight vector for each output/label
- The standard approach is to simply model these as \(Y \approx XW \) and solve for \(W \)

\[
N \times M = Y = X \times N \times D = W \times D \times M
\]

- We have seen that \(W \) has closed form solution if \(Y \) is real-valued

\[
W = (X^\top X)^{-1}X^\top Y \quad \text{(same as } w_m = (X^\top X)^{-1}X^\top y_m, \text{ for each } m)\]

- However, the above approach is equivalent to treating each outputs/labels independently
- The ideas we saw today can be used to improve multi-output/multi-label learning
Deep neural networks are also popular these days for solving multi-output learning problems.

Basic idea: Have shared hidden layers to learn features that are good for predicting each output.

Such neural networks are called multitask neural networks.
Multitask Learning: Some Comments

- Very useful and widely used in many applications
- In some contexts, also referred to as “Transfer Learning”
Multitask Learning: Some Comments

- Very useful and widely used in many applications
- In some contexts, also referred to as “Transfer Learning”
 - Note: Usually TL refers to the setting when we learn some task leveraging knowledge acquired from previous tasks whereas Multitask Learning typically assumes all tasks are being learned simultaneously.
Multitask Learning: Some Comments

- Very useful and widely used in many applications
- In some contexts, also referred to as “Transfer Learning”
 - Note: Usually TL refers to the setting when we learn some task leveraging knowledge acquired from previous tasks whereas Multitask Learning typically assumes all tasks are being learned simultaneously
- Inappropriate sharing assumption can also hurt performance (e.g., assuming all weight vectors to be related with each other may not be correct if not all tasks are related)
Multitask Learning: Some Comments

- Very useful and widely used in many applications
- In some contexts, also referred to as “Transfer Learning”
 - Note: Usually TL refers to the setting when we learn some task leveraging knowledge acquired from previous tasks whereas Multitask Learning typically assumes all tasks are being learned simultaneously
- Inappropriate sharing assumption can also hurt performance (e.g., assuming all weight vectors to be related with each other may not be correct if not all tasks are related)

- Automatically learning how the tasks are related can help. There has been work on this too
Overview of Some Other Topics
Learning Theory

- Study of theoretical properties of learning models/algorithms, e.g.,
 - What is the generalization error (difference of test and training error) of some model?
 - What is the minimum number of training examples needed to get a certain accuracy?
 - What is learnable, what is not

- Some typical results from learning theory might look like this:

\[
L_P(h) \leq L_D(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2N}}
\]

\[
N \geq \frac{1}{2\epsilon^2} (\log |\mathcal{H}| + \log \frac{1}{\delta})
\]
Learning Theory

- Study of theoretical properties of learning models/algorithms, e.g.,
 - What is the generalization error (difference of test and training error) of some model?
 - What is the minimum number of training examples needed to get a certain accuracy?
 - What is learnable, what is not

- Some typical results from learning theory might look like this:

\[
L_P(h) \leq L_D(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2N}}
\]

\[
N \geq \frac{1}{2\varepsilon^2} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)
\]

- The field is too deep than what the above two equations convey :-)

Intro to Machine Learning (CS771A) Multitask Learning, Overview of Some Other Topics, Conclusion and Take-aways
Online Learning

- Standard ML: Learn a model on some training data, apply it on a test data
- In many problem, there is no distinction b/w training and test data (everything is test data)
Online Learning

- Standard ML: Learn a model on some training data, apply it on a test data
- In many problem, there is no distinction b/w training and test data (everything is test data)
- Learner receives one input at a time, and predicts the output (no training phase)
Online Learning

- Standard ML: Learn a model on some training data, apply it on a test data
- In many problem, there is no distinction b/w training and test data (everything is test data)
- Learner receives one input at a time, and predicts the output (no training phase)
- Online Learning is precisely this setting!
Online Learning

- Standard ML: Learn a model on some training data, apply it on a test data
- In many problem, there is no distinction b/w training and test data (everything is test data)
- Learner receives one input at a time, and predicts the output (no training phase)
- Online Learning is precisely this setting!

Online Learning algos not evaluated by generalization error (diff. b/w test and training error)

$$R_T = \sum_{t=1}^{T} L(\hat{y}_t, y_t) - \min_{i=1}^{N} \sum_{t=1}^{T} L(\hat{y}_{t,i}, y_t)$$

- Evaluated in terms of how bad they are as compared to the best expert at each step in hindsight
Online Learning

- Standard ML: Learn a model on some training data, apply it on a test data

- In many problem, there is no distinction b/w training and test data (everything is test data)

- Learner receives one input at a time, and predicts the output (no training phase)

- Online Learning is precisely this setting!

- Online Learning algos not evaluated by generalization error (diff. b/w test and training error)

\[
R_T = \sum_{t=1}^{T} L(\hat{y}_t, y_t) - \min_{i=1}^{N} \sum_{t=1}^{T} L(\hat{y}_{t,i}, y_t)
\]

- Evaluated in terms of how bad they are as compared to the best expert at each step in hindsight

- This difference is known as “Regret” of the online learner
Modeling Time-Series Data

- The input is a sequence of (non-i.i.d.) examples y_1, y_2, \ldots, y_T
- The problem may be supervised or unsupervised, e.g.,
 - Forecasting: Predict y_{T+1}, given y_1, y_2, \ldots, y_T
 - Cluster the examples or perform dimensionality reduction
- Evolution of time-series data can be attributed to several factors

- Teasing apart these factors of variation is also an important problem
Modeling Time-Series Data (Contd)

- **Auto-regressive (AR):** Regress each example on \(p \) previous examples

\[
y_t = c + \sum_{i=1}^{p} w_i y_{t-i} + \epsilon_t \quad : \text{An AR}(p) \text{ model}
\]

Auto-regressive Model (shown above: 2nd order AR)
Modeling Time-Series Data (Contd)

- **Auto-regressive (AR):** Regress each example on \(p \) previous examples

\[
y_t = c + \sum_{i=1}^{p} w_i y_{t-i} + \epsilon_t \quad : \text{An AR}(p) \text{ model}
\]

- **Moving Average (MA):** Regress each example on \(p \) previous stochastic errors

\[
y_t = c + \epsilon_t + \sum_{i=1}^{p} w_i \epsilon_{t-i} \quad : \text{An MA}(p) \text{ model}
\]
Modeling Time-Series Data (Contd)

- **Auto-regressive (AR):** Regress each example on p previous examples

$$y_t = c + \sum_{i=1}^{p} w_i y_{t-i} + \epsilon_t$$: An AR(p) model

- **Moving Average (MA):** Regress each example on p previous stochastic errors

$$y_t = c + \epsilon_t + \sum_{i=1}^{p} w_i \epsilon_{t-i}$$: An MA(p) model

- **Auto-regressive Moving Average (ARMA):** Regress each example of p previous examples and q previous stochastic errors

$$y_t = c + \epsilon_t + \sum_{i=1}^{p} w_i y_{t-i} + \sum_{i=1}^{q} v_i \epsilon_{t-i}$$: An ARMA(p, q) model
One-Shot and Few-Shot Learning

- Humans can learn a concept from as few as one example!
- Example: Can learn to recognize a person even if we have seen them once
One-Shot and Few-Shot Learning

- Humans can learn a concept from as few as one example!
- Example: Can learn to recognize a person even if we have seen them once
- Can ML algorithms be designed to do the same?
Humans can learn a concept from as few as one example!

Example: Can learn to recognize a person even if we have seen them once.

Can ML algorithms be designed to do the same?

One-Shot and Few-Shot Learning research tries to address this question.
Humans can learn a concept from as few as one example!

Example: Can learn to recognize a person even if we have seen them once

Can ML algorithms be designed to do the same?

One-Shot and Few-Shot Learning research tries to address this question

The basic idea is to train in the same way we are expected to be tested (i.e., training using one example at a time, test, measure error, and repeat to improve)
Zero-Shot Learning

- We have already seen this in the very first homework (programming problem). :-)
- Test data may have examples from classes that were not present at training time
- However, often we have some description of each class (e.g., a class-attribute vector)
Zero-Shot Learning

- We have already seen this in the very first homework (programming problem). :-)
- Test data may have examples from classes that were not present at training time
- However, often we have some description of each class (e.g., a class-attribute vector)
- Can use these class-attribute vectors to extrapolate to the new classes
Zero-Shot Learning

- We have already seen this in the very first homework (programming problem). :-)
- Test data may have examples from classes that were not present at training time
- However, often we have some description of each class (e.g., a class-attribute vector)
- Can use these class-attribute vectors to extrapolate to the new classes, e.g.,
 - Can map each test example to the attribute vector space and find the most similar class
Zero-Shot Learning

- We have already seen this in the very first homework (programming problem). :-)
- Test data may have examples from classes that were not present at training time
- However, often we have some description of each class (e.g., a class-attribute vector)
- Can use these class-attribute vectors to extrapolate to the new classes, e.g.,
 - Can map each test example to the attribute vector space and find the most similar class
 - Represent each new class as a similarity-based combination of previously seen classes
Zero-Shot Learning

- We have already seen this in the very first homework (programming problem). :-)
- Test data may have examples from classes that were not present at training time
- However, often we have some description of each class (e.g., a class-attribute vector)
- Can use these class-attribute vectors to extrapolate to the new classes, e.g.,
 - Can map each test example to the attribute vector space and find the most similar class

- Represent each new class as a similarity-based combination of previously seen classes
- Can learn a mapping from attribute vector to the parameters of the distribution of each class
Some Emerging Research Directions in ML

- Model Compression: How to compress and store big models on tiny devices?
Some Emerging Research Directions in ML

- Model Compression: How to compress and store big models on tiny devices?

- Interpretable and Explainable ML: Can we explain why an ML algo predicts what it predicts?
Some Emerging Research Directions in ML

- Model Compression: How to compress and store big models on tiny devices?

- Interpretable and Explainable ML: Can we explain why an ML algo predicts what it predicts?

- Fairness and Bias in ML
Some Emerging Research Directions in ML

- Model Compression: How to compress and store big models on tiny devices?

- Interpretable and Explainable ML: Can we explain *why* an ML algo predicts what it predicts?

- Fairness and Bias in ML
- Security and privacy issues
Conclusion and Take-aways

- Most learning problems can be cast as optimizing a regularized loss function.
Conclusion and Take-aways

- Most learning problems can be cast as **optimizing a regularized loss function**
- Probabilistic and optimization viewpoints are complementary/equivalent
 - Negative log-likelihood (NLL) = loss function, log-prior = regularizer

Always start with simple models that you understand well

Think carefully about your features, how you compute similarities, etc.

Linear models can be really powerful given a good feature representation/similarities

Latent variable models are very useful in many problems (and so are algos like EM/ALT-OPT)

Helps to learn to first diagnose a learning algorithm rather than trying new ones

No free lunch. No learning algorithm is "universally" good.
Conclusion and Take-aways

- Most learning problems can be cast as **optimizing a regularized loss function**
- Probabilistic and optimization viewpoints are complementary/equivalent
 - Negative log-likelihood (NLL) = loss function, log-prior = regularizer
- More sophisticated models can be constructed with this basic understanding: Just think of the appropriate loss function/probability model for the data, and the appropriate regularizer/prior
Most learning problems can be cast as **optimizing a regularized loss function**

- Probabilistic and optimization viewpoints are complementary/equivalent
 - Negative log-likelihood (NLL) = loss function, log-prior = regularizer

- More sophisticated models can be constructed with this basic understanding: Just think of the appropriate loss function/probability model for the data, and the appropriate regularizer/prior

- Always start with simple models that you understand well
Most learning problems can be cast as optimizing a regularized loss function.

Probabilistic and optimization viewpoints are complementary/equivalent:
- Negative log-likelihood (NLL) = loss function, log-prior = regularizer

More sophisticated models can be constructed with this basic understanding: Just think of the appropriate loss function/probability model for the data, and the appropriate regularizer/prior.

Always start with simple models that you understand well.

Think carefully about your features, how you compute similarities, etc.
Conclusion and Take-aways

- Most learning problems can be cast as optimizing a regularized loss function
- Probabilistic and optimization viewpoints are complementary/equivalent
 - Negative log-likelihood (NLL) = loss function, log-prior = regularizer
- More sophisticated models can be constructed with this basic understanding: Just think of the appropriate loss function/probability model for the data, and the appropriate regularizer/prior
- Always start with simple models that you understand well
- Think carefully about your features, how you compute similarities, etc.
- Linear models can be really powerful given a good feature representation/similarities
Conclusion and Take-aways

- Most learning problems can be cast as optimizing a regularized loss function.
- Probabilistic and optimization viewpoints are complementary/equivalent:
 - Negative log-likelihood (NLL) = loss function, log-prior = regularizer.
- More sophisticated models can be constructed with this basic understanding: Just think of the appropriate loss function/probability model for the data, and the appropriate regularizer/prior.
- Always start with simple models that you understand well.
- Think carefully about your features, how you compute similarities, etc.
- Linear models can be really powerful given a good feature representation/similarities.
- Latent variable models are very useful in many problems (and so are algos like EM/ALT-OPT).
Conclusion and Take-aways

- Most learning problems can be cast as **optimizing a regularized loss function**
- Probabilistic and optimization viewpoints are complementary/equivalent
 - Negative log-likelihood (NLL) = loss function, log-prior = regularizer
- More sophisticated models can be constructed with this basic understanding: Just think of the appropriate loss function/probability model for the data, and the appropriate regularizer/prior
- Always start with simple models that you understand well
- Think carefully about your features, how you compute similarities, etc.
- Linear models can be really powerful given a good feature representation/similarities
- Latent variable models are very useful in many problems (and so are algos like EM/ALT-OPT)
- Helps to learn to first diagnose a learning algorithm rather than trying new ones
Most learning problems can be cast as optimizing a regularized loss function.

Probabilistic and optimization viewpoints are complementary/equivalent:
- Negative log-likelihood (NLL) = loss function, log-prior = regularizer

More sophisticated models can be constructed with this basic understanding: Just think of the appropriate loss function/probability model for the data, and the appropriate regularizer/prior.

Always start with simple models that you understand well.

Think carefully about your features, how you compute similarities, etc.

Linear models can be really powerful given a good feature representation/similarities.

Latent variable models are very useful in many problems (and so are algos like EM/ALT-OPT).

Helps to learn to first diagnose a learning algorithm rather than trying new ones.

No free lunch. No learning algorithm is “universally” good.
Thank You! Have Fun Learning!