Piyush Rai
Introduction to Machine Learning (CS771A)

October 30, 2018

Recommendation Systems

@ The goal is to recommend more relevant items to users, based on previous interactions

@ Used by many services

“amazon r)
e f oL

coursera

- @ YouTube (LD edX

@ Note: Relevance is subjective here

@ A notion of relevance: | will buy/watch/like items that are similar to ones | did in the past
@ Has been a very active research topic (in ML and allied areas) for a long time

e Even a dedicated conference focusing on this topic specifically - RecSys

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

Recommendation Systems as Matrix Completion

@ One of the most popular ways to solve the RecSys problem
@ Suppose we have this partially complete ratings matrix

| A

3

202 2 3 2 |2
? ? ? 4
302 2 2 3|2
202 4 2 2 |2

4 4 ? ? ? 3

DO e

@ Once completed, the completed matrix can be used to recommend “best” items for a given user

o For example: Recommend the items that have a high (predicted) rating for the user

@ Note: In addition to the user-item matrix, we may have additional info about the user/items

e Some examples: User meta-data, item content description, user-user network, item-item similarity, etc.

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

3
i
-
s

@ Let's denote the user-item N x M ratings matrix as X (many entries missing)

@ Suppose Q = {(n,m)} is the set of indices for observed ratings
@ Suppose €2, is the set of indices of items already rated by user n

@ Suppose €2, is the set of indices of users who already rated item m

A Simple Heuristic: Item based “Collaborative Filtering”

@ =
B 18
202 3 2 4|9
22 2 3 2 2
2 0?2 2 4
3?2 2 2 3 2
2 2 4 2 2 2

4492 2| 2]|3

) 07 s Eul-e)

@ For each user-item pair (n, m), compute the missing rating X, as

1 "
X A > s x
‘Qr mm
m'eQ,,

n

where 5,(,:,)"/ € (0,1) is the similarity between items m and m’ (suppose known)

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

A Simple Heuristic: User based “Collaborative Filtering”

@ =
B 18
202 3 2 4|9
22 2 3 2 2
2 0?2 2 4
3?2 2 2 3 2
2 2 4 2 2 2

4492 2| 2]|3

) 07 s Eul-e)

@ For each user-item pair (n, m), compute the missing rating X, as

1
Xnm% |Q | Z 5l(rrLrj’))<n/m

™' e,

where S,S,L,j,) € (0,1) is the similarity between users n and n’ (suppose known)

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

Ok e

@ User-User or Item-Item similarities may not be known beforehand

@ We may have very little data in the user-item matrix and averaging may not be reliable

© 1= pe

?2 0?2113 2?2 |49 &
2 12 2 3|2 |2 ﬂ
?2 02 | 2?2 4 (v}
20214 21]2 2 o

-
4 49 2] 2|3 9

If we can do the above factorization then any missing X, ~ uI Vi

o Given a matrix X of size N x M, approximate it as a product of two matrices

X~Uv'
K

u—
n

e U: N x K latent factor matrix

e Each row of U represents a K-dim latent factor u,

e V: M x K latent factor matrix

e Each row of V represents a K-dim latent factor v,

. K
@ Each entry of X can be written as: X, ~ u?,— Vi = D 1 UnkVimk

@ The latent factors can be used/interpreted as “embeddings” or “learned features”

M

Movies K M

(IE(“e‘ o ‘fiadcltr:)%:) VT
of one user
K Movie
Embeddings
N = N
Users

Embeddings
(latent factors)
of one movie

@ Especially useful for learning good features for “dyadic” or relational data

e Examples: Users-Movies ratings, Users-Products purchases, etc.

e If K < min{M, N} = then can also be seen as dimensionality reduction or a “low-rank
factorization” of the matrix X (somewhat like SVD)

10

@ Can also predict the missing/unknown entries in the original matrix

M

Movies K M

Missing ratings

e, V'
of one user
K Movie
Embeddings
N = N
Users

Embeddings
(latent factors)
one movie

@ Yes. U and V can be learned even when the matrix X is only partially observed (we'll see shortly)
o After learning U and V, any missing X, can be approximated by u/ v,
@ UV is the best low-rank matrix that approximates the full X

@ Note: The “Netflix Challenge” was won by a matrix factorization method

11

Interpreting the Embeddings/Latent Factors

e Embeddings/latent factors can often be interpreted. E.g., as “genres” if X represents a user-movie
rating matrix. A cartoon with K = 2 shown below

The Color Purple

Serious.

Amadeus

2

Lethal Weapon

T cess
Diaries

Escapist

Sense and .
Geared M Geared
toward NS toward
females) males
l§
Dave
The Lion Kin

Dumb and
—=1 Dumber
Independence|

Day

Gus

@ Similar things (users/movies) get embedded nearby in the embedding space (two things will be
deemed similar if their embeddings are similar). Thus useful for computing similarities and/or

making recommendations

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009

Intro to Machine Learning (CS771A)

Learning to Recommend via Matrix Factorization/Completion

12

Interpreting the Embeddings/Latent Factors

@ Another illustation of 2-D embeddings of the movies only

15

Embedding dimension 2 (or latent factor 2)

15 -10 -05 0.0 05 10
Embedding dimension 1 (or latent factor 1)

@ Similar movies will be embedded at nearby locations in the embedding space

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

13

Solving Matrix Factorization

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

14

@ Recall our matrix factorization model: X =~ UV "

@ Goal: learn U and V, given a subset Q of entries in X (let's call it Xq)
@ Recall our notations:

o Q= {(n,m)}: Xum is observed
e €, : column indices of observed entries in row n of X
e €. : row indices of observed entries in column m of X

M

e We want X to be as close to UV T as possible

M

@ Let's define a squared “loss function” over the observed entries in X

L= Z (Xom — ul vpy)?
(n,m)eQ

o Here the latent factors {u,}"_; and {v,}M_, are the unknown parameters
@ Squared loss chosen only for simplicity; other loss functions can be used

e How do we learn {u,}N_; and {v,}M_,?

Alternating Optimization

o We will use an /5 regularized version of the squared loss function

N M
L= 3" Kom—u, v+ D> Aullual* + D Avllvall®

(n,m)EQ n=1 m=1

@ A non-convex problem. Difficult to optimize w.r.t. u, and v, jointly.
@ One way is to solve for u, and v, in an alternating fashion, e.g.,

e Vn, fix all variables except u, and solve the optim. problem w.r.t. u,
. T N2 2
arg min E (Xom — u, vim)™ + Aullunl|
u

n

mEQr,,

e Vm, fix all variables except v, and solve the optim. problem w.r.t. v,

arg n.;]in Z (Xom — Un—r‘/m)2 +)‘VHVMH2

nEQcm

o lIterate until not converged

@ Each of these subproblems has a simple, convex objective function
@ Convergence properties of such methods have been studied extensively

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 17

The Solutions

@ Easy to show that the problem
arg m|n Z (Xom — 1y Vi) + Aul|ua|?

meQ,,
. has the solution
u, = < Z VmV m+)\UIK> (Z Xanm>
mEan mEQr,,

@ Likewise, the problem
P arg min Z (Xom — ty Vi) + Av||val[?

Ym neQc,, 1
. has the solution B
-
Vm = § unpu, +)\VIK E Xnmun
neQ,, n€Qc,,

o Note that this is very similar to (regularized) least squares regression

@ Thus matrix factorization can be also seen as a sequence of regression problems (one for each
latent factor)

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

18

Matrix Factorization as Regression

Suppose we are solving for v, (with U and all other v,,'s fixed)

Observed entries in Column m
this column m latent factor
. v
. m
___________ B Subset of
: rows of U
= X ~
—~—

—U— Rows latent factors l v

corresponding to the
observed entries in
| column m of X

3

Observed entries
: from columnm —
o —_— inX

- 7

Now becomes a least-squares
type problem for solving for v

Can think of solving for u, (with V and all other u,’'s fixed) in the same way

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 19

Matrix Factorization as Regression

@ A very useful way to understand matrix factorization

@ Can modify the regularized least-squares like objective

argmm E —u) vy, yu, u,
o meQ,,

. using other loss functions and regularizers

@ Some possible modifications:
o If entries in the matrix X are binary, counts, etc. then we can replace the squared loss function by
some other loss function (e.g., logistic or Poisson)
e Can impose other constraints on the latent factors, e.g., non-negativity, sparsity, etc. (by changing the
regularizer)

e Can think of this also as a probabilistic model (a likelihood function on X,n, and priors on the latent
factors u,, vim) and do MLE/MAP

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 20

Matrix Factorization: The Complete Algorithm

@ Input: Partially complete matrix Xq
o Initialize the latent factors vy,..., vy randomly

@ lterate until not converged

e Update each row latent factor u,, n=1,..., N (can be in parallel)
-1
u, = (Z VmV; +AUIK> < Z Xnm"m)
meQ,, meQ,,
e Update each column latent factor v,, m=1,..., M (can be in parallel)
-1
Vm = (Z U,,UnT+A\/IK> (Z Xnm”n)
n€Qc,, neQc,,

e Final prediction for any (missing) entry: X,, = u/} v,

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

21

A Faster Algorithm via SGD

@ Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K?3) for updating each latent factor u,, v,,)

@ An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly
chosen entry X, with (n,m) € Q

o Consider updating u,. For loss function - o (Xam — u,) vin)? + Ayl|un||?, the stochastic
gradient w.r.t. u, using this randomly chosen entry X, is

7(Xnm - unTVm)Vm + Ayu,
@ Thus the SGD update for u, will be

u, = u, — n(Ayu, — (Xom — u,,T Vm)Vm)

o Likewise, the SGD update for v, will be
Vin = Vm — N(Avvy, — (Xom — unT Vm)Up)

@ The SGD algorithm chooses a random entry X, in each iteration, updates u,, v,,, and repeats
until convergece (u,'s,vy,'s randomly initialized).

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

Explicit Feedback vs Implicit Feedback Data

@ Often the user-item matrix X is a binary matrix

@ X,» = 1 means user n watched and liked on the item m

@ What does X,,,, = 0 mean? Watched but didn't like? &
@ Or X, = 0 mean user wasn't explosed to this item? ﬂ 0 0 0 1 00
o There is no way to distinguish such Os in X @ |°|t]ojojo
:) - " o/o o 1 0

@ Such binary X is called “implicit feedback” as opposed to ? '

explicit feedback (e.g., ratings) > 2|°|trjojo o
. & 110 0 0 1

@ Such data needs more careful modeling (other loss &

functions, not squared/logistic)

@ Some popular schemes include

e Downweightling the contribution of Os in the loss function

o Use ranking based loss function, e.g., want u} v, > u,] vy if Xom =1 and X, = 0

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 23

@ ‘“Inductive” here means that we would like to extrapolate to new users/items

o Also known as the “cold-start” problem in RecSys literature

0 6 py-o b go

New
User

@ The matrix factorization approach would need latent factors for the new users/items

@ How to compute these latent factors without any ratings for such users/items?

24

Inductive Matrix Completion

@ Often we have some additional “meta-data” about the users or items (or both)

e Example: User profile info, item description/image, etc.

@ Can use this meta-data to get some features

@ Assume we have D, features for each user and D, features for each item

User Features Item Features

(Given) (Given)
A B
N x D M x D

U |

@ One possibility now: Use these features/meta-data to get the latent factors for users/items

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 25

Matrix Factorization for Inductive Matrix Completion

@ Basic idea: Assume X ~ UV but regress U and V using A and B, respectively

U=AW, and V =BW,

| W, | W|T BT

D, xK

X ~ A Kx D, D xM
User and Item
Features (Given)
Regression parameters
(to be learned)
NxM N x D

@ The loss function will be
IX = UVT[]> = [[X — (AWy) x (BW))T|[?
@ We optimize this loss function w.r.t. Wy and W,
o For a new user with features a,, we compute the latent factor u, = a,Wy
o For a new item with features b,, we compute the latent factor v, = b, W,

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

n 0 Machine Learning

Some Other Extensions of
Matrix Factorization

(CS771A) Learning to Recommend via Matrix Factorization/Completion

Joint Matrix Factorization

o Can do joint matrix factorization of more than one matrices

o Consider two “ratings” matrices with the N users shared in both

M P
Movies Books

Users Users

@ Can assume the following matrix factorization

X;~UV] and Xy=UV,

Note that the user latent factor matrix U is shared in both factorizations

@ Gives a way to learn features by combining multiple data sets (2 in this case)

@ Can use the alternating optimization to solve for U, V; and V,

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

Tensor Factorization

@ A "tensor” is a generalization of a matrix to more than two dimensions

@ Consider a 3-dim (or 3-mode or 3-way) tensor X of size N x M x P

X —_— Number of times

user ‘n’ bought product ‘m’
from store ‘p’

(a tensor)

@ We can model each entry of tensor X as K

Xnmp RU,OVy O w, = § Unk Vmk Wpk
k=1
o Can learn {un}), {vm}NM_;,{w,},_; using alternating optimization

@ These K-dim. “embeddings” can be used as features for other tasks (e.g., tensor completion,
computing similarities, etc.)

@ The model also be easily extended to tensors having than 3 dimensions

@ Several specialized algorithms for tensor factorization (CP/Tucker decomposition, etc.)

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

29

(And of course..) Deep Learning based Recommender Systems

Basic idea: Matrix entries are nonlinear transformations of the latent factors X,m = f(u,) f(vy)

/

Deep Neural Deep Neural
Net Net

User n Latent Item m Latent
Factor me——— me———— Factor

This above is a simple version. Many more sophisticated variants exist (posted a reference on the course
webpage in case you are interested in deep learning methods for recommender systems)

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 30

Applications to Link Prediction in Graphs

@ The user-item matrix is like a bipartite graph

@ The matrix factorization ideas we saw today can also be used for any type of graph

O ; E Polypharmacyg .)
O OO @ ® DoxycyclmeArswde effectrs/ASImvastatm
o O o IN=DPA =]
O) Ciprofloxacin rW—AMupirocln
oo G0 @ -V
o © o)
09 e
@] @ (@) E
@ e} B

A Drug @ Protein 1 Gastrointestinal bleed side effect A—@ Drug-protein interactic
E Node feature vector T2 Bradycardia side effect ©—@ Protein-protein interac

@ Thus we can get node embeddings as well as a way to do link prediction in such graphs

Right side picture courtesy: snap.standford.edu

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion

31

Some Final Comments..

@ Looked at some basic as well as some state-of-the-art approaches for recommendation systems

@ Matrix factorization/completion is one of the dominant approaches (though not the only one) to
solve the problem

@ Other want to take into account other criteria such as freshness and diversity of recommendations

e Don't want to keep recommending the similar items again and again

@ Often helps to incorporate sources (e.g., meta data) other than just the user-item matrix

e We saw some techniques already (e.g., inductive matrix completion)

e Temporal nature can also be incorporated (e.g., user and item latent factors may evolve in time)

@ Still an ongoing area of active research

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 32

