Ensemble Methods

Piyush Rai

Introduction to Machine Learning (CS771A)

November 8, 2018

Intro to Machine Learning (CS771A)

イロト イロト イモト イモト

E Dac

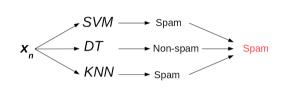
Some Simple Ensembles

イロト イロト イヨト イヨト

Intro to Machine Learning (CS771A)

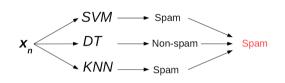
Some Simple Ensembles

• Voting or Averaging of predictions of multiple pre-trained models

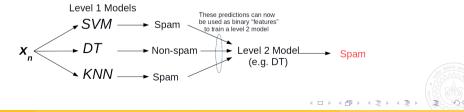


Some Simple Ensembles

• Voting or Averaging of predictions of multiple pre-trained models



• "Stacking": Use predictions of multiple models as "features" to train a new model and use the new model to make predictions on test data



.. are also like Ensembles..

• Mixture of Experts: Many "local" models are combined

$$p(y_*|\mathbf{x}_*) = \sum_{k=1}^{K} p(z_* = k) p(y_*|\mathbf{x}_*, z = k)$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

.. are also like Ensembles..

• Mixture of Experts: Many "local" models are combined

$$p(y_*|\mathbf{x}_*) = \sum_{k=1}^{K} p(z_* = k) p(y_*|\mathbf{x}_*, z = k)$$

• Deep Learning: Outputs of several hidden units are combined

$$y_* = \sum_{k=1}^{K} \frac{v_k h_k(x_*)}{x_k}$$

E Dad

・ロト ・四ト ・ヨト ・ヨト

.. are also like Ensembles..

• Mixture of Experts: Many "local" models are combined

$$p(y_*|\mathbf{x}_*) = \sum_{k=1}^{K} p(z_* = k) p(y_*|\mathbf{x}_*, z = k)$$

• Deep Learning: Outputs of several hidden units are combined

$$y_* = \sum_{k=1}^{K} \frac{v_k h_k(x_*)}{x_*}$$

• Bayesian Learning: Posterior weighted averaging of predictions by all possible parameter values

$$p(y_*|\boldsymbol{x}_*,\boldsymbol{X},\boldsymbol{y}) = \int p(y_*|\boldsymbol{w},\boldsymbol{x}_*) p(\boldsymbol{w}|\boldsymbol{y},\boldsymbol{X}) d\boldsymbol{w}$$

• Train same model multiple times on different data sets, and "combine" these "different" models

(日) (四) (三) (三) (三)

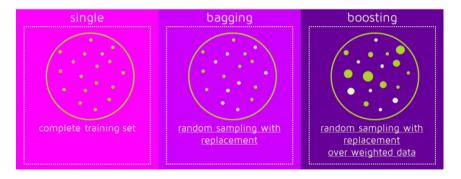
- Train same model multiple times on different data sets, and "combine" these "different" models
- Bagging and Boosting are two popular approaches for doing this

・ロト ・四ト ・ヨト ・ヨト

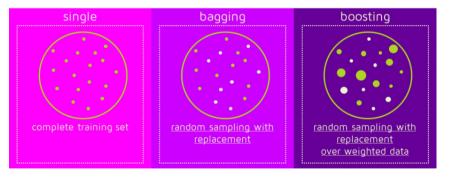
- Train same model multiple times on different data sets, and "combine" these "different" models
- Bagging and Boosting are two popular approaches for doing this
- How do we get multiple training sets (in practice, we only have one training set)?

・ロト ・日下・ ・日下・ ・日下

- Train same model multiple times on different data sets, and "combine" these "different" models
- Bagging and Boosting are two popular approaches for doing this
- How do we get multiple training sets (in practice, we only have one training set)?



- Train same model multiple times on different data sets, and "combine" these "different" models
- Bagging and Boosting are two popular approaches for doing this
- How do we get multiple training sets (in practice, we only have one training set)?



• Note: Bagging trains independent models; boosting trains them sequentially (we'll see soon)

イロト イヨト イヨト (三) りんぐ

• Bagging stands for Bootstrap Aggregation

イロト イヨト イヨト イヨト

Intro to Machine Learning (CS771A)

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples

メロト メロト メヨト メヨト

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$
 - \bullet Each $\tilde{\mathcal{D}}_{\textit{m}}$ is generated from \mathcal{D} by sampling with replacement

(日)

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$
 - $\bullet\,$ Each $\tilde{\mathcal{D}}_{\textit{m}}$ is generated from \mathcal{D} by sampling with replacement
 - Each data set $\tilde{\mathcal{D}}_m$ will have N examples

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$
 - Each $\tilde{\mathcal{D}}_m$ is generated from \mathcal{D} by sampling with replacement
 - Each data set $\tilde{\mathcal{D}}_m$ will have N examples
 - These data sets are reasonably different from each other

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$
 - Each $\tilde{\mathcal{D}}_m$ is generated from \mathcal{D} by sampling with replacement
 - Each data set $\tilde{\mathcal{D}}_m$ will have N examples
 - These data sets are reasonably different from each other. Reason: Only about 63% unique examples from D appear in each \tilde{D}_m

・ロト ・日下・ ・日下・ ・日下

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$
 - Each $\tilde{\mathcal{D}}_m$ is generated from \mathcal{D} by sampling with replacement
 - Each data set $\tilde{\mathcal{D}}_m$ will have N examples
 - These data sets are reasonably different from each other. Reason: Only about 63% unique examples from D appear in each \tilde{D}_m
- Train models h_1, \ldots, h_M using $\tilde{\mathcal{D}}_1, \ldots, \tilde{\mathcal{D}}_M$, respectively

・ロト ・日 ・ ・ モト ・ モト

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$
 - Each $\tilde{\mathcal{D}}_m$ is generated from \mathcal{D} by sampling with replacement
 - Each data set $\tilde{\mathcal{D}}_m$ will have N examples
 - These data sets are reasonably different from each other. Reason: Only about 63% unique examples from D appear in each \tilde{D}_m
- Train models h_1, \ldots, h_M using $ilde{\mathcal{D}}_1, \ldots, ilde{\mathcal{D}}_M$, respectively
- Use an averaged model $h = \frac{1}{M} \sum_{m=1}^{M} h_m$ as the final model

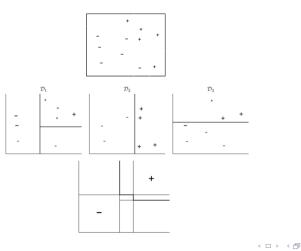
- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$
 - Each $\tilde{\mathcal{D}}_m$ is generated from \mathcal{D} by sampling with replacement
 - Each data set $\tilde{\mathcal{D}}_m$ will have N examples
 - These data sets are reasonably different from each other. Reason: Only about 63% unique examples from D appear in each \tilde{D}_m
- Train models h_1, \ldots, h_M using $ilde{\mathcal{D}}_1, \ldots, ilde{\mathcal{D}}_M$, respectively
- Use an averaged model $h = \frac{1}{M} \sum_{m=1}^{M} h_m$ as the final model
- Bagging is especially useful for models with high variance and noisy data

- Bagging stands for Bootstrap Aggregation
- Takes original data set \mathcal{D} with N training examples
- Creates M copies $\{\tilde{\mathcal{D}}_m\}_{m=1}^M$
 - Each $\tilde{\mathcal{D}}_m$ is generated from \mathcal{D} by sampling with replacement
 - Each data set $\tilde{\mathcal{D}}_m$ will have N examples
 - These data sets are reasonably different from each other. Reason: Only about 63% unique examples from D appear in each \tilde{D}_m
- Train models h_1, \ldots, h_M using $ilde{\mathcal{D}}_1, \ldots, ilde{\mathcal{D}}_M$, respectively
- Use an averaged model $h = \frac{1}{M} \sum_{m=1}^{M} h_m$ as the final model
- Bagging is especially useful for models with high variance and noisy data
- High variance models = models whose prediction accuracies varies a lot across different data sets

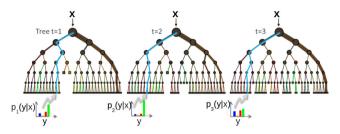
(日) (日) (日) (日) (日) (日) (日) (日) (日)

Bagging: illustration

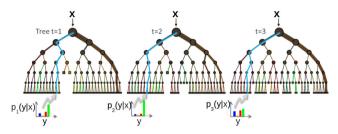
Top: Original data, Middle: 3 models (from some model class) learned using three data sets chosen via bootstrapping, Bottom: averaged model



Э

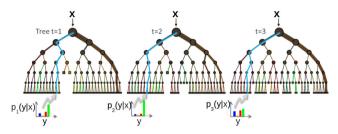


• An bagging based ensemble of decision tree (DT) classifiers



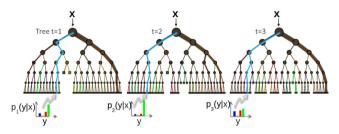
- An bagging based ensemble of decision tree (DT) classifiers
- Also uses bagging on features (each DT will use a random set of features)

글 > < 글



- An bagging based ensemble of decision tree (DT) classifiers
- Also uses bagging on features (each DT will use a random set of features)
 - Example: Given a total of D features, each DT uses \sqrt{D} randomly chosen features

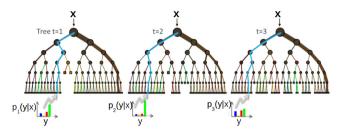
-



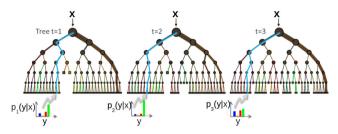
- An bagging based ensemble of decision tree (DT) classifiers
- Also uses bagging on features (each DT will use a random set of features)
 - Example: Given a total of D features, each DT uses \sqrt{D} randomly chosen features
 - Randomly chosen features make the different trees uncorrelated

< □ > < 同

-



- An bagging based ensemble of decision tree (DT) classifiers
- Also uses bagging on features (each DT will use a random set of features)
 - Example: Given a total of D features, each DT uses \sqrt{D} randomly chosen features
 - Randomly chosen features make the different trees uncorrelated
- All DTs usually have the same depth



- An bagging based ensemble of decision tree (DT) classifiers
- Also uses bagging on features (each DT will use a random set of features)
 - Example: Given a total of D features, each DT uses \sqrt{D} randomly chosen features
 - Randomly chosen features make the different trees uncorrelated
- All DTs usually have the same depth
- Prediction for a test example votes on/averages predictions from all the DTs

Image: A math

프 > - + 프

• Another ensemble based approach

イロト イロト イヨト イヨト

Intro to Machine Learning (CS771A)

- Another ensemble based approach
- The basic idea is as follows

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases

・ロト ・四ト ・モト ・モト

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases
- Most boosting algoithms follow these steps:

・ロト ・四ト ・モト ・モト

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases
- Most boosting algoithms follow these steps:
 - Train a weak model on some training data

< ロ > < 回 > < 回 > < 回 > < 回 >

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases
- Most boosting algoithms follow these steps:
 - Train a weak model on some training data
 - Occupie the error of the model on each training example

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases
- Most boosting algoithms follow these steps:
 - Train a weak model on some training data
 - Occupie the error of the model on each training example
 - Give higher importance to examples on which the model made mistakes

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases
- Most boosting algoithms follow these steps:
 - Train a weak model on some training data
 - Occupie the error of the model on each training example
 - Give higher importance to examples on which the model made mistakes
 - Re-train the model using "importance weighted" training examples

- Another ensemble based approach
- The basic idea is as follows
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases
- Most boosting algoithms follow these steps:
 - Train a weak model on some training data
 - Occupie the error of the model on each training example
 - Give higher importance to examples on which the model made mistakes
 - Re-train the model using "importance weighted" training examples
 - Go back to step 2

- Another ensemble based approach
- The basic idea is as follows ٠
 - Take a weak learning algorithm
 - Only requirement: Should be only slightly better than random
 - Turn it into an awesome one by making it focus on difficult cases
- Most boosting algoithms follow these steps:
 - Train a weak model on some training data
 - Compute the error of the model on each training example 2
 - 3 Give higher importance to examples on which the model made mistakes
 - Re-train the model using "importance weighted" training examples
 - **6** Go back to step 2
- Note: Unlike bagging, boosting is a sequential algorithm (models learned in a sequence) ٠

イロト 不同下 不同下 不同下

• Given: Training data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$

- Given: Training data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ with $y_n \in \{-1, +1\}, \forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}, \forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T

・ロト ・四ト ・ヨト ・ヨト

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - Learn a weak $h_t(x) \rightarrow \{-1, +1\}$ using training data weighted as per D_t

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - Learn a weak $h_t(\mathbf{x}) o \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - Learn a weak $h_t(\mathbf{x}) o \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^N D_t(n) \mathbb{1}[h_t(\boldsymbol{x}_n) \neq y_n]$$

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}, \forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T

Set

- Learn a weak $h_t(\mathbf{x}) o \{-1,+1\}$ using training data weighted as per D_t
- Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^{N} D_t(n) \mathbb{1}[h_t(\mathbf{x}_n) \neq y_n]$$

"importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$

- Given: Training data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$ with $y_n \in \{-1, +1\}, \forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - Learn a weak $h_t(\mathbf{x}) o \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^N D_t(n) \mathbb{1}[h_t(\mathbf{x}_n) \neq y_n]$$

• Set "importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$ (gets larger as ϵ_t gets smaller)

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - Learn a weak $h_t(\mathbf{x}) o \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^N D_t(n) \mathbb{1}[h_t(\boldsymbol{x}_n) \neq y_n]$$

- Set "importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$ (gets larger as ϵ_t gets smaller)
- Update the weight of each example

$$D_{t+1}(n) \propto \begin{cases} D_t(n) \times \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_n) = y_n \text{ (correct prediction: decrease weight)} \\ D_t(n) \times \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_n) \neq y_n \text{ (incorrect prediction: increase weight)} \end{cases}$$

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - Learn a weak $h_t(\mathbf{x}) o \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^N D_t(n) \mathbb{1}[h_t(\boldsymbol{x}_n) \neq y_n]$$

- Set "importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$ (gets larger as ϵ_t gets smaller)
- Update the weight of each example

$$\begin{array}{ll} D_{t+1}(n) & \propto & \begin{cases} D_t(n) \times \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_n) = y_n & (\text{correct prediction: decrease weight}) \\ D_t(n) \times \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_n) \neq y_n & (\text{incorrect prediction: increase weight}) \\ & = & D_t(n) \exp(-\alpha_t y_n h_t(\mathbf{x}_n)) \end{cases}$$

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - Learn a weak $h_t(\mathbf{x}) o \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^{N} D_t(n) \mathbb{1}[h_t(\boldsymbol{x}_n) \neq y_n]$$

- Set "importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$ (gets larger as ϵ_t gets smaller)
- Update the weight of each example

$$D_{t+1}(n) \propto \begin{cases} D_t(n) \times \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_n) = y_n \text{ (correct prediction: decrease weight)} \\ D_t(n) \times \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_n) \neq y_n \text{ (incorrect prediction: increase weight)} \\ = D_t(n) \exp(-\alpha_t y_n h_t(\mathbf{x}_n)) \end{cases}$$

• Normalize D_{t+1} so that it sums to 1: $_{D_{t+1}(n)} = \frac{D_{t+1}(n)}{\sum_{m=1}^{N} D_{t+1}(m)}$

- Given: Training data $(\boldsymbol{x}_1, y_1), \ldots, (\boldsymbol{x}_N, y_N)$ with $y_n \in \{-1, +1\}$, $\forall n$
- Initialize importance weight of each example (\mathbf{x}_n, y_n) : $D_1(n) = 1/N$, $\forall n$
- For round t = 1 : T
 - Learn a weak $h_t(\mathbf{x}) o \{-1,+1\}$ using training data weighted as per D_t
 - Compute the weighted fraction of errors of h_t on this training data

$$\epsilon_t = \sum_{n=1}^N D_t(n) \mathbb{1}[h_t(\boldsymbol{x}_n) \neq y_n]$$

- Set "importance" of h_t : $\alpha_t = \frac{1}{2} \log(\frac{1-\epsilon_t}{\epsilon_t})$ (gets larger as ϵ_t gets smaller)
- Update the weight of each example

$$\begin{aligned} D_{t+1}(n) &\propto \begin{cases} D_t(n) \times \exp(-\alpha_t) & \text{if } h_t(\mathbf{x}_n) = y_n & (\text{correct prediction: decrease weight}) \\ D_t(n) \times \exp(\alpha_t) & \text{if } h_t(\mathbf{x}_n) \neq y_n & (\text{incorrect prediction: increase weight}) \\ &= D_t(n) \exp(-\alpha_t y_n h_t(\mathbf{x}_n)) \end{aligned}$$

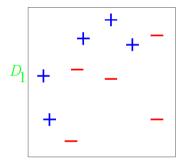
• Normalize D_{t+1} so that it sums to 1: $D_{t+1}(n) = \frac{D_{t+1}(n)}{\sum_{m=1}^{N} D_{t+1}(m)}$

• Output the "boosted" final hypothesis $H(\mathbf{x}) = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}))$

AdaBoost: A Toy Example

Consider binary classification with 10 training examples

Initial weight distribution D_1 is uniform (each point has equal weight = 1/10)

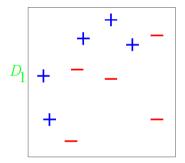


メロト メポト メヨト メヨト

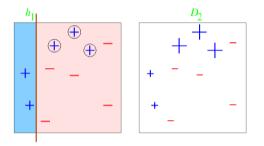
AdaBoost: A Toy Example

Consider binary classification with 10 training examples

Initial weight distribution D_1 is uniform (each point has equal weight = 1/10)

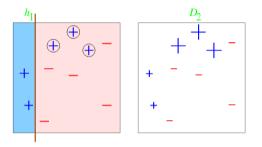


Let's assume each of our weak classifers is a very simple axis-parallel linear classifier



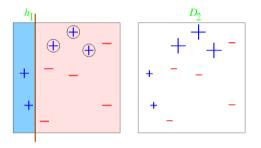
• Error rate of h_1 : $\epsilon_1 = 0.3$

・ロト ・四ト ・モト ・モト

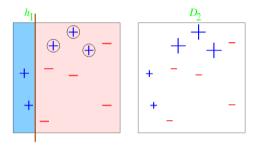


• Error rate of h_1 : $\epsilon_1 = 0.3$; weight of h_1 : $\alpha_1 = \frac{1}{2} \ln((1 - \epsilon_1)/\epsilon_1) = 0.42$

兰



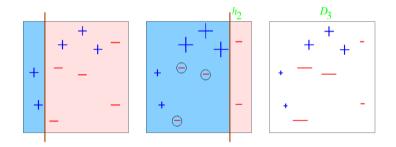
- Error rate of h_1 : $\epsilon_1 = 0.3$; weight of h_1 : $\alpha_1 = \frac{1}{2} \ln((1 \epsilon_1)/\epsilon_1) = 0.42$
- Each misclassified point upweighted (weight multiplied by $exp(\alpha_1)$)



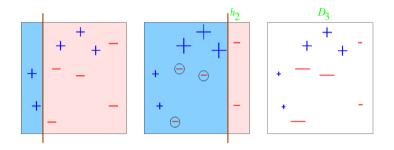
- Error rate of h_1 : $\epsilon_1 = 0.3$; weight of h_1 : $\alpha_1 = \frac{1}{2} \ln((1 \epsilon_1)/\epsilon_1) = 0.42$
- Each misclassified point upweighted (weight multiplied by $exp(\alpha_1)$)
- Each correctly classified point downweighted (weight multiplied by $exp(-\alpha_1)$)

A D > A D >

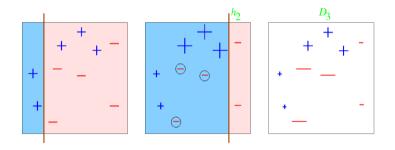
4 E > 4 E



• Error rate of h_2 : $\epsilon_2 = 0.21$

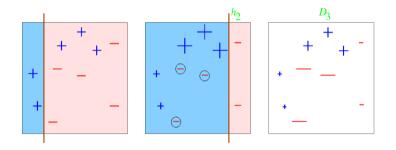


• Error rate of h_2 : $\epsilon_2 = 0.21$; weight of h_2 : $\alpha_2 = \frac{1}{2} \ln((1 - \epsilon_2)/\epsilon_2) = 0.65$

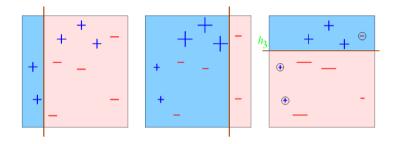


- Error rate of h_2 : $\epsilon_2 = 0.21$; weight of h_2 : $\alpha_2 = \frac{1}{2} \ln((1 \epsilon_2)/\epsilon_2) = 0.65$
- Each misclassified point upweighted (weight multiplied by $exp(\alpha_2)$)

프 🖌 🖌 프



- Error rate of h_2 : $\epsilon_2 = 0.21$; weight of h_2 : $\alpha_2 = \frac{1}{2} \ln((1 \epsilon_2)/\epsilon_2) = 0.65$
- Each misclassified point upweighted (weight multiplied by $exp(\alpha_2)$)
- Each correctly classified point downweighted (weight multiplied by $exp(-\alpha_2)$)

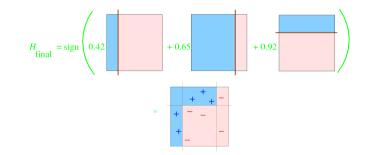


- Error rate of h_3 : $\epsilon_3 = 0.14$; weight of h_3 : $\alpha_3 = \frac{1}{2} \ln((1 \epsilon_3)/\epsilon_3) = 0.92$
- Suppose we decide to stop after round 3
- Our ensemble now consists of 3 classifiers: h_1, h_2, h_3

Э

The Final Classifier

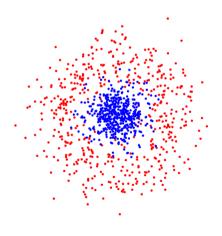
- Final classifier is a weighted linear combination of all the classifiers
- Classifier h_i gets a weight α_i



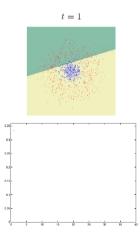
• Multiple weak, linear classifiers combined to give a strong, nonlinear classifier

Another Example

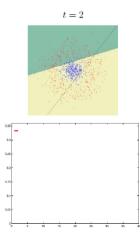
- Given: A nonlinearly separable dataset
- We want to use Perceptron (linear classifier) on this data



- After round 1, our ensemble has 1 linear classifier (Perceptron)
- Bottom figure: X axis is number of rounds, Y axis is training error

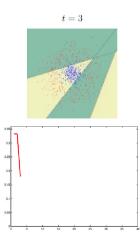


- After round 2, our ensemble has 2 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error

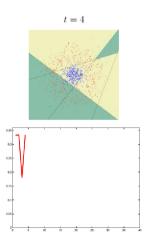


< 注 → < 注 →

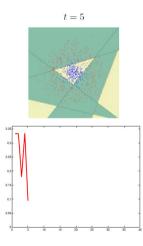
- After round 3, our ensemble has 3 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error



- After round 4, our ensemble has 4 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error



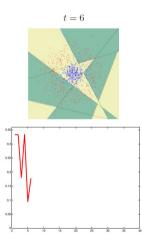
- After round 5, our ensemble has 5 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error



Intro to Machine Learning (CS771A)

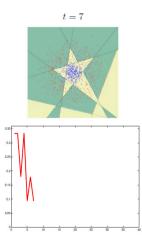
AdaBoost: Round 6

- After round 6, our ensemble has 6 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error



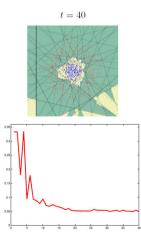
AdaBoost: Round 7

- After round 7, our ensemble has 7 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error



AdaBoost: Round 40

- After round 40, our ensemble has 40 linear classifiers (Perceptrons)
- Bottom figure: X axis is number of rounds, Y axis is training error



★ E ► < E ►</p>

• AdaBoost can be shown to be optimizing the following loss function

$$\mathcal{L} = \sum_{n=1}^{N} \exp\{-y_n H(\boldsymbol{x}_n)\}$$

where $H(\mathbf{x}) = \text{sign}(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}))$, given weak base classifiers h_1, \ldots, h_T

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y - F(x))^2$

イロト イロト イモト イモト

- Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y F(x))^2$
- Gradient boosting is a sequential way to construct such an F(x)

- Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y F(x))^2$
- Gradient boosting is a sequential way to construct such an F(x)
- For simplicity, assume we start with $F_0(x) = \frac{1}{N} \sum_{n=1}^{N} y_n$

- Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y F(x))^2$
- Gradient boosting is a sequential way to construct such an F(x)
- For simplicity, assume we start with $F_0(x) = \frac{1}{N} \sum_{n=1}^{N} y_n$
- Given an existing model $F_m(x)$, let's assume the following improvement to it

$$F_{m+1}(x) = F_m(x) + h(x)$$

- Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y F(x))^2$
- Gradient boosting is a sequential way to construct such an F(x)
- For simplicity, assume we start with $F_0(x) = \frac{1}{N} \sum_{n=1}^{N} y_n$
- Given an existing model $F_m(x)$, let's assume the following improvement to it

$$F_{m+1}(x) = F_m(x) + h(x)$$

• Assume $F_m(x) + h(x) = y$

- Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y F(x))^2$
- Gradient boosting is a sequential way to construct such an F(x)
- For simplicity, assume we start with $F_0(x) = \frac{1}{N} \sum_{n=1}^{N} y_n$
- Given an existing model $F_m(x)$, let's assume the following improvement to it

$$F_{m+1}(x) = F_m(x) + h(x)$$

• Assume $F_m(x) + h(x) = y$. Find h(x) by learning a model from x to the "residual" $y - F_m(x)$

- Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y F(x))^2$
- Gradient boosting is a sequential way to construct such an F(x)
- For simplicity, assume we start with $F_0(x) = \frac{1}{N} \sum_{n=1}^{N} y_n$
- Given an existing model $F_m(x)$, let's assume the following improvement to it

$$F_{m+1}(x) = F_m(x) + h(x)$$

- Assume $F_m(x) + h(x) = y$. Find h(x) by learning a model from x to the "residual" $y F_m(x)$
- Called gradient boosting because the residual is the negative gradient of the loss w.r.t. F(x)

- Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y F(x))^2$
- Gradient boosting is a sequential way to construct such an F(x)
- For simplicity, assume we start with $F_0(x) = \frac{1}{N} \sum_{n=1}^{N} y_n$
- Given an existing model $F_m(x)$, let's assume the following improvement to it

$$F_{m+1}(x) = F_m(x) + h(x)$$

- Assume $F_m(x) + h(x) = y$. Find h(x) by learning a model from x to the "residual" $y F_m(x)$
- Called gradient boosting because the residual is the negative gradient of the loss w.r.t. F(x)
- Extensions for classification and ranking problems as well

- Consider learning a function F(x) by minimizing a squared loss $\frac{1}{2}(y F(x))^2$
- Gradient boosting is a sequential way to construct such an F(x)
- For simplicity, assume we start with $F_0(x) = \frac{1}{N} \sum_{n=1}^{N} y_n$
- Given an existing model $F_m(x)$, let's assume the following improvement to it

$$F_{m+1}(x) = F_m(x) + h(x)$$

- Assume $F_m(x) + h(x) = y$. Find h(x) by learning a model from x to the "residual" $y F_m(x)$
- Called gradient boosting because the residual is the negative gradient of the loss w.r.t. F(x)
- Extensions for classification and ranking problems as well
- A very fast, parallel implementation of GBM is XGBoost (eXtreme Gradient Boosing)

• Ensemble methods are highly effective at boosting performance of simple learners

イロト イロト イモト イモト

- Ensemble methods are highly effective at boosting performance of simple learners
- Often achieve state-of-the-art results on many problems

- Ensemble methods are highly effective at boosting performance of simple learners
- Often achieve state-of-the-art results on many problems
 - AdaBoost was used in one of the first real-time face-detectors (Viola and Jones, 2001)

- Ensemble methods are highly effective at boosting performance of simple learners
- Often achieve state-of-the-art results on many problems
 - AdaBoost was used in one of the first real-time face-detectors (Viola and Jones, 2001)

• Netflix Challenge was won by an ensemble method (based on matrix factorization)

- Ensemble methods are highly effective at boosting performance of simple learners
- Often achieve state-of-the-art results on many problems
 - AdaBoost was used in one of the first real-time face-detectors (Viola and Jones, 2001)

- Netflix Challenge was won by an ensemble method (based on matrix factorization)
- Many Kaggle competition have been won by Gradient Boosting methods such as XGBoost

- Ensemble methods are highly effective at boosting performance of simple learners
- Often achieve state-of-the-art results on many problems
 - AdaBoost was used in one of the first real-time face-detectors (Viola and Jones, 2001)

- Netflix Challenge was won by an ensemble method (based on matrix factorization)
- Many Kaggle competition have been won by Gradient Boosting methods such as XGBoost
- Even outperform deep learning models on many problems

- Ensemble methods are highly effective at boosting performance of simple learners
- Often achieve state-of-the-art results on many problems
 - AdaBoost was used in one of the first real-time face-detectors (Viola and Jones, 2001)

- Netflix Challenge was won by an ensemble method (based on matrix factorization)
- Many Kaggle competition have been won by Gradient Boosting methods such as XGBoost
- Even outperform deep learning models on many problems
- Help reduces bias or/and variance of machine learning models

- Ensemble methods are highly effective at boosting performance of simple learners
- Often achieve state-of-the-art results on many problems
 - AdaBoost was used in one of the first real-time face-detectors (Viola and Jones, 2001)

- Netflix Challenge was won by an ensemble method (based on matrix factorization)
- Many Kaggle competition have been won by Gradient Boosting methods such as XGBoost
- Even outperform deep learning models on many problems
- Help reduces bias or/and variance of machine learning models
 - High bias: very simple models have high bias. Boosting can reduce it

- Ensemble methods are highly effective at boosting performance of simple learners
- Often achieve state-of-the-art results on many problems
 - AdaBoost was used in one of the first real-time face-detectors (Viola and Jones, 2001)

- Netflix Challenge was won by an ensemble method (based on matrix factorization)
- Many Kaggle competition have been won by Gradient Boosting methods such as XGBoost
- Even outperform deep learning models on many problems
- Help reduces bias or/and variance of machine learning models
 - High bias: very simple models have high bias. Boosting can reduce it
 - High variance: very complex models have high variance. Bagging can reduce it

イロト 人間 とくほとく ほど