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Yet to come..

Today: Model Selection, Evaluation, Learning from Imbalanced Data

Reinforcement Learning

Ensemble methods (e.g., boosting)

Learning with time series data

Learning with limited supervision, other practical aspects (e.g., debugging ML algorithms)
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Model Selection
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What is Model Selection?

Given a set of models M = {M1,M2, . . . ,MR}, choose the model that is expected to do the best on
the test data. The set M may consist of:

Instances of same model with different complexities or hyperparams. E.g.,

K -Nearest Neighbors: Different choices of K

Decision Trees: Different choices of the number of levels/leaves

Polynomial Regression: Polynomials with different degrees

Kernel Methods: Different choices of kernels

Regularized Models: Different choices of the regularization hyperparameter

Architecture of a deep neural network (# of layers, nodes in each layer, activation function, etc)

Different types of learning models (e.g., SVM, KNN, DT, etc.)

Note: Usually considered in supervised learning contexts but unsupervised learning too faces this issue
(e.g., “how many clusters” when doing clustering)
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Held-out Data

Set aside a fraction of the training data. This will be our held-out data.

Other names: validation/development data.

Remember: Held-out data is NOT the test data. DO NOT peek into the test data during training

Train each model using the remaining training data

Evaluate error on the held-out data (cross-validation)

Choose the model with the smallest held-out error

Problems:

Wastes training data. Typically used when we have plenty of training data

What if there was an unfortunate train/held-out split?
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K -fold Cross-Validation

Create K (e.g., 5 or 10) equal sized partitions of the training data

Each partition has N/K examples

Train using K − 1 partitions, validate on the remaining partition

Repeat this K times, each with a different validation partition

Average the K validation errors

Choose the model that gives the smallest average validation error
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Leave-One-Out (LOO) Cross-Validation

Special case of K -fold CV when K = N. Each partition is now a single example

Train using N − 1 examples, validate on the remaining example

Repeat the same N times, each with a different validation example

Average the N validation errors. Choose the model with smallest error

Can be expensive in general, especially for large N

Very efficient when used for selecting K in nearest neighbor methods (NN requires no training)
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Random Subsampling based Cross-Validation

Subsample a fixed fraction αN (0 < α < 1) as examples as validation set

Train using the rest of the examples, calculate the validation error

Repeat K times, each with a different, randomly chosen validation set

Average the K validation errors. Choose the model with smallest error
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Finding the best hyperparameters

Each setting of the hyperparameter values is a different model

Picking the best model = Finding the best hyperparameter setting (which gives best heldout error)

Picking the best hyperparameter(s) means cross-validation on lots of different models

Typically done using grid search. But expensive if there are lots of hyperparameters

The search can be “automated” using hyperparameter search techniques

Idea: Instead of grid-search, sequentially decide which hyperparam, config. should be tried next

Random Search (see “Random Search for Hyper-Parameter Optimization”)

Bayesian Optimization (see “Practical Bayesian Optimization of Machine Learning Algorithms”)
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Metrics for Evaluating ML Algorithms
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Binary Classification Evaluation Metrics

Easy to visualize via a 2× 2 matrix (Confusion Matrix)

Sum of diagonals = # of correct predictions

Sum of off-diagonals = # of mistakes

Standard evaluation measure is classification accuracy

accuracy =
TP + TN

TP + TN + FP + FN

Actual 
Class

Predicted 
   Class+ -

+

-

 # True Positives

 # True Negatives # False Positives

   # False Negatives

TP

         
 (Type-I error) TN

         
 (Type-II error)

FN

 FP

Various other metrics are also used to evaluate classification performance

Precision = Of all positive predictions, what fraction is actully positives

Recall = Of all actual positives, what fraction is predicted as positives

Precision (P) =
TP

TP + FP
Recall (R) =

TP

TP + FN
F1-score =

2PR

P+R
(harmonic mean)
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Binary Classification Evaluation Metrics
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Binary Classification Evaluation Metrics (Contd)

True Positive Rate (TPR) and False Positive Rate (FPR) are also commonly used metrics

TPR is the same as recall: Fraction of actual positives predicted as positives

TPR =
TP

TP + FN

FPR is the fraction of actual negatives predicted as positive

FPR =
FP

TN + FP
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Binary Classification Evaluation Metrics (Contd.)

Most classifiers predict a score (a real-valued number or a probability)

Can set a threshold to decide what to call positive and what to call negative

Can adjust the threshold to control the TPR and FPR

Classifier’s
    Score

Fraction of 
 examples Threshold

Plot of TPR vs FPR for all possible values of the threshold is called Area Under the Receiving
Operating Curve (AUCROC or AUC)

The max AUC score is 1. AUC = 0.5 means close to random.
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Multiclass Classification Evaluation Metrics

For K classes, we will have a K × K confusion matrix

Actual
Class

Predicted Class

Can define precision and recall w.r.t. each class
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Regression Evaluation Metrics

Assume true responses y = [y1, . . . , yN ], predicted responses ŷ = [ŷ1, . . . , ŷN ]

Traditional metric: Residual sum of squares: SSres =
∑N

n=1(yn − ŷn)2

Suppose the mean of true responses is µ =
∑N

n=1 yn
N

Define total sum of squares: SStot =
∑N

n=1(yn − µ)2 . Prop. to original variance

Regression sum of squares: SSreg =
∑N

n=1(ŷn − µ)2. Prop. to variance “explained” by the model

The coefficient of determination metric is defined as

R2 = 1− SSres
SStot

= 1−
∑N

n=1(yn − ŷn)2∑N
n=1(yn − µ)2

A close to perfect model will have R2 close to 1

For linear regression, SStot = SSreg + SSres ⇒ R2 =
SSreg

SStot
(fraction of explained variance)
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n=1(yn − µ)2

A close to perfect model will have R2 close to 1

For linear regression, SStot = SSreg + SSres ⇒ R2 =
SSreg

SStot
(fraction of explained variance)

Intro to Machine Learning (CS771A) Model Selection, Evaluation Metrics, Learning from Imbalanced Data 15



Regression Evaluation Metrics

Assume true responses y = [y1, . . . , yN ], predicted responses ŷ = [ŷ1, . . . , ŷN ]
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Evaluation Metrics for Unsupervised Learning

Some clustering metrics exist if the ground truth clusters are known (rarely the case)

Accuracy, normalized mutual information (NMI), rand index, purity, etc.

But need to account for cluster label permutations

Metrics if no ground truth is known

Distortion: Sum of squared errors from the closest clusters (need to penalize the number of clusters)

Distortion on a “held-out data” (not used to learn the clusters)

For probabilistic models, can look at the negative log-likelihood (penalized by number of clusters)

Distortion/reconstruction error can also be used for evaluating dimensionality reduction methods

External evaluation is often preferred when evaluating unsupervised learning models

Use the new representation to train a supervised learning model
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Learning from Imbalanced Data
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Learning from Imbalanced Data

Consider binary classification

Often the classes are highly imbalanced

Should I feel happy if my classifier gets 99.997% classification accuracy on test data ?
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Learning from Imbalanced Data

Other problems can also exhibit imbalance (e.g., binary matrix completion)

Should I feel happy if my matrix completion model gets 99.999% matrix completion accuracy on
the test entries?
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Other problems can also exhibit imbalance (e.g., binary matrix completion)
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True Definition of Imbalance Data?

Debatable..

Scenario 1: 100,000 negative and 1000 positive examples

Scenario 2: 10,000 negative and 10 negative examples

Scenario 3: 1000 negative and 1 negative example

Usually, imbalance is characterized by absolute rather than relative rarity

Finding needles in a haystack..
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Minimizing Loss

Any model to minimize the loss, e.g.,

Classification: ŵ = arg min
w

N∑
n=1

`(yn,w>xn)

Matrix Completion: (Û, V̂) = arg min
U,V
||X−UV>||2

.. will usually get a high accuracy

However, it will be highly biased towards predicting the majority class

Thus accuracy alone can’t be trusted as the evaluation measure if we care more about predicting
minority class (say positive) correctly

Need to use metrics such as precision, recall, F1 score, AUC, etc (that specifically care about positives)
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Dealing with Class Imbalance

Modifying the training data (the class distribution)

Undersampling the majority class

Oversampling the minority class

Reweighting the examples

Modifying the learning model

Use loss functions customized to handle class imbalance

Reweighting can be also seen as a way to modify the loss function
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Modifying the Training Data
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Undersampling

Throws away a lot of data/information. But efficient to train
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Oversampling

Th repeated examples simply contribute multiple times to the loss function

Some oversampling methods (SMOTE) based on creating synthetic examples from minority class
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Reweighting Examples

Similar effect as oversampling but is more efficient (because there is no multiplicity of examples)

Also requires a model that can learn with weighted examples
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Modifying the Loss Function
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Loss Functions Customized for Imbalanced Data

Traditional loss functions have the form:
∑N

n=1 `(yn, f (xn))

Such loss functions look at positive and negative examples individually, so the majority class tends
to overwhelm the minority class

Reweighting the loss function differently for different classes can be one way to handle class
imbalance, e.g.,

∑N
n=1 Cyn`(yn, f (xn))

Alternatively, we can use loss functions that look at pairs of examples
(a positive example x+

n and a negative example x−m). For example:

`(f (x+
n ), f (x−m)) =

{
0, if f (x+

n ) > f (x−m)

1, otherwise

These are called “pairwise” loss functions

Why is it a good loss function for imbalanced data?
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Pairwise Loss Functions

Using pairs with one +ve and one -ve doesn’t let one class overwhelm other

N+∑
n=1

N−∑
m=1

`(f (x+
n ), f (x

−
m )) + λR(f )

The pairwise loss function only cares about the difference between scores of a pair of positive and
negative examples

Want the positive ex. to have higher score than the negative ex., which is similar in spirit to
maximizing the AUC (Area Under the ROC Curve) score

AUC (intuitively): The probability that a randomly chosen pos. example will have a higher score than
a randomly chosen neg. example

Empirical AUC of f on a training set with N+ and N− pos. and neg. ex.

AUC(f ) =
1

N+N−

N+∑
n=1

N−∑
m=1

1(f (x+
n ) > f (x−m ))

Note: Commonly used pairwise loss functions maximize a proxy of the AUC score (or closely
related measures such as F1 score)
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Pairwise Loss Functions

A proxy based on hinge-loss like pairwise loss function for a linear model

`(w , x+
n , x
−
m ) = max{0, 1− (w>x+

n − w>x−m )} = max{0, 1− w>(x+
n − x−m )}

It basically says that the difference between scorees of positive and negative examples should be at
least 1 (which is like a “margin”)

The overall objective will have the form

||w ||2

2
+

N+∑
n=1

N−∑
m=1

`(w , x+
n , x
−
m )

Convex objective (if using the hinge loss). Can be efficiently optimized using stochastic
optimization (see “Online AUC Maximization”, Zhao et al, 2011)

Note: Similar ideas can be used for solving binary matrix factorization and matrix completion
problems as well

E.g., if matrix entry Xnm = 1 and Xnm′ = −1 then loss=0 if u>n vm > u>n vm′
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Summary

Imbalanced data needs to be handled with care

Classification accuracies can be very misleading for such data

Should look at measures such as precision, recall, or other variants that are robust to class imbalance

Sampling heuristics work reasonably on many data sets

More principled approaches are based on modifying the loss function

Instead of minimizing the classication error, optimize w.r.t. other metrics such as precision, recall, F1
score, AUC, etc.

Another way to look at this problem could be as an anomaly detection problem (minority class is
anomaly) or density estimation problem
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