Reinforcement Learning

Piyush Rai

Introduction to Machine Learning (CS771A)

November 6, 2018
Supervised Learning: Uses **explicit supervision** (input-output pairs)

In many learning problems that need supervision, it is hard to provide explicit supervision.
Reinforcement Learning

- Supervised Learning: Uses explicit supervision (input-output pairs)
- In many learning problems that need supervision, it is hard to provide explicit supervision
- Example: Learning a policy/strategy of an agent acting in an environment
Reinforcement Learning

- Supervised Learning: Uses **explicit supervision** (input-output pairs)
- In many learning problems that need supervision, it is hard to provide explicit supervision
- Example: Learning a policy/strategy of an **agent** acting in an **environment**

- Agent lives in **states**, takes **actions**, gets **rewards**, and goal is to maximize its **total reward**
Reinforcement Learning

- Supervised Learning: Uses explicit supervision (input-output pairs)
- In many learning problems that need supervision, it is hard to provide explicit supervision
- Example: Learning a policy/strategy of an agent acting in an environment

Agent lives in states, takes actions, gets rewards, and goal is to maximize its total reward

Reinforcement Learning (RL) is a way to solve such problems
Supervised Learning: Uses explicit supervision (input-output pairs)

In many learning problems that need supervision, it is hard to provide explicit supervision

Example: Learning a policy/strategy of an agent acting in an environment

Agent lives in states, takes actions, gets rewards, and goal is to maximize its total reward

Reinforcement Learning (RL) is a way to solve such problems

Many applications: Robotics, autonomous driving, computer game playing, online advertising, etc.
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions

States = [Standing, Moving, Fallen]
Actions = [Slow, Fast]

\[
T(Standing, Slow, Moving) = 1 \\
T(Standing, Fast, Moving) = 0.6 \\
T(Standing, Fast, Fallen) = 0.4 \\
... \\
T(Falling, Slow, Moving) = 0.6 \\
T(Falling, Fast, Fallen) = 0.4 \\
... \\
\]
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over possible states

States = [Standing, Moving, Fallen]
Actions = [Slow, Fast]

\[T(Standing, Slow, Moving) = 1\]
\[T(Standing, Fast, Moving) = 0.6\]
\[T(Standing, Fast, Fallen) = 0.4\]
...
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over possible states
 - \(P_{sa}(s')\): Prob. of switching to \(s'\) if we took action \(a\) in \(s\)

\[\begin{align*}
\text{States} &= \text{[Standing, Moving, Fallen]} \\
\text{Actions} &= \text{[Slow, Fast]} \\
T(\text{Standing, Slow, Moving}) &= 1 \\
T(\text{Standing, Fast, Moving}) &= 0.6 \\
T(\text{Standing, Fast, Fallen}) &= 0.4 \\
\text{...}
\end{align*}\]
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over possible states
 - \(P_{sa}(s')\): Prob. of switching to \(s'\) if we took action \(a\) in \(s\)
 - For discrete states, \(P_{sa}\) is an \(|S|\) length probability vector

States = [Standing, Moving, Fallen]
Actions = [Slow, Fast]

\[
\begin{align*}
T(Standing, Slow, Moving) &= 1 \\
T(Standing, Fast, Moving) &= 0.6 \\
T(Standing, Fast, Fallen) &= 0.4 \\
&\quad \ldots
\end{align*}
\]
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over possible states
 - \(P_{sa}(s')\): Prob. of switching to \(s'\) if we took action \(a\) in \(s\)
 - For discrete states, \(P_{sa}\) is an \(|S|\) length probability vector
 - Another notation for \(P_{sa}(s')\): \(T(s, a, s')\)

States = [Standing, Moving, Fallen]
Actions = [Slow, Fast]

\[
\begin{align*}
T(\text{Standing, Slow, Moving}) &= 1 \\
T(\text{Standing, Fast, Moving}) &= 0.6 \\
T(\text{Standing, Fast, Fallen}) &= 0.4 \\
&\ldots
\end{align*}
\]
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over possible states
 - \(P_{sa}(s')\): Prob. of switching to \(s'\) if we took action \(a\) in \(s\)
 - For discrete states, \(P_{sa}\) is an \(|S|\) length probability vector
 - Another notation for \(P_{sa}(s')\): \(T(s, a, s')\)
- \(R : S \times A \rightarrow \mathbb{R}\) is the reward function
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over possible states
 - \(P_{sa}(s')\): Prob. of switching to \(s'\) if we took action \(a\) in \(s\)
 - For discrete states, \(P_{sa}\) is an \(|S|\) length probability vector
 - Another notation for \(P_{sa}(s')\): \(T(s, a, s')\)
- \(R : S \times A \rightarrow \mathbb{R}\) is the reward function
 - Reward for reaching state \(s\): \(R(s, a)\)

Intro to Machine Learning (CS771A)
Reinforcement Learning
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)
- \(S\) is a set of states (discrete or continuous valued)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over possible states
 - \(P_{sa}(s')\): Prob. of switching to \(s'\) if we took action \(a\) in \(s\)
 - For discrete states, \(P_{sa}\) is an \(|S|\) length probability vector
 - Another notation for \(P_{sa}(s')\): \(T(s, a, s')\)
- \(R : S \times A \rightarrow \mathbb{R}\) is the reward function
 - Reward for reaching state \(s\): \(R(s, a)\)
- \(\gamma \in [0, 1)\) is called discount factor for future rewards

Intro to Machine Learning (CS771A)
Markov Decision Processes (MDP)

- MDP gives a formal way to define RL problems
- An MDP consists of a tuple $(S, A, \{P_{sa}\}, \gamma, R)$
- S is a set of states (discrete or continuous valued)
- A is a set of actions
- P_{sa} is a probability distribution over possible states
 - $P_{sa}(s')$: Prob. of switching to s' if we took action a in s
 - For discrete states, P_{sa} is an $|S|$ length probability vector
 - Another notation for $P_{sa}(s')$: $T(s, a, s')$
- $R: S \times A \mapsto \mathbb{R}$ is the reward function
 - Reward for reaching state s: $R(s, a)$
- $\gamma \in [0, 1)$ is called discount factor for future rewards
- P_{sa} and R may be unknown (may need to be learned)

States = [Standing, Moving, Fallen]
Actions = [Slow, Fast]
$T($Standing, Slow, Moving$) = 1$
$T($Standing, Fast, Moving$) = 0.6$
$T($Standing, Fast, Fallen$) = 0.4$
...
Payoff and Expected Payoff

- Payoff defines the cumulative reward

Payoff upon visiting states $s_0, s_1, ...$ with actions $a_0, a_1, ...$ is:

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + ...$$

Reward at time t is discounted by γ^t (note: $\gamma < 1$)

We care more about immediate rewards, rather than the future rewards.

If rewards defined in terms of states only, then the payoff:

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ...$$

We want to choose actions over time (by learning a “policy”) to maximize the expected payoff:

$$E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + ...]$$

The expectation E is w.r.t. all possibilities of the initial state s_0.
Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots$$
Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:
 \[R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \]
- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:
 \[R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \]
- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
 - We care more about immediate rewards, rather than the future rewards
Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:

\[R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \]

- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
 - We care more about immediate rewards, rather than the future rewards
- If rewards defined in terms of states only, then the payoff:

\[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots \]
Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:
 \[R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \]
- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
 - We care more about immediate rewards, rather than the future rewards
- If rewards defined in terms of states only, then the payoff:
 \[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots \]
- We want to choose actions over time (by learning a “policy”) to maximize the expected payoff
 \[\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots] \]
Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:
 \[R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \]
- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
 - We care more about immediate rewards, rather than the future rewards
- If rewards defined in terms of states only, then the payoff:
 \[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots \]
- We want to choose actions over time (by learning a “policy”) to maximize the expected payoff
 \[\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots] \]
- The expectation \mathbb{E} is w.r.t. all possibilities of the initial state s_0
Policy Function and Value Function

- Policy Function or Policy is a function $\pi : S \mapsto A$, mapping from states to actions.
Policy Function and Value Function

- Policy Function or **Policy** is a function $\pi : S \mapsto A$, mapping from states to actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$.
Policy Function and Value Function

- Policy Function or **Policy** is a function $\pi : S \mapsto A$, mapping from states to actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$. Want to learn the best π.

Bellman's Equation:
$$V_\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s) \cdot V_\pi(s')$$
It's the immediate reward + expected sum of future discounted rewards.
Policy Function and Value Function

- Policy Function or **Policy** is a function \(\pi : S \mapsto A \), mapping from states to actions.
- For an agent with policy \(\pi \), the action in state \(s \): \(a = \pi(s) \). Want to learn the best \(\pi \).
- For any policy \(\pi \), we can define the **Value Function**

\[
V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi]
\]
Policy Function and Value Function

- Policy Function or Policy is a function $\pi : S \rightarrow A$, mapping from states to actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$. Want to learn the best π.
- For any policy π, we can define the Value Function

$$V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi]$$

- $V^\pi(s)$ is the expected payoff starting in state s and following policy π.
Policy Function and Value Function

- Policy Function or Policy is a function $\pi : S \mapsto A$, mapping from states to actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$. Want to learn the best π.
- For any policy π, we can define the Value Function $V^\pi(s)$:
 \[V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi] \]
 - $V^\pi(s)$ is the expected payoff starting in state s and following policy π.
- For finite state spaces, $V^\pi(s)$ will be a vector of size $|S|$.

Bellman's Equation:

Gives a recursive definition of the above Value Function:

$$ V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s, \pi}(s') \times V^\pi(s') $$

It's the immediate reward + expected sum of future discounted rewards.
Policy Function and Value Function

- Policy Function or **Policy** is a function \(\pi : S \mapsto A \), mapping from states to actions.
- For an agent with policy \(\pi \), the action in state \(s \): \(a = \pi(s) \). Want to learn the best \(\pi \).
- For any policy \(\pi \), we can define the **Value Function**

\[
V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi]
\]

- \(V^\pi(s) \) is the expected payoff starting in state \(s \) and following policy \(\pi \).
- For finite state spaces, \(V^\pi(s) \) will be a vector of size \(|S| \).
- **Bellman’s Equation**: Gives a recursive definition of the above Value Function:

\[
V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s')(s') \times V^\pi(s')
\]
Policy Function and Value Function

- Policy Function or Policy is a function $\pi : S \mapsto A$, mapping from states to actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$. Want to learn the best π.
- For any policy π, we can define the Value Function

$$V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi]$$

- $V^\pi(s)$ is the expected payoff starting in state s and following policy π.
- For finite state spaces, $V^\pi(s)$ will be a vector of size $|S|$.
- Bellman’s Equation: Gives a recursive definition of the above Value Function:

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s') \times V^\pi(s')$$

$$= R(s) + \gamma \mathbb{E}_{s' \sim P_{s\pi}(s)} [V^\pi(s')]$$

Intro to Machine Learning (CS771A)
Reinforcement Learning
Policy Function and Value Function

- Policy Function or **Policy** is a function $\pi : S \mapsto A$, mapping from states to actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$. Want to learn the best π.
- For any policy π, we can define the **Value Function**

$$V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi]$$

- $V^\pi(s)$ is the expected payoff starting in state s and following policy π.
- For finite state spaces, $V^\pi(s)$ will be a vector of size $|S|$.
- **Bellman’s Equation**: Gives a recursive definition of the above Value Function:

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s') \times V^\pi(s')$$

$$= R(s) + \gamma \mathbb{E}_{s' \sim P_{s\pi}(s')} [V^\pi(s')]$$

- It’s the immediate reward + expected sum of future discounted rewards.
Computing the Value Function

- Given π, Bellman’s equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^\pi(s')$$

For finite-state MDP, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable

The Optimal Value Function is defined as

$$V^*(s) = \max_\pi V^\pi(s)$$

It’s the best possible expected payoff that any policy π can give.

The Optimal Value Function can also be defined as:

$$V^*(s) = R(s) + \max_a \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$
Computing the Value Function

Given π, Bellman’s equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s \pi}(s') V^\pi(s')$$

For finite-state MDP, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable

The Optimal Value Function is defined as $V^*(s) = \max_{\pi} V^\pi(s)$

It's the best possible expected payoff that any policy π can give
Computing the Value Function

- Given π, Bellman’s equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s') V^\pi(s')$$

- For finite-state MDP, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable

- The **Optimal Value Function** is defined as

$$V^*(s) = \max_{\pi} V^\pi(s)$$
Computing the Value Function

- Given π, Bellman’s equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s') V^\pi(s')$$

- For finite-state MDP, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable

- The **Optimal Value Function** is defined as

$$V^*(s) = \max_\pi V^\pi(s)$$

- It’s the **best possible expected payoff** that any policy π can give
Computing the Value Function

- Given π, Bellman’s equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s') V^\pi(s')$$

- For finite-state MDP, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable

- The **Optimal Value Function** is defined as

$$V^*(s) = \max_{\pi} V^\pi(s)$$

- It’s the **best possible expected payoff** that any policy π can give

- The Optimal Value Function can also be defined as:

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$
Optimal Policy

- The **Optimal Value Function**:

\[
V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

Given the optimal value function \(V^* \), the **Optimal Policy** \(\pi^* \):

\[
\pi^*(s) = \text{arg max}_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

Three popular methods to find the optimal policy:

- **Value Iteration**: Estimate \(V^* \) and then use Eq 1
- **Policy Iteration**: Iterate between learning the optimal policy \(\pi^* \) and learning \(V^* \)
- **Q Learning** (a variant of value iteration)
Optimal Policy

- The **Optimal Value Function**:

 \[
 V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
 \]

- Given the optimal value function \(V^* \), the **Optimal Policy** \(\pi^* : S \mapsto A \):

 \[
 \pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')
 \]

 (1)
Optimal Policy

- The **Optimal Value Function**:

\[
V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

- Given the optimal value function \(V^* \), the **Optimal Policy** \(\pi^* : S \mapsto A \):

\[
\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

- \(\pi^*(s) \) gives the action \(a \) that maximizes the optimal value function for that state.
Optimal Policy

- The **Optimal Value Function**:

\[
V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

- Given the optimal value function \(V^* \), the **Optimal Policy** \(\pi^* : S \mapsto A \):

\[
\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

- \(\pi^*(s) \) gives the action \(a \) that maximizes the optimal value function for that state

- Three popular methods to find the optimal policy:
 - **Value Iteration**: Estimate \(V^* \) and then use Eq 1
 - **Policy Iteration**: Iterate between learning the optimal policy \(\pi^* \) and learning \(V^* \)
 - **Q Learning** (a variant of value iteration)
The **Optimal Value Function**:

\[
V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

Given the optimal value function \(V^*\), the **Optimal Policy** \(\pi^* : S \mapsto A\):

\[
\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

\(\pi^*(s)\) gives the action \(a\) that maximizes the optimal value function for that state.

- Three popular methods to find the optimal policy
 - **Value Iteration**: Estimate \(V^*\) and then use Eq 1

Optimal Policy

- **The Optimal Value Function:**

\[
V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
\]

- Given the optimal value function \(V^* \), the **Optimal Policy** \(\pi^* : S \mapsto A \):

\[
\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')
\] (1)

- \(\pi^*(s) \) gives the action \(a \) that maximizes the optimal value function for that state

- Three popular methods to find the optimal policy
 - **Value Iteration:** Estimate \(V^* \) and then use Eq 1
 - **Policy Iteration:** Iterate between learning the optimal policy \(\pi^* \) and learning \(V^* \)
 - **Q Learning** (a variant of value iteration)
Finding the Optimal Policy: Value Iteration

- Iteratively compute the optimal value function V^* as follows:

 For each state s, initialize $V(s) = 0$

 Repeat until convergence:
 - For each state s, update $V(s)$ as:
 $$V(s) = R(s) + \max_{a \in A} \sum_{s'} P_{s,a}(s') V(s')$$

 Value Iteration property: V converges to V^*

 Upon convergence, use:
 $$\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{s,a}(s') V^*(s')$$

 Note: The inner loop can update $V(s)$ for all states simultaneously, or in some order.
Finding the Optimal Policy: Value Iteration

- Iteratively compute the optimal value function V^* as follows
 - For each state s, initialize $V(s) = 0$
Finding the Optimal Policy: Value Iteration

- Iteratively compute the optimal value function V^* as follows
 - For each state s, initialize $V(s) = 0$
 - Repeat until convergence
Finding the Optimal Policy: Value Iteration

Iteratively compute the optimal value function V^* as follows

- For each state s, initialize $V(s) = 0$
- Repeat until convergence
 - For each state s, update $V(s)$ as
 $$V(s) = R(s) + \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$$

Value Iteration property: V converges to V^*

Upon convergence, use
$$\pi^*(s) = \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$$

Note: The inner loop can update $V(s)$ for all states simultaneously, or in some order.
Finding the Optimal Policy: Value Iteration

- Iteratively compute the optimal value function V^* as follows
 - For each state s, initialize $V(s) = 0$
 - Repeat until convergence
 - For each state s, update $V(s)$ as
 $$V(s) = R(s) + \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$$

- Value Iteration property: V converges to V^*
Finding the Optimal Policy: Value Iteration

- Iteratively compute the **optimal** value function V^* as follows
 - For each state s, initialize $V(s) = 0$
 - Repeat until convergence
 - For each state s, update $V(s)$ as
 $$V(s) = R(s) + \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$$

- **Value Iteration property:** V converges to V^*

- Upon convergence, use $\pi^*(s) = \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V^*(s')$
Finding the Optimal Policy: Value Iteration

- Iteratively compute the optimal value function V^* as follows
 - For each state s, initialize $V(s) = 0$
 - Repeat until convergence
 - For each state s, update $V(s)$ as
 $$V(s) = R(s) + \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$$

- Value Iteration property: V converges to V^*

- Upon convergence, use $\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$

- **Note:** The inner loop can update $V(s)$ for all states simultaneously, or in some order
Finding the Optimal Policy: Policy Iteration

- Iteratively compute the policy π until convergence
Finding the Optimal Policy: Policy Iteration

- Iteratively compute the policy \(\pi \) until convergence
 - Initialize \(\pi \) randomly
Finding the Optimal Policy: Policy Iteration

- Iteratively compute the policy π until convergence
 - Initialize π randomly
 - Repeat until convergence

Step (1) computes the value function for the current policy π. Can be done using Bellman's equations (solving $|S|$ equations in $|S|$ unknowns). Step (2) gives the policy that is greedy w.r.t. V.
Finding the Optimal Policy: Policy Iteration

- Iteratively compute the policy π until convergence
 - Initialize π randomly
 - Repeat until convergence
 - Let $V = V^\pi$
Finding the Optimal Policy: Policy Iteration

- Iteratively compute the policy π until convergence
 - Initialize π randomly
 - Repeat until convergence
 1. Let $V = V^\pi$
 2. For each state s, set $\pi(s) = \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$
Finding the Optimal Policy: Policy Iteration

• Iteratively compute the policy π until convergence
 • Initialize π randomly
 • Repeat until convergence
 1. Let $V = V^\pi$
 2. For each state s, set $\pi(s) = \arg\max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$

• Step (1) the computes the value function for the current policy π
Finding the Optimal Policy: Policy Iteration

- Iteratively compute the policy \(\pi \) until convergence
 - Initialize \(\pi \) randomly
 - Repeat until convergence
 1. Let \(V = V^\pi \)
 2. For each state \(s \), set \(\pi(s) = \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V(s') \)

- Step (1) computes the value function for the current policy \(\pi \)
 - Can be done using Bellman’s equations (solving \(|S|\) equations in \(|S|\) unknowns)
Finding the Optimal Policy: Policy Iteration

- Iteratively compute the policy π until convergence
 - Initialize π randomly
 - Repeat until convergence
 1. Let $V = V^\pi$
 2. For each state s, set $\pi(s) = \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$

Step (1) computes the value function for the current policy π
- Can be done using Bellman’s equations (solving $|S|$ equations in $|S|$ unknowns)

Step (2) gives the policy that is greedy w.r.t. V
Finding the Optimal Policy: Q Learning

- This is a variant of value iteration
- However, instead of iterating over V, we iterate over a “Q function”

Recall the optimal value function $V^*(s) = R(s) + \max_a \gamma \sum_{s'} P_{sa}(s') V^*(s')$

Define $Q(s, a) = R(s) + \gamma \sum_{s'} P_{sa}(s') \max_{a'} Q(s', a')$ then

$V^*(s) = \max_a Q(s, a)$

We can iteratively learn $Q(s, a)$ until convergence $Q_{t+1}(s, a) = R(s) + \gamma \sum_{s'} P_{sa}(s') \max_{a'} Q_t(s', a')$

Then set $V^*(s) = \arg \max_a Q(s, a)$
Finding the Optimal Policy: Q Learning

- This is a variant of value iteration
- However, instead of iterating over V, we iterate over a “Q function”
- Recall the optimal value function

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$
Finding the Optimal Policy: Q Learning

- This is a variant of value iteration
- However, instead of iterating over V, we iterate over a “Q function”
- Recall the optimal value function
 \[
 V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
 \]
- Define $Q(s, a) = R(s) + \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$ then
 \[
 V^*(s) = \max_{a \in A} Q(s, a)
 \]
Finding the Optimal Policy: Q Learning

- This is a variant of value iteration
- However, instead of iterating over V, we iterate over a “Q function”
- Recall the optimal value function

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$

- Define $Q(s, a) = R(s) + \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$ then

$$V^*(s) = \max_{a \in A} Q(s, a)$$

- We can iteratively learn $Q(s, a)$ until convergence

$$Q_{t+1}(s, a) = R(s) + \gamma \sum_{s' \in S} P_{sa}(s') \max_{a' \in A} Q_t(s, a')$$
Finding the Optimal Policy: Q Learning

- This is a variant of value iteration
- However, instead of iterating over V, we iterate over a “Q function”
- Recall the optimal value function

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$

- Define $Q(s, a) = R(s) + \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$ then

$$V^*(s) = \max_{a \in A} Q(s, a)$$

- We can iteratively learn $Q(s, a)$ until convergence

$$Q_{t+1}(s, a) = R(s) + \gamma \sum_{s' \in S} P_{sa}(s') \max_{a' \in A} Q_t(s, a')$$

- Then set $V^*(s) = \arg \max_{a \in A} Q(s, a)$
Learning an MDP Model

- So far we assumed:
 - State transition probabilities $\{P_{sa}\}$ are given
 - Rewards $R(s)$ at each state are known

Often we don't know these and want to learn these. These are learned using experience (i.e., a set of previous trials).

$s(j)_i$ is the state at time i of trial j

$a(j)_i$ is the corresponding action at that state
Learning an MDP Model

- So far we assumed:
 - State transition probabilities $\{P_{sa}\}$ are given
 - Rewards $R(s)$ at each state are known

- Often we don’t know these and want to learn these
Learning an MDP Model

- So far we assumed:
 - State transition probabilities $\{P_{sa}\}$ are given
 - Rewards $R(s)$ at each state are known

- Often we don’t know these and want to learn these

- These are learned using experience (i.e., a set of previous trials)
Learning an MDP Model

- So far we assumed:
 - State transition probabilities \(\{P_{sa}\} \) are given
 - Rewards \(R(s) \) at each state are known

- Often we don’t know these and want to learn these

- These are learned using experience (i.e., a set of previous trials)

\[
\begin{align*}
S_0^{(1)} &\rightarrow S_1^{(1)} \rightarrow S_2^{(1)} \rightarrow S_3^{(1)} \rightarrow \ldots \\
S_0^{(2)} &\rightarrow S_1^{(2)} \rightarrow S_2^{(2)} \rightarrow S_3^{(2)} \rightarrow \ldots \\
& \vdots \\
S_i^{(j)} & \text{is the state at time } i \text{ of trial } j
\end{align*}
\]
Learning an MDP Model

- So far we assumed:
 - State transition probabilities \(\{P_{sa}\} \) are given
 - Rewards \(R(s) \) at each state are known

- Often we don’t know these and want to learn these

- These are learned using experience (i.e., a set of previous trials)

\[
\begin{align*}
S_0^{(1)} & \xrightarrow{a_0^{(1)}} S_1^{(1)} & \xrightarrow{a_1^{(1)}} S_2^{(1)} & \xrightarrow{a_2^{(1)}} S_3^{(1)} & \xrightarrow{a_3^{(1)}} \ldots \\
S_0^{(2)} & \xrightarrow{a_0^{(2)}} S_1^{(2)} & \xrightarrow{a_1^{(2)}} S_2^{(2)} & \xrightarrow{a_2^{(2)}} S_3^{(2)} & \xrightarrow{a_3^{(2)}} \ldots \\
& \ldots
\end{align*}
\]

- \(s_i^{(j)} \) is the state at time \(i \) of trial \(j \)
- \(a_i^{(j)} \) is the corresponding action at that state
Learning an MDP Model

- Maximum likelihood estimate of state transition probabilities:

\[P_{sa}(s') = \frac{\text{# of times we took action } a \text{ in state } s \text{ and got to } s'}{\text{# of times we took action } a \text{ in state } s} \]

Note: if action \(a \) is never taken in state \(s \), the above ratio is \(0/0 \). In that case:

\[P_{sa}(s') = \frac{1}{|S|} \text{ (uniform distribution over all states)} \]

\(P_{sa} \) is easy to update if we gather more experience (i.e., do more trials) just add counts in the numerator and denominator.

Likewise, the expected reward \(R(s) \) in state \(s \) can be computed:

\[R(s) = \text{average reward in state } s \text{ across all the trials} \]
Learning an MDP Model

- Maximum likelihood estimate of state transition probabilities:

\[P_{sa}(s') = \frac{\text{# of times we took action } a \text{ in state } s \text{ and got to } s'}{\text{# of times we took action } a \text{ in state } s} \]

- Note: if action \(a \) is never taken in state \(s \), the above ratio is \(0/0 \)

 - In that case: \(P_{sa}(s') = 1/|S| \) (uniform distribution over all states)
Learning an MDP Model

- Maximum likelihood estimate of state transition probabilities:
 \[P_{sa}(s') = \frac{\text{# of times we took action } a \text{ in state } s \text{ and got to } s'}{\text{# of times we took action } a \text{ in state } s} \]

- Note: if action \(a \) is never taken in state \(s \), the above ratio is 0/0

 - In that case: \(P_{sa}(s') = 1/|S| \) (uniform distribution over all states)

- \(P_{sa} \) is easy to update if we gather more experience (i.e., do more trials)

 - .. just add counts in the numerator and denominator
Learning an MDP Model

- Maximum likelihood estimate of state transition probabilities:
 \[P_{sa}(s') = \frac{\text{# of times we took action } a \text{ in state } s \text{ and got to } s'}{\text{# of times we took action } a \text{ in state } s} \]

- Note: if action \(a \) is never taken in state \(s \), the above ratio is 0/0
 - In that case: \(P_{sa}(s') = 1/|S| \) (uniform distribution over all states)

- \(P_{sa} \) is easy to update if we gather more experience (i.e., do more trials)
 - Just add counts in the numerator and denominator

- Likewise, the expected reward \(R(s) \) in state \(s \) can be computed
 - \(R(s) = \text{average reward in state } s \text{ across all the trials} \)
Alternate between learning the MDP (P_{sa} and R), and learning the policy

The Algorithm (assuming value iteration)

1. Randomly initialize policy π
2. Repeat until convergence
 1. Execute policy π in the MDP to generate a set of trials
 2. Use this "experience" to estimate P_{sa} and R
 3. Apply value iteration with the estimated P_{sa} and R ⇒ Gives a new estimate of the value function V
 4. Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration.
Alternate between learning the MDP (P_{sa} and R), and learning the policy.

Policy learning step can be done using value iteration or policy iteration.
Alternate between learning the MDP (P_{sa} and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

1. Randomly initialize policy π
2. Repeat until convergence
 1. Execute policy π in the MDP to generate a set of trials
 2. Use this “experience” to estimate P_{sa} and R
 3. Apply value iteration with the estimated P_{sa} and R \Rightarrow Gives a new estimate of the value function V
 4. Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration
Alternate between learning the MDP (P_{sa} and R), and learning the policy. Policy learning step can be done using value iteration or policy iteration.

The Algorithm (assuming value iteration)

- Randomly initialize policy π
Alternate between learning the MDP \((P_{sa} \text{ and } R)\), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

- Randomly initialize policy \(\pi\)
- Repeat until convergence
Alternate between learning the MDP (P_{sa} and R), and learning the policy.

Policy learning step can be done using value iteration or policy iteration.

The Algorithm (assuming value iteration)

1. Randomly initialize policy π
2. Repeat until convergence
 1. Execute policy π in the MDP to generate a set of trials
 2. Use this "experience" to estimate P_{sa} and R
 3. Apply value iteration with the estimated P_{sa} and R
 \Rightarrow Gives a new estimate of the value function V
 4. Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration.
Alternate between learning the MDP (P_{sa} and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

- Randomly initialize policy π
- Repeat until convergence
 - Execute policy π in the MDP to generate a set of trials
 - Use this “experience” to estimate P_{sa} and R
Alternate between learning the MDP (P_{sa} and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

- Randomly initialize policy π
- Repeat until convergence
 - Execute policy π in the MDP to generate a set of trials
 - Use this “experience” to estimate P_{sa} and R
 - Apply value iteration with the estimated P_{sa} and R
Alternate between learning the MDP (P_{sa} and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

- Randomly initialize policy π
- Repeat until convergence
 1. Execute policy π in the MDP to generate a set of trials
 2. Use this “experience” to estimate P_{sa} and R
 3. Apply value iteration with the estimated P_{sa} and R
 ⇒ Gives a new estimate of the value function V
Alternate between learning the MDP (P_{sa} and R), and learning the policy
Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

- Randomly initialize policy π
- Repeat until convergence
 - Execute policy π in the MDP to generate a set of trials
 - Use this “experience” to estimate P_{sa} and R
 - Apply value iteration with the estimated P_{sa} and R
 - Gives a new estimate of the value function V
 - Update policy π as the greedy policy w.r.t. V
Alternate between learning the MDP (P_{sa} and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (assuming value iteration)

- Randomly initialize policy π

- Repeat until convergence
 1. Execute policy π in the MDP to generate a set of trials
 2. Use this “experience” to estimate P_{sa} and R
 3. Apply value iteration with the estimated P_{sa} and R
 - Gives a new estimate of the value function V
 4. Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration
Value Iteration vs Policy Iteration

- **Small state spaces**: Policy Iteration typically very fast and converges quickly
- Large state spaces: Policy Iteration may be slow. Reason: Policy Iteration needs to solve a large system of linear equations. Value iteration is preferred in such cases.
- Very large state spaces: Value function can be approximated using some regression algorithm. Optimality guarantee is lost however.
Value Iteration vs Policy Iteration

- **Small state spaces**: Policy Iteration typically very fast and converges quickly
- **Large state spaces**: Policy Iteration may be slow
Value Iteration vs Policy Iteration

- **Small state spaces:** Policy Iteration typically very fast and converges quickly

- **Large state spaces:** Policy Iteration may be slow
 - Reason: Policy Iteration needs to solve a large system of linear equations

Very large state spaces: Value function can be approximated using some regression algorithm. Optimality guarantee is lost however.
Value Iteration vs Policy Iteration

- **Small state spaces**: Policy Iteration typically very fast and converges quickly
- **Large state spaces**: Policy Iteration may be slow
 - Reason: Policy Iteration needs to solve a large system of linear equations
 - Value iteration is preferred in such cases

[Very large state spaces: Value function can be approximated using some regression algorithm. Optimality guarantee is lost however]
Value Iteration vs Policy Iteration

- **Small state spaces:** Policy Iteration typically very fast and converges quickly

- **Large state spaces:** Policy Iteration may be slow
 - Reason: Policy Iteration needs to solve a **large system of linear equations**
 - Value iteration is preferred in such cases

- **Very large state spaces:** Value function can be *approximated* using some regression algorithm
Value Iteration vs Policy Iteration

- **Small state spaces**: Policy Iteration typically very fast and converges quickly
- **Large state spaces**: Policy Iteration may be slow
 - Reason: Policy Iteration needs to solve a large system of linear equations
 - Value iteration is preferred in such cases
- **Very large state spaces**: Value function can be approximated using some regression algorithm
 - Optimality guarantee is lost however
A car moving in 2D: $s = (x, y, \theta, \dot{x}, \dot{y}, \dot{\theta})$. Thus $S = \mathbb{R}^6$
MDP with Continuous State Spaces

- A car moving in 2D: $s = (x, y, \theta, \dot{x}, \dot{y}, \dot{\theta})$. Thus $S = \mathbb{R}^6$

- Helicopter flying in 3D: $s = (x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi})$. Thus $S = \mathbb{R}^{12}$
A car moving in 2D: $s = (x, y, \theta, \dot{x}, \dot{y}, \dot{\theta})$. Thus $S = \mathbb{R}^6$

Helicopter flying in 3D: $s = (x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi})$. Thus $S = \mathbb{R}^{12}$

In general, the state space could be infinite $S = \mathbb{R}^n$
A car moving in 2D: \(s = (x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}) \). Thus \(S = \mathbb{R}^6 \)

Helicopter flying in 3D: \(s = (x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi}) \). Thus \(S = \mathbb{R}^{12} \)

In general, the state space could be infinite \(S = \mathbb{R}^n \)

How to handle these continuous state spaces?
Suppose the state space is 2D: $s = (s_1, s_2)$. Can discretize it.
Suppose the state space is 2D: \(s = (s_1, s_2) \). Can discretize it

Call each discrete state \(\bar{s} \), discretized state space \(\bar{S} \), and define the MDP as

\[
(\bar{S}, A, \{P_{\bar{s}a}\}, \gamma, R)
\]
Suppose the state space is 2D: \(s = (s_1, s_2) \). Can discretize it.

Call each discrete state \(\bar{s} \), discretized state space \(\bar{S} \), and define the MDP as

\[
(\bar{S}, A, \{P_{\bar{s}a}\}, \gamma, R)
\]

Can now use value iteration or policy iteration on this discrete state space.

Limitations: Piecewise constant \(V^* \) and \(\pi^* \) (isn’t realistic). Doesn’t work well in high-dim state spaces (resulting discrete space too huge).

Discretization usually done only for 1D or 2D state-spaces.
Discretization

- Suppose the state space is 2D: \(s = (s_1, s_2) \). Can discretize it

- Call each discrete state \(\bar{s} \), discretized state space \(\bar{S} \), and define the MDP as

\[
(\bar{S}, A, \{P_{\bar{s}a}\}, \gamma, R)
\]

- Can now use value iteration or policy iteration on this discrete state space

- Limitations? Piecewise constant \(V^* \) and \(\pi^* \) (isn’t realistic). Doesn’t work well in high-dim state spaces (resulting discrete space space too huge)
Discretization

- Suppose the state space is 2D: \(s = (s_1, s_2) \). Can discretize it

- Call each discrete state \(\bar{s} \), discretized state space \(\bar{S} \), and define the MDP as

\[
(\bar{S}, A, \{P_{\bar{s}a}\}, \gamma, R)
\]

- Can now use value iteration or policy iteration on this discrete state space

- Limitations? Piecewise constant \(V^* \) and \(\pi^* \) (isn’t realistic). Doesn’t work well in high-dim state spaces (resulting discrete space space too huge)

- Discretization usually done only for 1D or 2D state-spaces
Policy Learning in Continuous State Spaces

- Policy learning requires learning the value function V^*.
Policy Learning in Continuous State Spaces

- Policy learning requires learning the value function V^*
- Can we do away with discretization and approximate V^* directly?
Policy Learning in Continuous State Spaces

- Policy learning requires learning the value function V^*
- Can we do away with discretization and approximate V^* directly?
- To do so, we will need (an approximate) model of the underlying MDP
Approximating the MDP Model

- Execute a set of trials

\[
\begin{align*}
S_0^{(1)} & \rightarrow S_1^{(1)} \rightarrow S_2^{(1)} \rightarrow \ldots \rightarrow S_T^{(1)} \\
S_0^{(2)} & \rightarrow S_1^{(2)} \rightarrow S_2^{(2)} \rightarrow \ldots \rightarrow S_T^{(2)} \\
\vdots & \\
S_0^{(m)} & \rightarrow S_1^{(m)} \rightarrow S_2^{(m)} \rightarrow \ldots \rightarrow S_T^{(m)}
\end{align*}
\]
Approximating the MDP Model

- Execute a set of trials

\[
\begin{align*}
S_0^{(1)} &\xrightarrow{a_0^{(1)}} S_1^{(1)} &\xrightarrow{a_1^{(1)}} S_2^{(1)} &\cdots &\xrightarrow{a_{T-1}^{(1)}} S_T^{(1)} \\
S_0^{(2)} &\xrightarrow{a_0^{(2)}} S_1^{(2)} &\xrightarrow{a_1^{(2)}} S_2^{(2)} &\cdots &\xrightarrow{a_{T-1}^{(2)}} S_T^{(2)} \\
&\cdots \\
S_0^{(m)} &\xrightarrow{a_0^{(m)}} S_1^{(m)} &\xrightarrow{a_1^{(m)}} S_2^{(m)} &\cdots &\xrightarrow{a_{T-1}^{(m)}} S_T^{(m)}
\end{align*}
\]

- Use this data to learn a function that predicts \(s_{t+1} \) given \(s_t \) and \(a \), e.g.,

\[
s_{t+1} = As_t + Ba_t
\]

\[
\arg\min_{A,B} \sum_{i=1}^{m} \sum_{t=0}^{T-1} \left\| s_{t+1}^{(i)} - \left(As_t^{(i)} + Ba_t^{(i)} \right) \right\|^2
\]
Approximating the MDP Model

- Execute a set of trials

\[
\begin{align*}
S_0^{(1)} & \rightarrow S_1^{(1)} & a_0^{(1)} & \rightarrow S_2^{(1)} & a_1^{(1)} & \rightarrow \cdots & a_{T-1}^{(1)} & \rightarrow S_T^{(1)} \\
S_0^{(2)} & \rightarrow S_1^{(2)} & a_0^{(2)} & \rightarrow S_2^{(2)} & a_1^{(2)} & \rightarrow \cdots & a_{T-1}^{(2)} & \rightarrow S_T^{(2)} \\
\vdots & & & & & & & \\
S_0^{(m)} & \rightarrow S_1^{(m)} & a_0^{(m)} & \rightarrow S_2^{(m)} & a_1^{(m)} & \rightarrow \cdots & a_{T-1}^{(m)} & \rightarrow S_T^{(m)}
\end{align*}
\]

- Use this data to learn a function that predicts \(s_{t+1} \) given \(s_t \) and \(a \), e.g.,

\[
s_{t+1} = As_t + Ba_t
\]

- \(A \) and \(B \) can be estimated from the trial data
Approximating the MDP Model

- Execute a set of trials

\[
\begin{align*}
S_0^{(1)} & \rightarrow S_1^{(1)} & \rightarrow S_2^{(1)} & \rightarrow \ldots & \rightarrow S_T^{(1)} \\
S_0^{(2)} & \rightarrow S_1^{(2)} & \rightarrow S_2^{(2)} & \rightarrow \ldots & \rightarrow S_T^{(2)} \\
\vdots \\
S_0^{(m)} & \rightarrow S_1^{(m)} & \rightarrow S_2^{(m)} & \rightarrow \ldots & \rightarrow S_T^{(m)}
\end{align*}
\]

- Use this data to learn a function that predicts \(s_{t+1}\) given \(s_t\) and \(a\), e.g.,

\[
s_{t+1} = As_t + Ba_t
\]

\[
\arg\min_{A,B} \sum_i \sum_{t=0}^{T-1} \left\| s_{t+1}^{(i)} - (As_t^{(i)} + Ba_t^{(i)}) \right\|^2
\]

- \(A\) and \(B\) can be estimate from the trial data

- Can also make the function stochastic/noisy: \(s_{t+1} = As_t + Ba_t + \epsilon_t\) where \(\epsilon_t \sim \mathcal{N}(0, \Sigma)\) is the random noise (\(\Sigma\) can also be learned)
Approximating the MDP Model

- Can also learn nonlinear functions $s_{t+1} = f(s_t)$

$$s_{t+1} = A\phi_s(s_t) + B\phi_a(a_t)$$

- Any nonlinear regression algorithm can be used here
We will use “Fitted Value Iteration” methods.
Approximating the Value Function

- We will use “Fitted Value Iteration” methods
- Recall the value iteration

\[
V(s) := R(s) + \gamma \max_a \int_{s'} P_{sa}(s') V(s') ds'
\]

\[
= R(s) + \gamma \max_a \mathbb{E}_{s' \sim P_{sa}} [V(s')]
\]

- Note: sum replaced by integral (since the state space \(S \) is continuous)
Approximating the Value Function

- We will use “Fitted Value Iteration” methods
- Recall the value iteration

\[
V(s) := R(s) + \gamma \max_a \int_s P_{sa}(s') V(s') ds'
\]

\[
= R(s) + \gamma \max_a E_{s' \sim P_{sa}} [V(s')]
\]

- Note: sum replaced by integral (since the state space \(S \) is continuous)
- Want a model for \(V(s) \). Let’s assume \(V(s) = \theta^T \phi(s) \)
Approximating the Value Function

- We will use “Fitted Value Iteration” methods
- Recall the value iteration

\[V(s) := R(s) + \gamma \max_a \int s' P_{sa}(s') V(s') ds' \]

\[= R(s) + \gamma \max_a E_{s' \sim P_{sa}} [V(s')] \]

- Note: sum replaced by integral (since the state space \(S \) is continuous)
- Want a model for \(V(s) \). Let’s assume \(V(s) = \theta^\top \phi(s) \)
- We would need some training data in order to learn \(\theta \)

\[\{V(s^i), \phi(s^i)\}_{i=1}^m \]
Approximating the Value Function

- We will use “Fitted Value Iteration” methods
- Recall the value iteration

\[V(s) := R(s) + \gamma \max_a \int_{s'} P_{sa}(s')V(s')ds' \]

\[= R(s) + \gamma \max_a E_{s' \sim P_{sa}}[V(s')] \]

- Note: sum replaced by integral (since the state space \(S \) is continuous)
- Want a model for \(V(s) \). Let’s assume \(V(s) = \theta^\top \phi(s) \)
- We would need some training data in order to learn \(\theta \)

\[\{ V(s^i), \phi(s^i) \}_{i=1}^m \]
- We will generate such training data and learn \(\theta \) in an alternating fashion
Fitted Value Iteration: The Full Algorithm

1. Randomly sample \(m \) states \(s^{(1)}, s^{(2)}, \ldots, s^{(m)} \in S \).
2. Initialize \(\theta := 0 \).
3. Repeat {

 For \(i = 1, \ldots, m \) {

 For each action \(a \in A \) {

 Sample \(s'_1, \ldots, s'_k \sim P_{s^{(i)}_a} \) (using a model of the MDP).

 Set \(q(a) = \frac{1}{k} \sum_{j=1}^{k} R(s^{(i)}_j) + \gamma V(s'_j) \)

 // Hence, \(q(a) \) is an estimate of \(R(s^{(i)}) + \gamma \mathbb{E}_{s' \sim P_{s^{(i)}_a}} [V(s')] \).
 }

 Set \(y^{(i)} = \max_a q(a) \).

 // Hence, \(y^{(i)} \) is an estimate of \(R(s^{(i)}) + \gamma \max_a \mathbb{E}_{s' \sim P_{s^{(i)}_a}} [V(s')] \).
 }

 // In the original value iteration algorithm (over discrete states)
 // we updated the value function according to \(V(s^{(i)}) := y^{(i)} \).
 // In this algorithm, we want \(V(s^{(i)}) \approx y^{(i)} \), which we’ll achieve
 // using supervised learning (linear regression).

 Set \(\theta := \arg \min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (\theta^T \phi(s^{(i)}) - y^{(i)})^2 \)
Fitted Value Iteration

- Other nonlinear regression algorithms can also be used

\[V(s) = f(\phi(s)) \]

where \(f \) is a nonlinear function (e.g., modeled by a Gaussian Process)

- Note: Fitted value iteration is not guaranteed to converge (though, in practice, mostly it does)

- The final output is \(V \) (an approximation to \(V^* \))

- \(V \) implicitly represents our policy \(\pi \). The optimal action

\[\arg \max_a \mathbb{E}_{s' \sim P_{sa}}[V(s')] \]
Other Topics related to RL

- Inverse Reinforcement Learning (IRL)
 - Doesn’t assume the reward function to be known. Learns it
Other Topics related to RL

- Inverse Reinforcement Learning (IRL)
 - Doesn’t assume the reward function to be known. Learns it

- Imitation Learning: Imitate an demonstrator/demonstrations
Other Topics related to RL

- Inverse Reinforcement Learning (IRL)
 - Doesn’t assume the reward function to be known. Learns it

- Imitation Learning: Imitate an demonstrator/demonstrations

- Deep Reinforcement Learning
Summary

- Basic introduction to Reinforcement Learning
- Looked at the definition of a Markov Decision Process (MDP)
- Looked at methods for learning the MDP parameters from data
 - Easily and exactly for the discrete state-space case
 - Using function approximation methods in the continuous case
- Looked at methods for Policy Learning
 - MDP Learning and Policy Learning usually done jointly