Introduction to Deep Neural Networks (2)

Piyush Rai

Introduction to Machine Learning (CS771A)

October 25, 2018

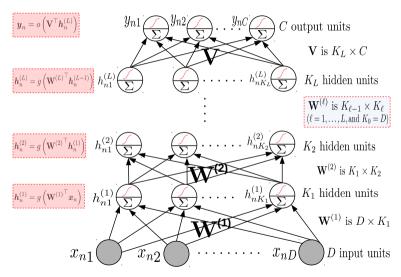
Plan for today

- Quick recap of feedforward networks
- Backprop via a small example
- Variations/improvements to basic feedforward networks
 - Convolutional Neural Networks (CNN)
 - Neural Networks for sequential data (RNN and LSTM)
- Neural networks for unsupervised learning (deep autoencoders)
- Some other recent advances (GAN and VAE)

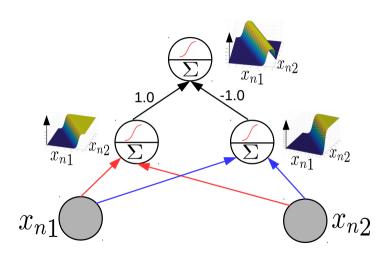
Plan for today

- Quick recap of feedforward networks
- Backprop via a small example
- Variations/improvements to basic feedforward networks
 - Convolutional Neural Networks (CNN)
 - Neural Networks for sequential data (RNN and LSTM)
- Neural networks for unsupervised learning (deep autoencoders)
- Some other recent advances (GAN and VAE)
- Note: The attempt (this as well as previous lecture) is to convey basic principles of deep neural networks. For a more in-depth treatment, you are advised to take a dedicated deep learning course

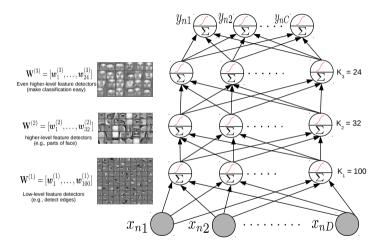
Recap: Feedforward Neural Networks (MLP)



Recap: MLP as Composition of Functions

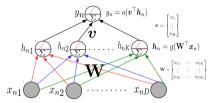


Recap: MLP as Multi-layer Feature Detector

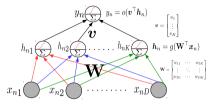


Note: If no. of hidden units < D, then it can also be seen as doing (supervised) dim-red

• Consider a single hidden layer MLP

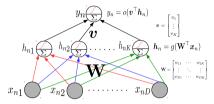


• Consider a single hidden layer MLP



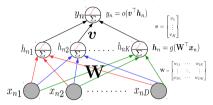
$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{v}^{\top} \mathbf{h}_n)^2$$

• Consider a single hidden layer MLP



$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

• Consider a single hidden layer MLP

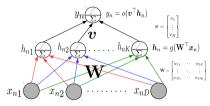


$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

• Consider a single hidden layer MLP



 Assuming regression (o = identity), the loss function for this model

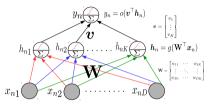
$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

ullet To use gradient methods for old W, old v, we need gradients.

• Consider a single hidden layer MLP



$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

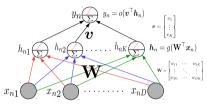
$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

- To use gradient methods for \mathbf{W}, \mathbf{v} , we need gradients.
- ullet Gradient of ${\cal L}$ w.r.t. ${m v}$ is straightforward

$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right) h_{nk}$$

• Consider a single hidden layer MLP



$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

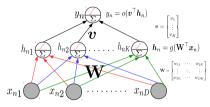
$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

- To use gradient methods for \mathbf{W} , \mathbf{v} , we need gradients.
- ullet Gradient of $\mathcal L$ w.r.t. oldsymbol v is straightforward

$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right) h_{nk} = \sum_{n=1}^{N} \mathbf{e}_n h_{nk}$$

• Consider a single hidden layer MLP



 Assuming regression (o = identity), the loss function for this model

$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

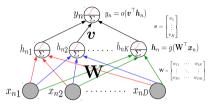
$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k \mathbf{g}(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

- To use gradient methods for \mathbf{W} , \mathbf{v} , we need gradients.
- Gradient of \mathcal{L} w.r.t. \mathbf{v} is straightforward

$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n) \right) h_{nk} = \sum_{n=1}^{N} \boldsymbol{e}_n h_{nk}$$

$$\frac{\partial \mathcal{L}}{\partial w_{dk}} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial h_{nk}} \frac{\partial h_{nk}}{\partial w_{dk}}$$

• Consider a single hidden layer MLP



 Assuming regression (o = identity), the loss function for this model

$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k \mathbf{g}(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

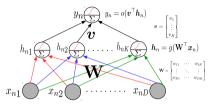
- To use gradient methods for **W**, **v**, we need gradients.
- ullet Gradient of $\mathcal L$ w.r.t. oldsymbol v is straightforward

$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n) \right) h_{nk} = \sum_{n=1}^{N} \boldsymbol{e}_n h_{nk}$$

$$\frac{\partial \mathcal{L}}{\partial w_{dk}} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial h_{nk}} \frac{\partial h_{nk}}{\partial w_{dk}}$$

$$\frac{\partial \mathcal{L}}{\partial h_{nk}} = -(y_n - \sum_{k=1}^K v_k g(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n)) v_k = -\boldsymbol{e}_n v_k$$

• Consider a single hidden layer MLP



 Assuming regression (o = identity), the loss function for this model

$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{k=1}^{N} \left(y_k - \sum_{k=1}^{K} v_k \mathbf{g}(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

- To use gradient methods for **W**, **v**, we need gradients.
- Gradient of \mathcal{L} w.r.t. \mathbf{v} is straightforward

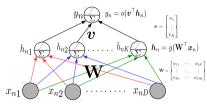
$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n) \right) h_{nk} = \sum_{n=1}^{N} \boldsymbol{e}_n h_{nk}$$

$$\frac{\partial \mathcal{L}}{\partial w_{dk}} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial h_{nk}} \frac{\partial h_{nk}}{\partial w_{dk}}$$

$$\frac{\partial \mathcal{L}}{\partial h_{nk}} = -(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n)) v_k = -\mathbf{e}_n v_k$$

$$\frac{\partial h_{nk}}{\partial w_{dk}} = g'(\mathbf{w}_k^{\top} \mathbf{x}_n) x_{nd} \quad \text{(note: } h_{nk} = g(\mathbf{w}_k^{\top} \mathbf{x}_n)\text{)}$$

• Consider a single hidden layer MLP



 Assuming regression (o = identity), the loss function for this model

$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k h_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

- To use gradient methods for **W**, **v**, we need gradients.
- Gradient of \mathcal{L} w.r.t. \mathbf{v} is straightforward

$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n) \right) h_{nk} = \sum_{n=1}^{N} \boldsymbol{e}_n h_{nk}$$

• Gradient of \mathcal{L} w.r.t. **W** requires chain rule

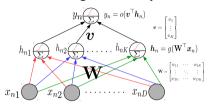
$$\frac{\partial \mathcal{L}}{\partial w_{dk}} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial h_{nk}} \frac{\partial h_{nk}}{\partial w_{dk}}$$

$$\frac{\partial \mathcal{L}}{\partial h_{nk}} = -(y_n - \sum_{k=1}^{K} v_k g(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n)) v_k = -\boldsymbol{e}_n v_k$$

$$\frac{\partial h_{nk}}{\partial w_{dk}} = g'(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n) x_{nd} \quad \text{(note: } h_{nk} = g(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n))$$

• Forward prop computes errors e_n using current W, v

• Consider a single hidden layer MLP



 Assuming regression (o = identity), the loss function for this model

$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k \mathbf{h}_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k \mathbf{g}(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

- To use gradient methods for **W**, **v**, we need gradients.
- Gradient of \mathcal{L} w.r.t. \mathbf{v} is straightforward

$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n) \right) h_{nk} = \sum_{n=1}^{N} \mathbf{e}_n h_{nk}$$

• Gradient of \mathcal{L} w.r.t. **W** requires chain rule

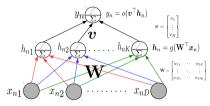
$$\frac{\partial \mathcal{L}}{\partial w_{dk}} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial h_{nk}} \frac{\partial h_{nk}}{\partial w_{dk}}$$

$$\frac{\partial \mathcal{L}}{\partial h_{nk}} = -(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n)) v_k = -\mathbf{e}_n v_k$$

$$\frac{\partial h_{nk}}{\partial w_{dk}} = g'(\mathbf{w}_k^{\top} \mathbf{x}_n) x_{nd} \quad \text{(note: } h_{nk} = g(\mathbf{w}_k^{\top} \mathbf{x}_n)\text{)}$$

• Forward prop computes errors e_n using current \mathbf{W} , \mathbf{v} . Backprop updates NN params \mathbf{W} , \mathbf{v} using grad methods

• Consider a single hidden layer MLP



 Assuming regression (o = identity), the loss function for this model

$$\mathcal{L} = \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \mathbf{v}^{\top} \mathbf{h}_n \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k \mathbf{h}_{nk} \right)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k \mathbf{g}(\mathbf{w}_k^{\top} \mathbf{x}_n) \right)^2$$

- \bullet To use gradient methods for \mathbf{W} , \mathbf{v} , we need gradients.
- ullet Gradient of ${\cal L}$ w.r.t. ${m v}$ is straightforward

$$\frac{\partial \mathcal{L}}{\partial v_k} = -\sum_{n=1}^{N} \left(y_n - \sum_{k=1}^{K} v_k g(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n) \right) h_{nk} = \sum_{n=1}^{N} \boldsymbol{e}_n h_{nk}$$

$$\frac{\partial \mathcal{L}}{\partial w_{dk}} = \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial h_{nk}} \frac{\partial h_{nk}}{\partial w_{dk}}$$

$$\frac{\partial \mathcal{L}}{\partial h_{nk}} = -(y_n - \sum_{k=1}^{K} v_k g(\mathbf{w}_k^{\top} \mathbf{x}_n)) v_k = -\mathbf{e}_n v_k$$

$$\frac{\partial h_{nk}}{\partial w_{dk}} = g'(\mathbf{w}_k^{\top} \mathbf{x}_n) x_{nd} \quad (\text{note: } h_{nk} = g(\mathbf{w}_k^{\top} \mathbf{x}_n))$$

- Forward prop computes errors e_n using current \mathbf{W} , \mathbf{v} . Backprop updates NN params \mathbf{W} , \mathbf{v} using grad methods
- Backprop caches many of the calculations for reuse

Some Considerations w.r.t. Optimization in Deep NN

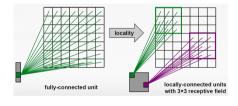
- Gradient based first-order methods are among the most popular ones
- Typically mini-batch SGD based method are used
- However, due to non-convexity, care needs to be exercised
 - Adaptive learning rates (Adam, Adagrad, RMSProp)
 - Momentum based or "look ahead" gradient methods

Some Considerations w.r.t. Optimization in Deep NN

- Gradient based first-order methods are among the most popular ones
- Typically mini-batch SGD based method are used
- However, due to non-convexity, care needs to be exercised
 - Adaptive learning rates (Adam, Adagrad, RMSProp)
 - Momentum based or "look ahead" gradient methods
- Initialization is also very important
 - Layer-wise pre-training was one of the first successful schemes
 - Many other heuristics exist now

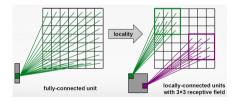
Some Limitations of Feedforward Networks

- Require a huge number of parameters (note that the consecutive layers are fully connected)
- Not ideal for data that exhibit locality structure, e.g., (e.g., images, sentences)
 - Kind of works but would be better to exploit locality in the data more explicitly

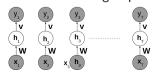


Some Limitations of Feedforward Networks

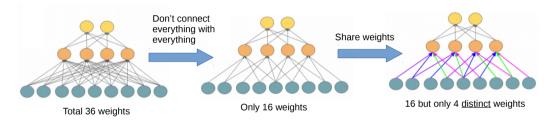
- Require a huge number of parameters (note that the consecutive layers are fully connected)
- Not ideal for data that exhibit locality structure, e.g., (e.g., images, sentences)
 - Kind of works but would be better to exploit locality in the data more explicitly



• Doesn't have a "memory", so not ideal when modeling sequence of observations

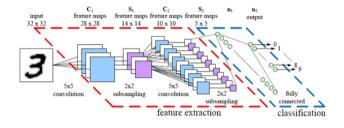


• A feedforward neural network with a special structure

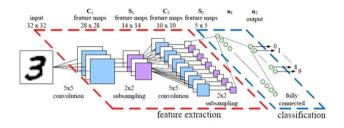


- Not all pairs of nodes are connected
- Weights are also "tied" (many connections have the same weights; color-coded above)
- The set of distinct weights defines a "filter" or "local" feature detector

• Applies 2 operations, convolution and pooling (subsampling), repeatedly on the input data

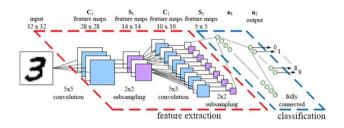


• Applies 2 operations, convolution and pooling (subsampling), repeatedly on the input data



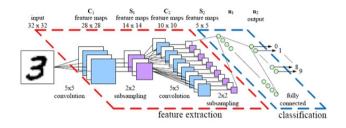
 Convolution: Extract "local" properties of the signal. Uses a set of "filters" that have to be learned (these are the "weighted" W between layers)

• Applies 2 operations, convolution and pooling (subsampling), repeatedly on the input data



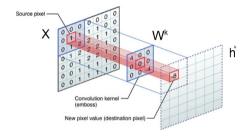
- Convolution: Extract "local" properties of the signal. Uses a set of "filters" that have to be learned (these are the "weighted" W between layers)
- Pooling: Downsamples the outputs to reduce the size of representation

• Applies 2 operations, convolution and pooling (subsampling), repeatedly on the input data

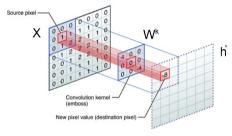


- Convolution: Extract "local" properties of the signal. Uses a set of "filters" that have to be learned (these are the "weighted" **W** between layers)
- Pooling: Downsamples the outputs to reduce the size of representation
- Note: A nonlinearity is also introduced after the convolution layer

• An operation that captures local (e.g., spatial) properties of a signal



• An operation that captures local (e.g., spatial) properties of a signal

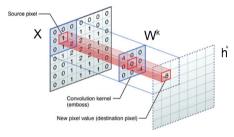


Mathematically, the operation is defined as

$$h_{ij}^k = g((W^k * \mathbf{X})_{ij} + b_k)$$

where W^k is a filter, * is the convolution operator, and g is a nonlinearity

• An operation that captures local (e.g., spatial) properties of a signal



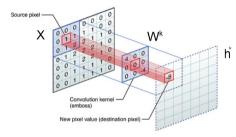
Mathematically, the operation is defined as

$$h_{ij}^k = g((W^k * \mathbf{X})_{ij} + b_k)$$

where W^k is a filter, * is the convolution operator, and g is a nonlinearity

• Usually several filters $\{W^k\}_{k=1}^K$ are applied (each will produce a separate "feature map")

• An operation that captures local (e.g., spatial) properties of a signal



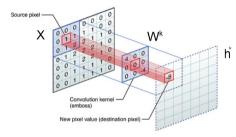
• Mathematically, the operation is defined as

$$h_{ij}^k = g((W^k * \mathbf{X})_{ij} + b_k)$$

where W^k is a filter, * is the convolution operator, and g is a nonlinearity

• Usually several filters $\{W^k\}_{k=1}^K$ are applied (each will produce a separate "feature map"). These filters have to be learned (these are the weights of the NN)

• An operation that captures local (e.g., spatial) properties of a signal



• Mathematically, the operation is defined as

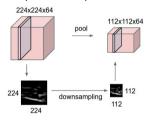
$$h_{ij}^k = g((W^k * \mathbf{X})_{ij} + b_k)$$

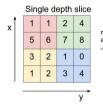
where W^k is a filter, * is the convolution operator, and g is a nonlinearity

• Usually several filters $\{W^k\}_{k=1}^K$ are applied (each will produce a separate "feature map"). These filters have to be learned (these are the weights of the NN)

Pooling/Downsampling

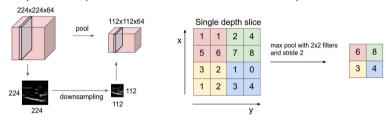
• Used to "downsample" the representation-size after convolution step.





Pooling/Downsampling

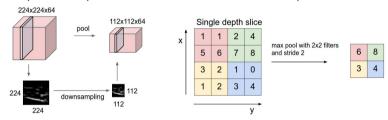
• Used to "downsample" the representation-size after convolution step.



• Also ensures robustness against minor rotations, shifts, corruptions in the image

Pooling/Downsampling

• Used to "downsample" the representation-size after convolution step.



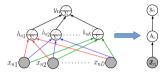
- Also ensures robustness against minor rotations, shifts, corruptions in the image
- Popular approaches: Max-pooling, averaging pooling, etc.

Strides

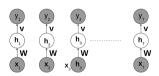
- Stride defines the number of nodes a filter moves between two consecutive convolution operations
- Likewise, we have a stride to define the same when applying pooling

Modeling Sequential Data

• FFNN for a single observation looks like this (denoting all hidden units as h_n)

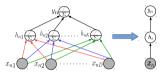


• FFNN can't take into account the structure in sequential data x_1, \ldots, x_T , e.g., it would look like

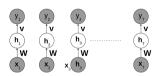


Modeling Sequential Data

• FFNN for a single observation looks like this (denoting all hidden units as h_n)



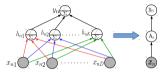
• FFNN can't take into account the structure in sequential data x_1, \ldots, x_T , e.g., it would look like



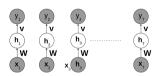
 \bullet For such sequential data, we want dependencies between h_t 's of different observations

Modeling Sequential Data

• FFNN for a single observation looks like this (denoting all hidden units as h_n)



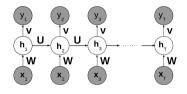
• FFNN can't take into account the structure in sequential data x_1, \ldots, x_T , e.g., it would look like



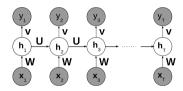
- For such sequential data, we want dependencies between h_t 's of different observations
- Desirable when modeling sentence/paragraph/document, video (sequence of frames), etc.

• A simple neural network for sequential data

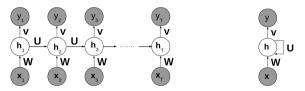
- A simple neural network for sequential data
- Hidden state at each step depends on the hidden state of the previous



- A simple neural network for sequential data
- Hidden state at each step depends on the hidden state of the previous



- A simple neural network for sequential data
- Hidden state at each step depends on the hidden state of the previous

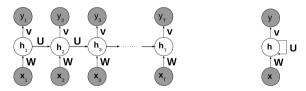


Each hidden state is typically defined as

$$\boldsymbol{h}_t = f(\mathbf{W}\boldsymbol{x}_t + \mathbf{U}\boldsymbol{h}_{t-1})$$

where **U** is a $K \times K$ transition matrix and f is some nonlin. fn. (e.g., tanh)

- A simple neural network for sequential data
- Hidden state at each step depends on the hidden state of the previous



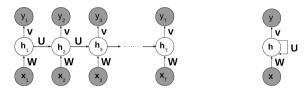
Each hidden state is typically defined as

$$\boldsymbol{h}_t = f(\mathbf{W}\boldsymbol{x}_t + \mathbf{U}\boldsymbol{h}_{t-1})$$

where **U** is a $K \times K$ transition matrix and f is some nonlin. fn. (e.g., tanh)

ullet Now $oldsymbol{h}_t$ acts as a "memory". Helps us remember what happened up to step t

- A simple neural network for sequential data
- Hidden state at each step depends on the hidden state of the previous



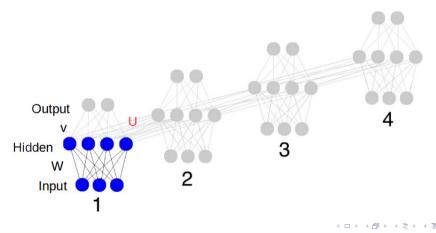
Each hidden state is typically defined as

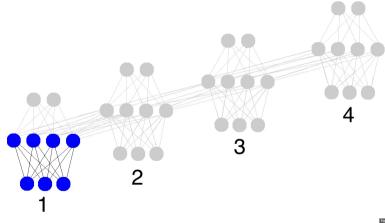
$$\boldsymbol{h}_t = f(\mathbf{W}\boldsymbol{x}_t + \mathbf{U}\boldsymbol{h}_{t-1})$$

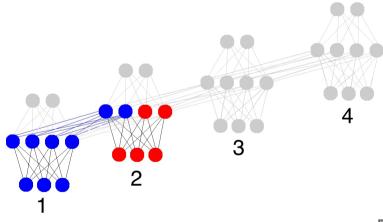
where **U** is a $K \times K$ transition matrix and f is some nonlin. fn. (e.g., tanh)

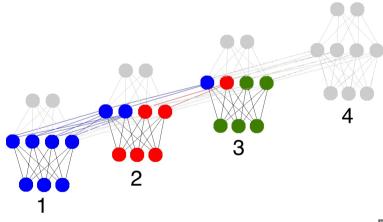
- ullet Now $oldsymbol{h}_t$ acts as a "memory". Helps us remember what happened up to step t
- RNNs can also be extended to have more than one hidden layer

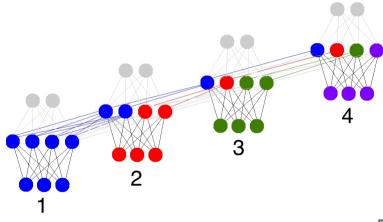
• A more "micro" view of RNN (the transition matrix **U** connects the hidden states across observations, propagating information along the sequence)

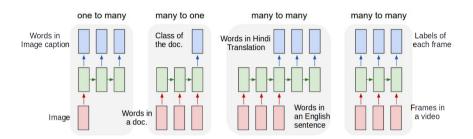




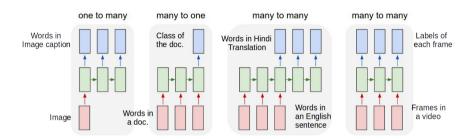




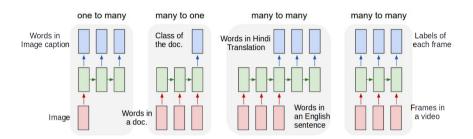




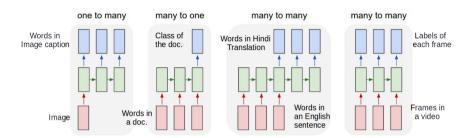
RNNs are widely applicable and are also very flexible.



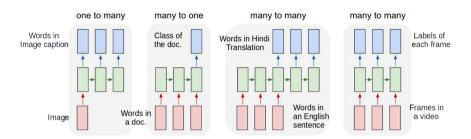
RNNs are widely applicable and are also very flexible. E.g.,



- RNNs are widely applicable and are also very flexible. E.g.,
 - Input, output, or both, can be sequences (possibly of different lengths)

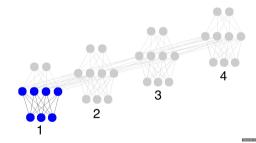


- RNNs are widely applicable and are also very flexible. E.g.,
 - Input, output, or both, can be sequences (possibly of different lengths)
 - Different inputs (and different outputs) need not be of the same length

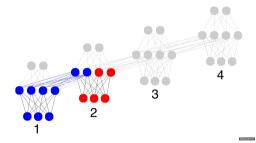


- RNNs are widely applicable and are also very flexible. E.g.,
 - Input, output, or both, can be sequences (possibly of different lengths)
 - Different inputs (and different outputs) need not be of the same length
 - Regardless of the length of the input sequence, RNN will learn a fixed size embedding for the input sequence

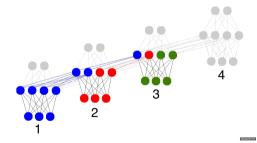
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



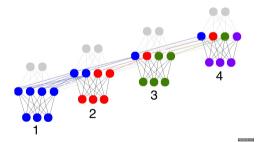
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



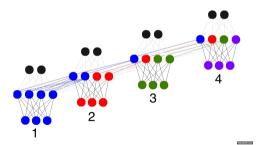
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



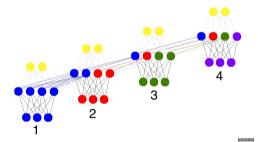
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



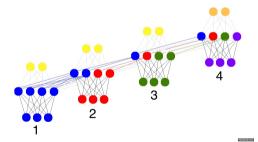
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



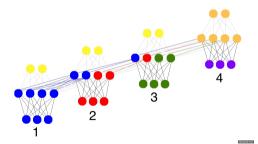
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



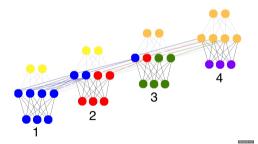
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



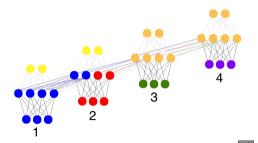
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



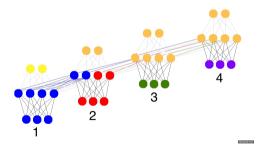
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



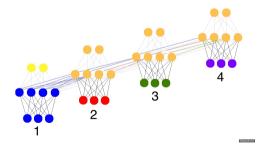
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



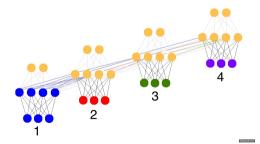
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



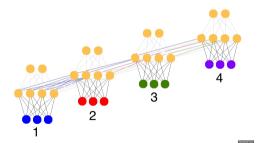
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



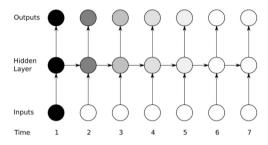
- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets



- Trained using Backpropagation Through Time (forward propagate from step 1 to end, and then backward propagate from end to step 1)
- Think of the time-dimension as another hidden layer and then it is just like standard backpropagation for feedforward neural nets

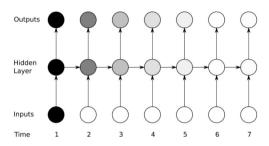


RNN Limitation



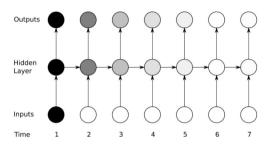
• Sensitivity of hidden states and outputs on a given input becomes weaker as we move away from it along the sequence (weak memory)

RNN Limitation



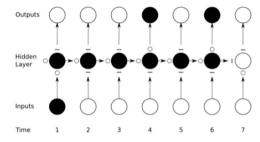
- Sensitivity of hidden states and outputs on a given input becomes weaker as we move away from it along the sequence (weak memory)
- New inputs "overwrite" the activations of previous hidden states

RNN Limitation

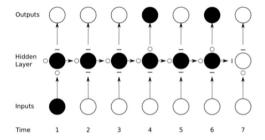


- Sensitivity of hidden states and outputs on a given input becomes weaker as we move away from it along the sequence (weak memory)
- New inputs "overwrite" the activations of previous hidden states
- Repeated multiplications can cause the gradients to vanish or explode

- Idea: Augment the hidden states with gates (with parameters to be learned)
- These gates can help us remember and forget information "selectively"

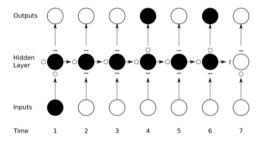


- Idea: Augment the hidden states with gates (with parameters to be learned)
- These gates can help us remember and forget information "selectively"



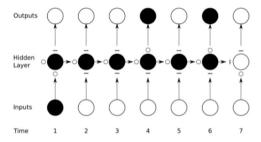
- The hidden states have 3 type of gates
 - Input (bottom), Forget (left), Output (top)

- Idea: Augment the hidden states with gates (with parameters to be learned)
- These gates can help us remember and forget information "selectively"



- The hidden states have 3 type of gates
 - Input (bottom), Forget (left), Output (top)
- Open gate denoted by 'o', closed gate denoted by '-'

- Idea: Augment the hidden states with gates (with parameters to be learned)
- These gates can help us remember and forget information "selectively"



- The hidden states have 3 type of gates
 - Input (bottom), Forget (left), Output (top)
- Open gate denoted by 'o', closed gate denoted by '-'
- LSTM (Hochreiter and Schmidhuber, mid-90s): Long Short-Term Memory is one such idea

• Essentially an RNN, except that the hidden states are computed differently

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$\pmb{h}_t = \tanh(\pmb{\mathsf{W}} \pmb{x}_t + \pmb{\mathsf{U}} \pmb{h}_{t-1})$$

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$m{h}_t = anh(\mathbf{W}m{x}_t + \mathbf{U}m{h}_{t-1})$$

• For RNN: State update is multiplicative (weak memory and gradient issues)

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$\pmb{h}_t = \mathsf{tanh}(\pmb{\mathsf{W}}\pmb{x}_t + \pmb{\mathsf{U}}\pmb{h}_{t-1})$$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- ullet In contrast, LSTM maintains a "context" C_t and computes hidden states as

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$oldsymbol{h}_t = anh(\mathbf{W}oldsymbol{x}_t + \mathbf{U}oldsymbol{h}_{t-1})$$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

$$\hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1})$$
 ("local" context, only up to immediately preceding state)

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$oldsymbol{h}_t = anh(\mathbf{W}oldsymbol{x}_t + \mathbf{U}oldsymbol{h}_{t-1})$$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

```
\hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) ("local" context, only up to immediately preceding state) i_t = \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) (how much to take in the local context)
```


- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$oldsymbol{h}_t = anh(\mathbf{W}oldsymbol{x}_t + \mathbf{U}oldsymbol{h}_{t-1})$$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- ullet In contrast, LSTM maintains a "context" C_t and computes hidden states as

```
 \hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) \qquad (\text{``local'' context, only up to immediately preceding state}) 
 i_t = \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) \qquad (\text{how much to take in the local context}) 
 f_t = \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1}) \qquad (\text{how much to forget the previous context})
```


- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$oldsymbol{h}_t = anh(\mathbf{W}oldsymbol{x}_t + \mathbf{U}oldsymbol{h}_{t-1})$$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- ullet In contrast, LSTM maintains a "context" C_t and computes hidden states as

```
 \hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) \qquad \text{("local" context, only up to immediately preceding state)} 
 i_t = \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) \qquad \text{(how much to take in the local context)} 
 f_t = \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1}) \qquad \text{(how much to forget the previous context)} 
 o_t = \sigma(\mathbf{W}^o \mathbf{x}_t + \mathbf{U}^o \mathbf{h}_{t-1}) \qquad \text{(how much to output)}
```


- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$oldsymbol{h}_t = anh(\mathbf{W}oldsymbol{x}_t + \mathbf{U}oldsymbol{h}_{t-1})$$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- ullet In contrast, LSTM maintains a "context" C_t and computes hidden states as

```
 \hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) \qquad \text{("local" context, only up to immediately preceding state)} 
 i_t = \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) \qquad \text{(how much to take in the local context)} 
 f_t = \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1}) \qquad \text{(how much to forget the previous context)} 
 o_t = \sigma(\mathbf{W}^o \mathbf{x}_t + \mathbf{U}^o \mathbf{h}_{t-1}) \qquad \text{(how much to output)} 
 C_t = C_{t-1} \odot f_t + \hat{C}_t \odot f_t \qquad \text{(a modulated additive update for context)}
```


- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$oldsymbol{h}_t = anh(\mathbf{W}oldsymbol{x}_t + \mathbf{U}oldsymbol{h}_{t-1})$$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- ullet In contrast, LSTM maintains a "context" C_t and computes hidden states as

```
 \hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) \qquad \text{("local" context, only up to immediately preceding state)} 
 i_t = \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) \qquad \text{(how much to take in the local context)} 
 f_t = \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1}) \qquad \text{(how much to forget the previous context)} 
 o_t = \sigma(\mathbf{W}^o \mathbf{x}_t + \mathbf{U}^o \mathbf{h}_{t-1}) \qquad \text{(how much to output)} 
 C_t = C_{t-1} \odot f_t + \hat{C}_t \odot i_t \qquad \text{(a modulated additive update for context)} 
 h_t = \tanh(C_t) \odot o_t \qquad \text{(transform context into state and selectively output)}
```


- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$\pmb{h}_t = anh(\pmb{\mathsf{W}}\pmb{x}_t + \pmb{\mathsf{U}}\pmb{h}_{t-1})$$

- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

```
 \hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) \qquad \text{("local" context, only up to immediately preceding state)}   i_t = \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) \qquad \text{(how much to take in the local context)}   f_t = \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1}) \qquad \text{(how much to forget the previous context)}   o_t = \sigma(\mathbf{W}^o \mathbf{x}_t + \mathbf{U}^o \mathbf{h}_{t-1}) \qquad \text{(how much to output)}   C_t = C_{t-1} \odot f_t + \hat{C}_t \odot i_t \qquad \text{(a modulated additive update for context)}   h_t = \tanh(C_t) \odot o_t \qquad \text{(transform context into state and selectively output)}
```

 Note: ⊙ represents elementwise vector product. Also, state updates now additive, not multiplicative. Training using backpropagation through time.

- Essentially an RNN, except that the hidden states are computed differently
- Recall that RNN computes the hidden states as

$$\pmb{h}_t = anh(\pmb{\mathsf{W}}\pmb{x}_t + \pmb{\mathsf{U}}\pmb{h}_{t-1})$$

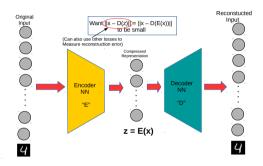
- For RNN: State update is multiplicative (weak memory and gradient issues)
- In contrast, LSTM maintains a "context" C_t and computes hidden states as

```
 \hat{C}_t = \tanh(\mathbf{W}^c \mathbf{x}_t + \mathbf{U}^c \mathbf{h}_{t-1}) \qquad \text{("local" context, only up to immediately preceding state)}   i_t = \sigma(\mathbf{W}^i \mathbf{x}_t + \mathbf{U}^i \mathbf{h}_{t-1}) \qquad \text{(how much to take in the local context)}   f_t = \sigma(\mathbf{W}^f \mathbf{x}_t + \mathbf{U}^f \mathbf{h}_{t-1}) \qquad \text{(how much to forget the previous context)}   o_t = \sigma(\mathbf{W}^o \mathbf{x}_t + \mathbf{U}^o \mathbf{h}_{t-1}) \qquad \text{(how much to output)}   C_t = C_{t-1} \odot f_t + \hat{C}_t \odot i_t \qquad \text{(a modulated additive update for context)}   h_t = \tanh(C_t) \odot o_t \qquad \text{(transform context into state and selectively output)}
```

- Note: ⊙ represents elementwise vector product. Also, state updates now additive, not multiplicative. Training using backpropagation through time.
- ullet Many variants of LSTM exists, e.g., using C_{t-1} in local computations, Gated Recurrent Units (GRU), etc. Mostly minor variations of basic LSTM above

Deep Neural Networks for Unsupervised Learning

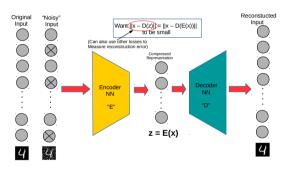
• Auto-encoder (AE) is a popular deep neural network unsupervised feature learning



- If size z is K < D, auto-encoders can be used for dimensionality reduction too
- For linear encoder/decodder with $E(x) = \mathbf{W}^{\top}x$, $D(z) = \mathbf{W}z$ and squared loss, AE is akin to PCA

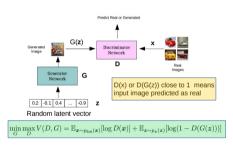
Deep Neural Networks for Unsupervised Learning

Denoising auto-encoders: Inject noise in the inputs before passing to to encoder

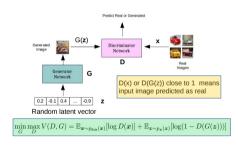


- Many ways to introduct "noise": Inject zero-mean Gaussian noise, "zero-out" some features, etc
- ullet Especially useful when K>D ($oldsymbol{z}$ to be a copy of $oldsymbol{x}$ with K-D zeros) overcomplete autocoders

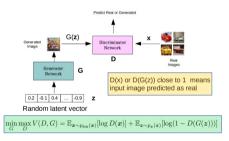
- A model that can learn to generate highly real looking data (Goodfellow et al, 2014)
- A game between a Generator and a Discriminator



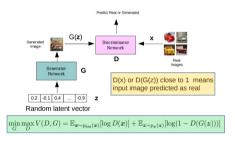
- A model that can learn to generate highly real looking data (Goodfellow et al, 2014)
- A game between a Generator and a Discriminator
- Both are modeled by deep neural networks



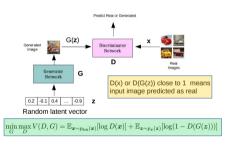
- A model that can learn to generate highly real looking data (Goodfellow et al, 2014)
- A game between a Generator and a Discriminator
- Both are modeled by deep neural networks
- Discriminator: A classifier to predict real vs fake data



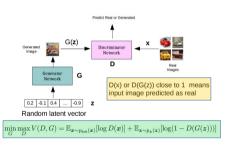
- A model that can learn to generate highly real looking data (Goodfellow et al, 2014)
- A game between a Generator and a Discriminator
- Both are modeled by deep neural networks
- Discriminator: A classifier to predict real vs fake data
- ullet Generator transforms a random z to produce fake data



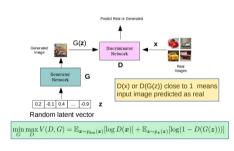
- A model that can learn to generate highly real looking data (Goodfellow et al, 2014)
- A game between a Generator and a Discriminator
- Both are modeled by deep neural networks
- Discriminator: A classifier to predict real vs fake data
- Generator transforms a random z to produce fake data
- ullet Discriminator's Goal: Make D(x)
 ightarrow 1, D(G(z))
 ightarrow 0



- A model that can learn to generate highly real looking data (Goodfellow et al, 2014)
- A game between a Generator and a Discriminator
- Both are modeled by deep neural networks
- Discriminator: A classifier to predict real vs fake data
- ullet Generator transforms a random $oldsymbol{z}$ to produce fake data
- Discriminator's Goal: Make $D(x) \to 1$, $D(G(z)) \to 0$
- Generator's Goal: Make $D(G(z)) \rightarrow 1$ (fool discr.)



- A model that can learn to generate highly real looking data (Goodfellow et al, 2014)
- A game between a Generator and a Discriminator
- Both are modeled by deep neural networks
- Discriminator: A classifier to predict real vs fake data
- ullet Generator transforms a random $oldsymbol{z}$ to produce fake data
- Discriminator's Goal: Make $D(x) \to 1$, $D(G(z)) \to 0$
- ullet Generator's Goal: Make D(G(z))
 ightarrow 1 (fool discr.)
- At the game's equilibrium, the generator starts producing data from the true data distribution $p_{data}(x)$



Some Other Advances...

- Deep Probabilistic Models: The linear probabilistic models we've seen can be "deep-ified"
- Basically, just require changing the linear part by a (deep) NN

Some Other Advances..

- Deep Probabilistic Models: The linear probabilistic models we've seen can be "deep-ified"
- Basically, just require changing the linear part by a (deep) NN, e.g.,
 - Deep probabilistic model for regression/classification

$$y_n \sim \mathcal{N}(y_n|\mathsf{NN}(\boldsymbol{x}_n), \beta^{-1})$$

 $y_n \sim \mathsf{Bernoulli}(y_n|\sigma(\mathsf{NN}(\boldsymbol{x}_n)))$

Some Other Advances..

- Deep Probabilistic Models: The linear probabilistic models we've seen can be "deep-ified"
- Basically, just require changing the linear part by a (deep) NN, e.g.,
 - Deep probabilistic model for regression/classification

$$y_n \sim \mathcal{N}(y_n|\mathsf{NN}(x_n), \beta^{-1})$$

 $y_n \sim \mathsf{Bernoulli}(y_n|\sigma(\mathsf{NN}(x_n)))$

Deep probabilistic PPCA; a.k.a. variational autoencoder (VAE)

$$egin{array}{lll} oldsymbol{z}_n & \sim & \mathcal{N}(\mathbf{0}, \mathbf{I}_K) \ oldsymbol{x}_n & \sim & \mathcal{N}(oldsymbol{x}_n | \mathsf{NN}_{\mu}(oldsymbol{z}_n), \mathsf{NN}_{\sigma^2}(oldsymbol{z}_n)) \end{array}$$

Some Other Advances...

- Deep Probabilistic Models: The linear probabilistic models we've seen can be "deep-ified"
- Basically, just require changing the linear part by a (deep) NN , e.g.,
 - Deep probabilistic model for regression/classification

$$y_n \sim \mathcal{N}(y_n|\mathsf{NN}(x_n), \beta^{-1})$$

 $y_n \sim \mathsf{Bernoulli}(y_n|\sigma(\mathsf{NN}(x_n)))$

• Deep probabilistic PPCA; a.k.a. variational autoencoder (VAE)

$$egin{array}{lll} oldsymbol{z}_n & \sim & \mathcal{N}(0, \mathbf{I}_K) \ oldsymbol{x}_n & \sim & \mathcal{N}(oldsymbol{x}_n | \mathsf{NN}_{\mu}(oldsymbol{z}_n), \mathsf{NN}_{\sigma^2}(oldsymbol{z}_n)) \end{array}$$

• Can do MAP estimation of the NN parameters or even infer full posterior (Bayesian Deep Learning)

• Deep Learning is extremely popular and topical

- Deep Learning is extremely popular and topical
- Impressive success in many areas such as vision, NLP, robotics

- Deep Learning is extremely popular and topical
- Impressive success in many areas such as vision, NLP, robotics
- Deep Learning is not the necessarily the best way to do ML :-)

- Deep Learning is extremely popular and topical
- Impressive success in many areas such as vision, NLP, robotics
- Deep Learning is not the necessarily the best way to do ML :-)
- Many non-deep learning methods can often perform comparably (sometimes even better)...

- Deep Learning is extremely popular and topical
- Impressive success in many areas such as vision, NLP, robotics
- Deep Learning is not the necessarily the best way to do ML :-)
- Many non-deep learning methods can often perform comparably (sometimes even better)..
 - Decision trees, kernel methods, mixture-of-experts, and others..

- Deep Learning is extremely popular and topical
- Impressive success in many areas such as vision, NLP, robotics
- Deep Learning is not the necessarily the best way to do ML :-)
- Many non-deep learning methods can often perform comparably (sometimes even better)..
 - Decision trees, kernel methods, mixture-of-experts, and others..
- Therefore don't abandon the other methods we have learned in the course :-)

- Deep Learning is extremely popular and topical
- Impressive success in many areas such as vision, NLP, robotics
- Deep Learning is not the necessarily the best way to do ML :-)
- Many non-deep learning methods can often perform comparably (sometimes even better)..
 - Decision trees, kernel methods, mixture-of-experts, and others..
- Therefore don't abandon the other methods we have learned in the course :-)
- We are yet to see other non-deep learning methods that are very valuable

