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Recommendation Systems

The goal is to recommend more relevant items to users, based on previous interactions

Used by many services

Note: Relevance is subjective here

A notion of relevance: I will buy/watch/like items that are similar to ones I did in the past

Has been a very active research topic (in ML and allied areas) for a long time

Even a dedicated conference focusing on this topic specifically - RecSys

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 2



Recommendation Systems

The goal is to recommend more relevant items to users, based on previous interactions

Used by many services

Note: Relevance is subjective here

A notion of relevance: I will buy/watch/like items that are similar to ones I did in the past

Has been a very active research topic (in ML and allied areas) for a long time

Even a dedicated conference focusing on this topic specifically - RecSys

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 2



Recommendation Systems

The goal is to recommend more relevant items to users, based on previous interactions

Used by many services

Note: Relevance is subjective here

A notion of relevance: I will buy/watch/like items that are similar to ones I did in the past

Has been a very active research topic (in ML and allied areas) for a long time

Even a dedicated conference focusing on this topic specifically - RecSys

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 2



Recommendation Systems

The goal is to recommend more relevant items to users, based on previous interactions

Used by many services

Note: Relevance is subjective here

A notion of relevance: I will buy/watch/like items that are similar to ones I did in the past

Has been a very active research topic (in ML and allied areas) for a long time

Even a dedicated conference focusing on this topic specifically - RecSys

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 2



Recommendation Systems

The goal is to recommend more relevant items to users, based on previous interactions

Used by many services

Note: Relevance is subjective here

A notion of relevance: I will buy/watch/like items that are similar to ones I did in the past

Has been a very active research topic (in ML and allied areas) for a long time

Even a dedicated conference focusing on this topic specifically - RecSys

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 2



Recommendation Systems as Matrix Completion

One of the most popular ways to solve the RecSys problem

Suppose we have this partially complete ratings matrix

    3 4
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3 3
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4 34
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? ?

? ?

? ? ?

? ? ??

? ? ? ?

? ? ? ? ?

? ? ?

Once completed, the completed matrix can be used to recommend “best” items for a given user

For example: Recommend the items that have a high (predicted) rating for the user

Note: In addition to the user-item matrix, we may have additional info about the user/items

Some examples: User meta-data, item content description, user-user network, item-item similarity, etc.
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Some Notation

    3 4

42
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3 3
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4 34
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? ?

? ?

? ? ?
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? ? ? ?

? ? ? ? ?

? ? ?

Let’s denote the user-item N ×M ratings matrix as X (many entries missing)

Suppose Ω = {(n,m)} is the set of indices for observed ratings

Suppose Ωrn is the set of indices of items already rated by user n

Suppose Ωcm is the set of indices of users who already rated item m
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A Simple Heuristic: Item based “Collaborative Filtering”
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For each user-item pair (n,m), compute the missing rating Xnm as

Xnm ≈
1

|Ωrn |
∑

m′∈Ωrn

S
(I )
mm′Xnm′

where S
(I )
mm′ ∈ (0, 1) is the similarity between items m and m′ (suppose known)
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A Simple Heuristic: User based “Collaborative Filtering”

    3 4

42

3

3 3

4

4 34

? ?

? ?

? ?

? ? ?

? ? ??

? ? ? ?
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? ? ?

For each user-item pair (n,m), compute the missing rating Xnm as

Xnm ≈
1

|Ωcm |
∑

n′∈Ωcm

S
(U)
nn′ Xn′m

where S
(U)
nn′ ∈ (0, 1) is the similarity between users n and n′ (suppose known)
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Limitations of Item/User Based Approach
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User-User or Item-Item similarities may not be known beforehand

We may have very little data in the user-item matrix and averaging may not be reliable
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Towards a better approach: Matrix Factorization
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X

    

≈ U

VT

If we can do the above factorization then any missing Xnm ≈ u>
n vm

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 8



Towards a better approach: Matrix Factorization

    3 4

42

3

3 3

4

4 34

? ?

? ?

? ?

? ? ?

? ? ??

? ? ? ?

? ? ? ? ?

? ? ?

X

    

≈ U

VT

If we can do the above factorization then any missing Xnm ≈ u>
n vm

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 8



Matrix Factorization

Given a matrix X of size N ×M, approximate it as a product of two matrices

X ≈ UV>

U: N × K latent factor matrix

Each row of U represents a K -dim latent factor un

V: M × K latent factor matrix

Each row of V represents a K -dim latent factor v n

Each entry of X can be written as: Xnm ≈ u>n vm =
∑K

k=1 unkvmk
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Why Matrix Factorization?

The latent factors can be used/interpreted as “embeddings” or “learned features”

Especially useful for learning good features for “dyadic” or relational data

Examples: Users-Movies ratings, Users-Products purchases, etc.

If K � min{M,N} ⇒ then can also be seen as dimensionality reduction or a “low-rank
factorization” of the matrix X (somewhat like SVD)
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Why Matrix Factorization?

Can also predict the missing/unknown entries in the original matrix

Yes. U and V can be learned even when the matrix X is only partially observed (we’ll see shortly)

After learning U and V, any missing Xnm can be approximated by u>n vm

UV> is the best low-rank matrix that approximates the full X

Note: The “Netflix Challenge” was won by a matrix factorization method
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Interpreting the Embeddings/Latent Factors

Embeddings/latent factors can often be interpreted. E.g., as “genres” if X represents a user-movie
rating matrix. A cartoon with K = 2 shown below

Similar things (users/movies) get embedded nearby in the embedding space (two things will be
deemed similar if their embeddings are similar). Thus useful for computing similarities and/or
making recommendations

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Interpreting the Embeddings/Latent Factors

Another illustation of 2-D embeddings of the movies only

Similar movies will be embedded at nearby locations in the embedding space

Picture courtesy: Matrix Factorization Techniques for Recommender Systems: Koren et al, 2009
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Solving Matrix Factorization
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Matrix Factorization

Recall our matrix factorization model: X ≈ UV>

Goal: learn U and V, given a subset Ω of entries in X (let’s call it XΩ)

Recall our notations:

Ω = {(n,m)}: Xnm is observed

Ωrn : column indices of observed entries in row n of X

Ωcm : row indices of observed entries in column m of X
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Matrix Factorization

We want X to be as close to UV> as possible

Let’s define a squared “loss function” over the observed entries in X

L =
∑

(n,m)∈Ω

(Xnm − u>n vm)2

Here the latent factors {un}Nn=1 and {vm}Mm=1 are the unknown parameters

Squared loss chosen only for simplicity; other loss functions can be used

How do we learn {un}Nn=1 and {vm}Mm=1?
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Alternating Optimization

We will use an `2 regularized version of the squared loss function

L =
∑

(n,m)∈Ω

(Xnm − u>
n vm)2+

N∑
n=1

λU ||un||2 +
M∑

m=1

λV ||vm||2

A non-convex problem. Difficult to optimize w.r.t. un and vm jointly.

One way is to solve for un and vm in an alternating fashion, e.g.,

∀n, fix all variables except un and solve the optim. problem w.r.t. un

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

∀m, fix all variables except vm and solve the optim. problem w.r.t. vm

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

Iterate until not converged

Each of these subproblems has a simple, convex objective function

Convergence properties of such methods have been studied extensively
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The Solutions

Easy to show that the problem

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2 + λU ||un||2

.. has the solution

un =

( ∑
m∈Ωrn

vmv>m + λU IK

)−1( ∑
m∈Ωrn

Xnmvm

)
Likewise, the problem

arg min
vm

∑
n∈Ωcm

(Xnm − u>n vm)2 + λV ||vm||2

.. has the solution
vm =

( ∑
n∈Ωcm

unu>n + λV IK

)−1( ∑
n∈Ωcm

Xnmun

)
Note that this is very similar to (regularized) least squares regression

Thus matrix factorization can be also seen as a sequence of regression problems (one for each
latent factor)
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Matrix Factorization as Regression

Suppose we are solving for vm (with U and all other vm’s fixed)

Can think of solving for un (with V and all other un’s fixed) in the same way
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Matrix Factorization as Regression

A very useful way to understand matrix factorization

Can modify the regularized least-squares like objective

arg min
un

∑
m∈Ωrn

(Xnm − u>n vm)2+λUu>n un

.. using other loss functions and regularizers

Some possible modifications:

If entries in the matrix X are binary, counts, etc. then we can replace the squared loss function by
some other loss function (e.g., logistic or Poisson)

Can impose other constraints on the latent factors, e.g., non-negativity, sparsity, etc. (by changing the
regularizer)

Can think of this also as a probabilistic model (a likelihood function on Xnm and priors on the latent
factors un, vm) and do MLE/MAP
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Matrix Factorization: The Complete Algorithm

Input: Partially complete matrix XΩ

Initialize the latent factors v 1, . . . , vM randomly

Iterate until not converged

Update each row latent factor un, n = 1, . . . ,N (can be in parallel)

un =

( ∑
m∈Ωrn

vmv>m + λU IK

)−1( ∑
m∈Ωrn

Xnmvm

)

Update each column latent factor vm, m = 1, . . . ,M (can be in parallel)

vm =

( ∑
n∈Ωcm

unu>n + λV IK

)−1( ∑
n∈Ωcm

Xnmun

)

Final prediction for any (missing) entry: Xnm = u>n vm
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A Faster Algorithm via SGD

Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost
O(K 3) for updating each latent factor un, vm)

An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly
chosen entry Xnm with (n,m) ∈ Ω

Consider updating un. For loss function
∑

m∈Ωrn
(Xnm − u>n vm)2 + λU ||un||2, the stochastic

gradient w.r.t. un using this randomly chosen entry Xnm is

−(Xnm − u>n vm)vm + λUun

Thus the SGD update for un will be

un = un − η(λUun − (Xnm − u>n vm)vm)

Likewise, the SGD update for vm will be

vm = vm − η(λV vm − (Xnm − u>n vm)un)

The SGD algorithm chooses a random entry Xnm in each iteration, updates un, vm, and repeats
until convergece (un’s,vm’s randomly initialized).
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Explicit Feedback vs Implicit Feedback Data

Often the user-item matrix X is a binary matrix

Xnm = 1 means user n watched and liked on the item m

What does Xnm = 0 mean? Watched but didn’t like?

Or Xnm = 0 mean user wasn’t explosed to this item?

There is no way to distinguish such 0s in X

Such binary X is called “implicit feedback” as opposed to
explicit feedback (e.g., ratings)

Such data needs more careful modeling (other loss
functions, not squared/logistic)

    1 1

11

1

1 1

1

1 11

0 0

0 0

0 0

0 0 0

0 0 00

0 0 0 0

0 0 0 0 0

0 0 0

Some popular schemes include

Downweightling the contribution of 0s in the loss function

Use ranking based loss function, e.g., want u>n vm > u>n vm′ if Xnm = 1 and Xnm′ = 0
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Often the user-item matrix X is a binary matrix

Xnm = 1 means user n watched and liked on the item m

What does Xnm = 0 mean? Watched but didn’t like?

Or Xnm = 0 mean user wasn’t explosed to this item?

There is no way to distinguish such 0s in X

Such binary X is called “implicit feedback” as opposed to
explicit feedback (e.g., ratings)

Such data needs more careful modeling (other loss
functions, not squared/logistic)
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Inductive Matrix Completion

“Inductive” here means that we would like to extrapolate to new users/items

Also known as the “cold-start” problem in RecSys literature

    

? ? ? ? ? ?

?

?

?

?

?

?

?

 New 
Movie

 New 
 User

The matrix factorization approach would need latent factors for the new users/items

How to compute these latent factors without any ratings for such users/items?
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Inductive Matrix Completion

Often we have some additional “meta-data” about the users or items (or both)

Example: User profile info, item description/image, etc.

Can use this meta-data to get some features

Assume we have Du features for each user and DI features for each item

A

N x D
U

M x D
I

B

User Features
     (Given)

Item Features
     (Given)

One possibility now: Use these features/meta-data to get the latent factors for users/items
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Matrix Factorization for Inductive Matrix Completion

Basic idea: Assume X ≈ UV> but regress U and V using A and B, respectively

U = AWu and V = BWI

X A

W
I

T

≈ 

W
u BT

N x M N x D
U

D
U
 x K 

K x D
I

D
I
 x M

The loss function will be
||X−UV>||2 = ||X− (AWU)× (BWI )

>||2

We optimize this loss function w.r.t. WU and WI

For a new user with features a∗, we compute the latent factor u∗ = a∗WU

For a new item with features b∗, we compute the latent factor v∗ = b∗WI
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Some Other Extensions of
Matrix Factorization

Intro to Machine Learning (CS771A) Learning to Recommend via Matrix Factorization/Completion 27



Joint Matrix Factorization

Can do joint matrix factorization of more than one matrices

Consider two “ratings”matrices with the N users shared in both

Can assume the following matrix factorization

X1 ≈ UV>1 and X2 ≈ UV>2

Note that the user latent factor matrix U is shared in both factorizations

Gives a way to learn features by combining multiple data sets (2 in this case)

Can use the alternating optimization to solve for U, V1 and V2
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Tensor Factorization

A “tensor” is a generalization of a matrix to more than two dimensions

Consider a 3-dim (or 3-mode or 3-way) tensor X of size N ×M × P

We can model each entry of tensor X as

Xnmp ≈ un � vm �wp =
K∑

k=1

unkvmkwpk

Can learn {un}Nn=1, {vm}Mm=1, {wp}Pp=1 using alternating optimization

These K -dim. “embeddings” can be used as features for other tasks (e.g., tensor completion,
computing similarities, etc.)

The model also be easily extended to tensors having than 3 dimensions

Several specialized algorithms for tensor factorization (CP/Tucker decomposition, etc.)
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(And of course..) Deep Learning based Recommender Systems

Basic idea: Matrix entries are nonlinear transformations of the latent factors Xnm ≈ f (un)>f (vm)

Deep Neural
       Net

Deep Neural
       Net

User n Latent
    Factor

Item m Latent
      Factor

X
nm

This above is a simple version. Many more sophisticated variants exist (posted a reference on the course
webpage in case you are interested in deep learning methods for recommender systems)
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Applications to Link Prediction in Graphs

The user-item matrix is like a bipartite graph

The matrix factorization ideas we saw today can also be used for any type of graph

Thus we can get node embeddings as well as a way to do link prediction in such graphs

Right side picture courtesy: snap.standford.edu
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Some Final Comments..

Looked at some basic as well as some state-of-the-art approaches for recommendation systems

Matrix factorization/completion is one of the dominant approaches (though not the only one) to
solve the problem

Other want to take into account other criteria such as freshness and diversity of recommendations

Don’t want to keep recommending the similar items again and again

Often helps to incorporate sources (e.g., meta data) other than just the user-item matrix

We saw some techniques already (e.g., inductive matrix completion)

Temporal nature can also be incorporated (e.g., user and item latent factors may evolve in time)

Still an ongoing area of active research
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