Reinforcement Learning

Piyush Rai

Introduction to Machine Learning (CS771A)

November 6, 2018
Reinforcement Learning

- Supervised Learning: Uses explicit supervision (input-output pairs)
- In many learning problems that need supervision, it is hard to provide explicit supervision
- Example: Learning a policy/strategy of an agent acting in an environment

Agent lives in states, takes actions, gets rewards, and goal is to maximize its total reward

Reinforcement Learning (RL) is a way to solve such problems

Many applications: Robotics, autonomous driving, computer game playing, online advertising, etc.
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over possible states
 - \(P_{sa}(s')\): Prob. of switching to \(s'\) if we took action \(a\) in \(s\)
 - For discrete states, \(P_{sa}\) is an \(|S|\) length probability vector
 - Another notation for \(P_{sa}(s')\): \(T(s, a, s')\)
- \(R : S \times A \rightarrow \mathbb{R}\) is the reward function
 - Reward for reaching state \(s\): \(R(s, a)\)
- \(\gamma \in [0, 1)\) is called discount factor for future rewards
- \(P_{sa}\) and \(R\) may be unknown (may need to be learned)
Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states \(s_0, s_1, \ldots \) with actions \(a_0, a_1, \ldots \), the payoff:

\[
R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots
\]

- Reward at time \(t \) is discounted by \(\gamma^t \) (note: \(\gamma < 1 \))
 - We care more about immediate rewards, rather than the future rewards
- If rewards defined in terms of states only, then the payoff:

\[
R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots
\]

- We want to choose actions over time (by learning a “policy”) to maximize the expected payoff

\[
\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots]
\]

- The expectation \(\mathbb{E} \) is w.r.t. all possibilities of the initial state \(s_0 \)
Policy Function and Value Function

- Policy Function or **Policy** is a function $\pi : S \mapsto A$, mapping from states to actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$. Want to learn the best π.
- For any policy π, we can define the **Value Function**

$$V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi]$$

- $V^\pi(s)$ is the expected payoff starting in state s and following policy π.
- For finite state spaces, $V^\pi(s)$ will be a vector of size $|S|$.
- **Bellman’s Equation:** Gives a recursive definition of the above Value Function:

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') \times V^\pi(s')$$

$$= R(s) + \gamma \mathbb{E}_{s' \sim P_{s\pi(s)}} [V^\pi(s')]$$

- It’s the immediate reward + expected sum of future discounted rewards.
Computing the Value Function

- Given π, Bellman’s equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s') V^\pi(s')$$

- For finite-state MDP, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable

- The **Optimal Value Function** is defined as

$$V^*(s) = \max_\pi V^\pi(s)$$

- It’s the **best possible expected payoff** that any policy π can give

- The Optimal Value Function can also be defined as:

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$
Optimal Policy

- The **Optimal Value Function**:

\[
V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

- Given the optimal value function \(V^*\), the **Optimal Policy** \(\pi^* : S \mapsto A\):

\[
\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

\(\pi^*(s)\) gives the action \(a\) that maximizes the optimal value function for that state.

- Three popular methods to find the optimal policy
 - **Value Iteration**: Estimate \(V^*\) and then use Eq 1
 - **Policy Iteration**: Iterate between learning the optimal policy \(\pi^*\) and learning \(V^*\)
 - **Q Learning** (a variant of value iteration)
Finding the Optimal Policy: Value Iteration

- Iteratively compute the optimal value function V^* as follows
 - For each state s, initialize $V(s) = 0$
 - Repeat until convergence
 - For each state s, update $V(s)$ as
 $$V(s) = R(s) + \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$$

- Value Iteration property: V converges to V^*

- Upon convergence, use $\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$

- Note: The inner loop can update $V(s)$ for all states simultaneously, or in some order
Finding the Optimal Policy: Policy Iteration

- Iteratively compute the policy π until convergence
 - Initialize π randomly
 - Repeat until convergence
 1. Let $V = V^\pi$
 2. For each state s, set $\pi(s) = \arg\max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$

- Step (1) computes the value function for the current policy π
 - Can be done using Bellman’s equations (solving $|S|$ equations in $|S|$ unknowns)

- Step (2) gives the policy that is greedy w.r.t. V
Finding the Optimal Policy: Q Learning

- This is a variant of value iteration
- However, instead of iterating over V, we iterate over a “Q function”
- Recall the optimal value function

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$

- Define $Q(s, a) = R(s) + \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$ then

$$V^*(s) = \max_{a \in A} Q(s, a)$$

- We can iteratively learn $Q(s, a)$ until convergence

$$Q_{t+1}(s, a) = R(s) + \gamma \sum_{s' \in S} P_{sa}(s') \max_{a' \in A} Q_t(s, a')$$

- Then set $V^*(s) = \arg \max_{a \in A} Q(s, a)$
Learning an MDP Model

- So far we assumed:
 - State transition probabilities \(\{P_{sa}\} \) are given
 - Rewards \(R(s) \) at each state are known

- Often we don’t know these and want to learn these

- These are learned using experience (i.e., a set of previous trials)

\[
\begin{align*}
S_0^{(1)} &\xrightarrow{a_0^{(1)}} S_1^{(1)} & a_1^{(1)} &\rightarrow S_2^{(1)} & a_2^{(1)} &\rightarrow S_3^{(1)} & a_3^{(1)} &\rightarrow \ldots \\
S_0^{(2)} &\xrightarrow{a_0^{(2)}} S_1^{(2)} & a_1^{(2)} &\rightarrow S_2^{(2)} & a_2^{(2)} &\rightarrow S_3^{(2)} & a_3^{(2)} &\rightarrow \ldots \\
&\ldots
\end{align*}
\]

- \(s_i^{(j)} \) is the state at time \(i \) of trial \(j \)

- \(a_i^{(j)} \) is the corresponding action at that state
Learning an MDP Model

- Maximum likelihood estimate of state transition probabilities:

\[P_{sa}(s') = \frac{\# \ of \ times \ we \ took \ action \ a \ in \ state \ s \ and \ got \ to \ s'}{\# \ of \ times \ we \ took \ action \ a \ in \ state \ s} \]

- Note: if action \(a\) is never taken in state \(s\), the above ratio is 0/0
 - In that case: \(P_{sa}(s') = 1/|S| \) (uniform distribution over all states)

- \(P_{sa} \) is easy to update if we gather more experience (i.e., do more trials)
 - .. just add counts in the numerator and denominator

- Likewise, the expected reward \(R(s) \) in state \(s \) can be computed
 - \(R(s) = \) average reward in state \(s \) across all the trials
Alternate between learning the MDP (P_{sa} and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

- Randomly initialize policy π
- Repeat until convergence
 1. Execute policy π in the MDP to generate a set of trials
 2. Use this “experience” to estimate P_{sa} and R
 3. Apply value iteration with the estimated P_{sa} and R
 ⇒ Gives a new estimate of the value function V
 4. Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration
Value Iteration vs Policy Iteration

- **Small state spaces**: Policy Iteration typically very fast and converges quickly

- **Large state spaces**: Policy Iteration may be slow
 - Reason: Policy Iteration needs to solve a large system of linear equations
 - Value iteration is preferred in such cases

- **Very large state spaces**: Value function can be approximated using some regression algorithm
 - Optimality guarantee is lost however
A car moving in 2D: $s = (x, y, \theta, \dot{x}, \dot{y}, \dot{\theta})$. Thus $S = \mathbb{R}^6$

Helicopter flying in 3D: $s = (x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi})$. Thus $S = \mathbb{R}^{12}$

In general, the state space could be infinite $S = \mathbb{R}^n$

How to handle these continuous state spaces?
Discretization

- Suppose the state space is 2D: \(s = (s_1, s_2) \). Can discretize it

- Call each discrete state \(\bar{s} \), discretized state space \(\bar{S} \), and define the MDP as

\[
(\bar{S}, A, \{P_{\bar{s}a}\}, \gamma, R)
\]

- Can now use value iteration or policy iteration on this discrete state space

- Limitations? Piecewise constant \(V^* \) and \(\pi^* \) (isn’t realistic). Doesn’t work well in high-dim state spaces (resulting discrete space space too huge)

- Discretization usually done only for 1D or 2D state-spaces
Policy Learning in Continuous State Spaces

• Policy learning requires learning the value function V^*
• Can we do away with discretization and approximate V^* directly?
• To do so, we will need (an approximate) model of the underlying MDP
Approximating the MDP Model

- Execute a set of trials

\[
\begin{align*}
S_0^{(1)} & \rightarrow S_1^{(1)} \rightarrow S_2^{(1)} \rightarrow \cdots \rightarrow S_T^{(1)} \\
S_0^{(2)} & \rightarrow S_1^{(2)} \rightarrow S_2^{(2)} \rightarrow \cdots \rightarrow S_T^{(2)} \\
& \cdots \\
S_0^{(m)} & \rightarrow S_1^{(m)} \rightarrow S_2^{(m)} \rightarrow \cdots \rightarrow S_T^{(m)}
\end{align*}
\]

- Use this data to learn a function that predicts \(s_{t+1} \) given \(s_t \) and \(a \), e.g.,

\[
s_{t+1} = As_t + Ba_t
\]

\[
\arg\min_{A,B} \sum_{i=1}^{m} \sum_{t=0}^{T-1} \left\| s_{t+1}^{(i)} - \left(As_t^{(i)} + Ba_t^{(i)} \right) \right\|^2
\]

- \(A \) and \(B \) can be estimate from the trial data

- Can also make the function stochastic/noisy: \(s_{t+1} = As_t + Ba_t + \epsilon_t \) where \(\epsilon_t \sim \mathcal{N}(0, \Sigma) \) is the random noise (\(\Sigma \) can also be learned)
Approximating the MDP Model

- Can also learn nonlinear functions $s_{t+1} = f(s_t)$

$$s_{t+1} = A\phi_s(s_t) + B\phi_a(a_t)$$

- Any nonlinear regression algorithm can be used here
Approximating the Value Function

- We will use “Fitted Value Iteration” methods
- Recall the value iteration

\[
V(s) := R(s) + \gamma \max_a \int_{s'} P_{sa}(s') V(s') ds'
\]

\[
= R(s) + \gamma \max_a E_{s' \sim P_{sa}} [V(s')]
\]

- Note: sum replaced by integral (since the state space \(S\) is continuous)
- Want a model for \(V(s)\). Let’s assume \(V(s) = \theta^\top \phi(s)\)
- We would need some training data in order to learn \(\theta\)

\[
\{V(s^i), \phi(s^i)\}_{i=1}^m
\]

- We will generate such training data and learn \(\theta\) in an alternating fashion
Fitted Value Iteration: The Full Algorithm

1. Randomly sample m states $s^{(1)}, s^{(2)}, \ldots s^{(m)} \in S$.

2. Initialize $\theta := 0$.

3. Repeat {

 For $i = 1, \ldots, m$ {

 For each action $a \in A$ {

 Sample $s'_1, \ldots, s'_k \sim P_{s^{(i)}a}$ (using a model of the MDP).

 Set $q(a) = \frac{1}{k} \sum_{j=1}^{k} R(s^{(i)}) + \gamma V(s'_j)$

 // Hence, $q(a)$ is an estimate of $R(s^{(i)}) + \gamma E_{s' \sim P_{s^{(i)}a}}[V(s')]$.

 }

 Set $y^{(i)} = \max_a q(a)$.

 // Hence, $y^{(i)}$ is an estimate of $R(s^{(i)}) + \gamma \max_a E_{s' \sim P_{s^{(i)}a}}[V(s')]$.

 }

 // In the original value iteration algorithm (over discrete states)
 // we updated the value function according to $V(s^{(i)}) := y^{(i)}$.

 // In this algorithm, we want $V(s^{(i)}) \approx y^{(i)}$, which we'll achieve
 // using supervised learning (linear regression).

 Set $\theta := \arg \min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (\theta^T \phi(s^{(i)}) - y^{(i)})^2$
Fitted Value Iteration

- Other nonlinear regression algorithms can also be used

\[V(s) = f(\phi(s)) \]

where \(f \) is a nonlinear function (e.g., modeled by a Gaussian Process)

- Note: Fitted value iteration is not guaranteed to converge (though, in practice, mostly it does)

- The final output is \(V \) (an approximation to \(V^* \))

- \(V \) implicitly represents our policy \(\pi \). The optimal action

\[\arg \max_a \mathbb{E}_{s' \sim P_{sa}}[V(s')] \]
Other Topics related to RL

- Inverse Reinforcement Learning (IRL)
 - Doesn’t assume the reward function to be known. Learns it

- Imitation Learning: Imitate an demonstrator/demonstrations

- Deep Reinforcement Learning
Summary

• Basic introduction to Reinforcement Learning
• Looked at the definition of a Markov Decision Process (MDP)
• Looked at methods for learning the MDP parameters from data
 • Easily and exactly for the discrete state-space case
 • Using function approximation methods in the continuous case
• Looked at methods for Policy Learning
 • MDP Learning and Policy Learning usually done jointly