
Introduction to Deep Neural Networks (2)

Piyush Rai

Introduction to Machine Learning (CS771A)

October 25, 2018

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 1

Plan for today

Quick recap of feedforward networks

Backprop via a small example

Variations/improvements to basic feedforward networks

Convolutional Neural Networks (CNN)

Neural Networks for sequential data (RNN and LSTM)

Neural networks for unsupervised learning (deep autoencoders)

Some other recent advances (GAN and VAE)

Note: The attempt (this as well as previous lecture) is to convey basic principles of deep neural
networks. For a more in-depth treatment, you are advised to take a dedicated deep learning course

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 2

Recap: Feedforward Neural Networks (MLP)

(1)

(2)

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 3

Recap: MLP as Composition of Functions

1.0 -1.0

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 4

Recap: MLP as Multi-layer Feature Detector

K
1
 = 100

K
2
 = 32

K
3
 = 24

Low-level feature detectors
 (e.g., detect edges)

higher-level feature detectors
 (e.g., parts of face)

Even higher-level feature detectors
 (make classification easy)

Note: If no. of hidden units < D, then it can also be seen as doing (supervised) dim-red

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 5

Learning MLP via Backpropagation: A Simple Example

Consider a single hidden layer MLP

Assuming regression (o = identity),
the loss function for this model

L =
1

2

N∑
n=1

(
yn − v>hn

)2

=
1

2

N∑
n=1

(
yn −

K∑
k=1

vkhnk

)2

=
1

2

N∑
n=1

(
yn −

K∑
k=1

vkg(w
>
k xn)

)2

To use gradient methods for W, v , we need gradients.

Gradient of L w.r.t. v is straightforward

∂L
∂vk

= −
N∑

n=1

(
yn −

K∑
k=1

vkg(w
>
k xn)

)
hnk =

N∑
n=1

enhnk

Gradient of L w.r.t. W requires chain rule

∂L
∂wdk

=
N∑

n=1

∂L
∂hnk

∂hnk

∂wdk

∂L
∂hnk

= −(yn −
K∑

k=1

vkg(w
>
k xn))vk = −envk

∂hnk

∂wdk

= g ′(w>k xn)xnd (note: hnk = g(w>k xn))

Forward prop computes errors en using current W, v .
Backprop updates NN params W, v using grad methods

Backprop caches many of the calculations for reuse

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 6

Some Considerations w.r.t. Optimization in Deep NN

Gradient based first-order methods are among the most popular ones

Typically mini-batch SGD based method are used

However, due to non-convexity, care needs to be exercised

Adaptive learning rates (Adam, Adagrad, RMSProp)

Momentum based or “look ahead” gradient methods

Initialization is also very important

Layer-wise pre-training was one of the first successful schemes

Many other heuristics exist now

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 7

Some Limitations of Feedforward Networks

Require a huge number of parameters (note that the consecutive layers are fully connected)

Not ideal for data that exhibit locality structure, e.g., (e.g., images, sentences)

Kind of works but would be better to exploit locality in the data more explicitly

Doesn’t have a “memory”, so not ideal when modeling sequence of observations

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 8

Convolutional Neural Network (CNN)

A feedforward neural network with a special structure

Don’t connect
everything with
everything Share weights

16 but only 4 distinct weightsOnly 16 weightsTotal 36 weights

Not all pairs of nodes are connected

Weights are also “tied” (many connections have the same weights; color-coded above)

The set of distinct weights defines a “filter” or “local” feature detector

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 9

Convolutional Neural Network (CNN)

Applies 2 operations, convolution and pooling (subsampling), repeatedly on the input data

Convolution: Extract “local” properties of the signal. Uses a set of “filters” that have to be learned
(these are the “weighted” W between layers)

Pooling: Downsamples the outputs to reduce the size of representation

Note: A nonlinearity is also introduced after the convolution layer

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 10

Convolution

An operation that captures local (e.g., spatial) properties of a signal

Mathematically, the operation is defined as

hkij = g((W k ∗ X)ij + bk)

where W k is a filter, ∗ is the convolution operator, and g is a nonlinearity

Usually several filters {W k}Kk=1 are applied (each will produce a separate “feature map”). These
filters have to be learned (these are the weights of the NN)

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 11

Pooling/Downsampling

Used to “downsample” the representation-size after convolution step.

Also ensures robustness against minor rotations, shifts, corruptions in the image

Popular approaches: Max-pooling, averaging pooling, etc

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 12

Strides

Stride defines the number of nodes a filter moves between two consecutive convolution operations

Likewise, we have a stride to define the same when applying pooling

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 13

Modeling Sequential Data

FFNN for a single observation looks like this (denoting all hidden units as hn)

FFNN can’t take into account the structure in sequential data x1, . . . , xT , e.g., it would look like

For such sequential data, we want dependencies between ht ’s of different observations

Desirable when modeling sentence/paragraph/document, video (sequence of frames), etc.

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 14

Recurrent Neural Nets (RNN)

A simple neural network for sequential data

Hidden state at each step depends on the hidden state of the previous

Each hidden state is typically defined as

ht = f (Wx t + Uht−1)

where U is a K × K transition matrix and f is some nonlin. fn. (e.g., tanh)

Now ht acts as a “memory”. Helps us remember what happened up to step t

RNNs can also be extended to have more than one hidden layer

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 15

Recurrent Neural Nets (RNN)

A more “micro” view of RNN (the transition matrix U connects the hidden states across
observations, propagating information along the sequence)

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 16

RNN in Action..

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 17

RNN: Applications

RNNs are widely applicable and are also very flexible. E.g.,

Input, output, or both, can be sequences (possibly of different lengths)

Different inputs (and different outputs) need not be of the same length

Regardless of the length of the input sequence, RNN will learn a fixed size embedding for the input
sequence

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 18

Training RNN

Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then
backward propagate from end to step 1)

Think of the time-dimension as another hidden layer and then it is just like standard
backpropagation for feedforward neural nets

Black: Prediction, Yellow: Error, Orange: Gradients

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 19

RNN Limitation

Sensitivity of hidden states and outputs on a given input becomes weaker as we move away from it
along the sequence (weak memory)

New inputs “overwrite” the activations of previous hidden states

Repeated multiplications can cause the gradients to vanish or explode

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 20

Capturing Long-Range Dependencies

Idea: Augment the hidden states with gates (with parameters to be learned)

These gates can help us remember and forget information “selectively”

The hidden states have 3 type of gates

Input (bottom), Forget (left), Output (top)

Open gate denoted by ’o’, closed gate denoted by ’-’

LSTM (Hochreiter and Schmidhuber, mid-90s): Long Short-Term Memory is one such idea

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 21

Long Short-Term Memory (LSTM)

Essentially an RNN, except that the hidden states are computed differently

Recall that RNN computes the hidden states as
ht = tanh(Wx t + Uht−1)

For RNN: State update is multiplicative (weak memory and gradient issues)

In contrast, LSTM maintains a “context” Ct and computes hidden states as

Ĉt = tanh(Wcx t + Ucht−1) (“local” context, only up to immediately preceding state)

it = σ(Wix t + Uiht−1) (how much to take in the local context)

ft = σ(Wf x t + Uf ht−1) (how much to forget the previous context)

ot = σ(Wox t + Uoht−1) (how much to output)

Ct = Ct−1 � ft + Ĉt � it (a modulated additive update for context)

ht = tanh(Ct)� ot (transform context into state and selectively output)

Note: � represents elementwise vector product. Also, state updates now additive, not
multiplicative. Training using backpropagation through time.

Many variants of LSTM exists, e.g., using Ct−1 in local computations, Gated Recurrent Units
(GRU), etc. Mostly minor variations of basic LSTM above

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 22

Deep Neural Networks for Unsupervised Learning

Auto-encoder (AE) is a popular deep neural network unsupervised feature learning

Encoder
 NN

 “E”

Decoder
 NN

 “D”

z = E(x)

 Compressed
 Representation

Original
 Input

 Reconstucted
 Input

Want ||x – D(z)|| = ||x – D(E(x))||
 to be small

(Can also use other losses to
Measure reconstruction error)

Original
 Input

If size z is K < D, auto-encoders can be used for dimensionality reduction too

For linear encoder/decodder with E (x) = W>x , D(z) = Wz and squared loss, AE is akin to PCA

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 23

Deep Neural Networks for Unsupervised Learning

Denoising auto-encoders: Inject noise in the inputs before passing to to encoder

Encoder
 NN

 “E”

Decoder
 NN

 “D”

z = E(x)

 Compressed
 Representation

Original
 Input

 Reconstucted
 Input

Want ||x – D(z)|| = ||x – D(E(x))||
 to be small

(Can also use other losses to
Measure reconstruction error)

“Noisy”
 Input

Many ways to introduct “noise”: Inject zero-mean Gaussian noise, “zero-out” some features, etc

Especially useful when K > D (z to be a copy of x with K − D zeros) - overcomplete autocoders

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 24

Generative Adversarial Network

A model that can learn to generate highly real looking data (Goodfellow et al, 2014)

A game between a Generator and a Discriminator

Both are modeled by deep neural networks

Discriminator: A classifier to predict real vs fake data

Generator transforms a random z to produce fake data

Discriminator’s Goal: Make D(x)→ 1, D(G (z))→ 0

Generator’s Goal: Make D(G (z))→ 1 (fool discr.)

At the game’s equilibrium, the generator starts producing
data from the true data distribution pdata(x)

z

G(z) x

D

G

D(x) or D(G(z)) close to 1 means
input image predicted as real

Random latent vector

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 25

Some Other Advances..

Deep Probabilistic Models: The linear probabilistic models we’ve seen can be “deep-ified”

Basically, just require changing the linear part by a (deep) NN , e.g.,

Deep probabilistic model for regression/classification

yn ∼ N (yn|NN(xn), β−1)

yn ∼ Bernoulli(yn|σ(NN(xn)))

Deep probabilistic PPCA; a.k.a. variational autoencoder (VAE)

zn ∼ N (0, IK)

xn ∼ N (xn|NNµ(zn),NNσ2(zn))

Can do MAP estimation of the NN parameters or even infer full posterior (Bayesian Deep Learning)

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 26

Some Concluding Comments

Deep Learning is extremely popular and topical

Impressive success in many areas such as vision, NLP, robotics

Deep Learning is not the necessarily the best way to do ML :-)

Many non-deep learning methods can often perform comparably (sometimes even better)..

Decision trees, kernel methods, mixture-of-experts, and others..

Therefore don’t abandon the other methods we have learned in the course :-)

We are yet to see other non-deep learning methods that are very valuable

Intro to Machine Learning (CS771A) Introduction to Deep Neural Networks (2) 27

