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Announcements

Please sign-up on Piazza if you haven’t already

I’ll be clearing all the add-drop requests by tomorrow

Maths refresher tutorial on Aug 4, 6:00-7:30pm in RM-101

Will be mostly on the basics of multivariate calculus, linear algebra, prob/stats, optimization (basically
things you are expected to know for this course)
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Some Notation/Nomenclature/Convention

Supervised Learning requires training data given as a set of input-output pairs {(xn, yn)}Nn=1

Unsupervised Learning requires training data given as a set of inputs {xn}Nn=1

Each input xn is (usually) a vector containing the values of the features or attributes or covariates
that encode properties of the data it represents, e.g.,

Representing a 7× 7 image: xn can be a 49× 1 vector of pixel intensities

Note: Good features can also be learned from data (feature learning) or extracted using hand-crafted
rules defined by a domain expert. Having a good set of features is half the battle won!

Each yn is the output or response or label associated with input xn

The output yn can be a scalar, a vector of numbers, or a structured object (more on this later)
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Some Notation/Nomenclature/Convention

Will assume each input xn to be a D × 1 column vector (its transpose x>n will be row vector)

xnd will denote the d-th feature of the n-th input

We will use X (N × D feature matrix) to collectively denote all the N inputs

We will use y (N × 1 output/response/label vector) to collectively denote all the N outputs
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                       Feature Matrix                            Outputs
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Note: If each yn itself is a vector (we will see such cases later) then we will use a matrix Y to
collectively denote all the N outputs (with row n containing yn) and also use boldfaced yn
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Getting Features from Raw Data: A Simple Example

Consider the feature representation for some text data consisting of the following sentences:

John likes to watch movies

Mary likes movies too

John also likes football

Our feature “vocabulary” consists of 8 unique words

Here is the bag-of-words feature vector representation of these 3 sentences

Here the features are binary (presence/absence of each word)

Again, note that this may not necessarily be the best “feature” representation for a given task (which is
why other techniques or feature learning may be needed)
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Types of Features and Types of Outputs

Features (in vector xn) as well as outputs yn can be real-valued, binary, categorical, ordinal, etc.

Real-valued: Pixel intensity, house area, house price, rainfall amount, temperature, etc

Binary: Male/female, adult/non-adult, or any yes/no or present/absent type values

Categorical/Discrete: Pincode, bloodgroup, or any “which one from this finite set” type values

Ordinal: Grade (A/B/C etc.) in a course, or any other type where relative values matters

Often, the features can be of mixed types (some real, some categorical, some ordinal, etc.)

Appropriate handling of different types of features may be very important (even if you algorithm is
designed to “learn” good features, given a set of heterogeneous features)

In Sup. Learning, different types of outputs may require different type of learning models
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Supervised Learning
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Supervised Learning

Supervised Learning comes in many flavors. The flavor depends on the type of each output yn

Regression: yn ∈ R (real-valued scalar)

Multi-Output Regression: yn ∈ RM (real-valued vector containing M outputs)

0.3
  Illustration of a 5-dim output vector 
for a multi-output regression problem

0.1 0.2 0.8 0.4

Binary Classification: yn ∈ {−1,+1} or {0, 1} (output in classification is also called “label”)

Multi-class Classification: yn ∈ {1, 2, . . . ,M} or {0, 1, . . . ,M−1} (one of M classes is correct label)

0 0 0 1 0
Illustration of a 5-dim one-hot label vector 
  for a multi-class classification problem

Multi-label Classification: yn ∈ {−1,+1}M or {0, 1}M (a subset of M labels are correct)

1 0 1 0 0
Illustration of a 5-dim binary label vector 
  for a multi-label classification problem
(unlike one-hot, there can be multiple 1s)

Note: Multi-label classification is also informally called “tagging” (especially in Computer Vision)
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Multi-label Classification: yn ∈ {−1,+1}M or {0, 1}M (a subset of M labels are correct)

1 0 1 0 0
Illustration of a 5-dim binary label vector 
  for a multi-label classification problem
(unlike one-hot, there can be multiple 1s)

Note: Multi-label classification is also informally called “tagging” (especially in Computer Vision)
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Supervised Learning (Contd.)

Structured-Prediction (a.k.a. Structured Output Learning): Each yn is a structured object

One-Class Classification (a.k.a. outlier/anomaly/novelty detection): yn is “1” or “everything else”

        Examples from the class
    being modeled (e.g., animals)

All other examples (“outliers”, 
e.g., humans, vehicles, etc)

Ranking: Each yn is a ranked list of relevant stuff for a given input/query x
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Computing Distances/Similarities

Assuming all real-valued features, an input xn ∈ RD×1 is a point in a D dim. vector space of reals

Standard rules of vector algebra apply on such representations, e.g.,

Euclidean distance b/w two points (say two images or two documents) xn ∈ RD and xm ∈ RD

d(xn, xm) = ||xn − xm|| =
√

(xn − xm)>(xn − xm) =

√√√√ D∑
d=1

(xnd − xmd)2

Inner-product similarity b/w xn and xm (cosine, xn, xm are unit-length vectors)

s(xn, xm) = 〈xn, xm〉 = x>n xm =
D∑

d=1

xndxmd

`1 distance between two points xn and xm

d1(xn, xm) = ||xn − xm||1 =
D∑

d=1

|xnd − xmd |
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Our First (Supervised) Learning Algorithm

(need to know nothing except how to
compute distances/similarities between points!)
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Prototype based Classification

Given: N labeled training examples {xn, yn}Nn=1 from two classes

Assume green is positive and red is negative class

N+ exampes from positive class, N− examples from negative class

Our goal: Learn a model to predict label (class) y for a new test example x

A simple “distance from means” model: predict the class that has a closer mean

Note: The basic idea easily generalizes to more than 2 classes as well
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Prototype based Classification: More Formally

What does the decision rule look like, mathematically ?

The mean of each class is given by

µ− =
1

N−

∑
yn=−1

xn and µ+ =
1

N+

∑
yn=+1

xn

Euclidean Distances from each mean are given by
||µ− − x ||2 = ||µ−||2 + ||x ||2 − 2〈µ−, x〉
||µ+ − x ||2 = ||µ+||2 + ||x ||2 − 2〈µ+, x〉

Decision Rule: If f (x) := ||µ− − x ||2 − ||µ+ − x ||2 > 0 then predict +1, otherwise predict -1
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Prototype based Classification: The Decision Rule

We saw that our decision rule was

f (x) := ||µ− − x ||2 − ||µ+ − x ||2

= 2〈µ+ − µ−, x〉+ ||µ−||2 − ||µ+||2

Imp.: f (x) effectively denotes a hyperplane based classification rule f (x) = w>x + b with the
vector w = µ+ − µ− representing the direction normal to the hyperplane

Imp.: Can show that the rule is equivalent to f (x) =
∑N

n=1 αn〈xn, x〉+ b, where α’s and b can be
estimated from training data (try this as an exercise)

This form of the decision rule is very important. Decision rules for many (in fact most) supervised
learning algorithms can be written like this (weighted sum of similarities with all the training inputs)
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Be Careful when Computing Distances

Euclidean distance d(xn, xm) =
√

(xn − xm)>(xn − xm) may not always be appropriate

Another alternative (still Euclidean-like) can be to use the Mahalanobis distance

dM(xn, xm) =
√

(xn − xm)>M(xn − xm)

Shown below is an illustration of what M =

[
1 0
0 2

]
will do (note: figure not to scale)

Original Space
     “Effective” Space under 
Mahalanobis Transformation

How do I know what’s the right M for my data?Some options

Set it based on some knowledge of what you data looks like

Learn it from data (called Distance Metric Learning1 - a whole reseach area in itself)

Distance Metric Learning is one of the many approaches for feature learning from data

1
Distance Metric Learning. See “A Survey on Metric Learning for Feature Vectors and Structured Data” by Ballet et al
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Prototype based Classification: Some Comments

A very simple supervised learner. Works for any number of classes. Trivial to implement. :-)

This simple approach, if using Euclidean distances, can only learn linear decision boundaries

A reason: The basic approach implicitly assumes that classes are roughly spherical and equi-sized

Several nice improvements/generalizations possible (some of which we will see in coming lectures)

Instead of a point (mean), model classes by prob. distributions (to account for class shapes/sizes)

Instead of Euclidean distances, can use non-Euclidean distances, distance metric learning, or “kernels”

Another limitation: Needs plenty of training data from each class to reliably estimate the means

But with a good feature learner, even ONE (or very few) example per class may be enough (a
state-of-the-art “Few-Shot Learning” model actually uses Prototype based classification)
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Instead of a point (mean), model classes by prob. distributions (to account for class shapes/sizes)

Instead of Euclidean distances, can use non-Euclidean distances, distance metric learning, or “kernels”

Another limitation: Needs plenty of training data from each class to reliably estimate the means

But with a good feature learner, even ONE (or very few) example per class may be enough (a
state-of-the-art “Few-Shot Learning” model actually uses Prototype based classification)
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Another Simple Supervised Learner:
Nearest Neighbors
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Nearest Neighbor

Another classic distance-based supervised learning method

The label y for x ∈ RD will be the label of its nearest neighbor in training data. Also known as
one-nearest-neighbor (1-NN)

Euclidean/Mahalanobis distance can be used to find the nearest neighbor (or can use a learned
distance metric)

We typically use more (K > 1) neighbors in practice

Note: The method is widely applicable - works for both classification and regression problems
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K -Nearest Neighbors (K -NN)

Makes one-nearest-neighbor more robust by using more than one neighbor

Test time simply does a majority vote (or average) of the labels of K closest training inputs

For a test input x , the averaging version of the prediction rule for K -nearest neighbors

y =
1

K

∑
n∈NK (x)

yn

.. where NK (x) is the set of K closest training inputs for x

Above assumes the K neighbors have equal (1/K ) weights. Can also use distance-based weights

Note: The rule works for multi-label classification too where each yn ∈ {0, 1}M is a binary vector

Averaging will give a real-valued “label score vector” y ∈ RM using which we can find the best label(s)
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K -NN for Multi-Label Learning: Pictorial Illustration

Suppose K = 3. The label averaging for a multi-label learning problem will look like

1 0 0 1 0

1 0 1 1 0

1 0 0 0 1

*

*

*

+

+

y = 1 0= 0.33 0.66 0.33

#1 label #2 label#3 label #3 label#4 label

Note that we can use the final y to rank the labels based on the real-valued scores

Can use it to predict the best, best-2, best-3, and so on..

Note: This is why multi-label learning is often used in some ranking problems where we wish to
predict a ranking of the possible labels an input can have
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How to Select K : Cross-Validation

We can use cross-validation to select the “optimal” value of K

Cross-validation - Divide the training data into two parts: actual training set and a validation set

Training 
  Data

  Test 
  Data

(Actual)
Training 
    Set

  Test 
  Data

Validation 
     Set

Never Ever Touch
While Training

Try different values of K and look at the accuracies on the validation set

Note: For each K , we typically try multiple splits of train and validation sets

Select the K that gives the best accuracy on the validation set

Never touch the test set (even if you have access to it) during training to choose the best K

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 21



How to Select K : Cross-Validation

We can use cross-validation to select the “optimal” value of K

Cross-validation - Divide the training data into two parts: actual training set and a validation set

Training 
  Data

  Test 
  Data

(Actual)
Training 
    Set

  Test 
  Data

Validation 
     Set

Never Ever Touch
While Training

Try different values of K and look at the accuracies on the validation set

Note: For each K , we typically try multiple splits of train and validation sets

Select the K that gives the best accuracy on the validation set

Never touch the test set (even if you have access to it) during training to choose the best K

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 21



How to Select K : Cross-Validation

We can use cross-validation to select the “optimal” value of K

Cross-validation - Divide the training data into two parts: actual training set and a validation set

Training 
  Data

  Test 
  Data

(Actual)
Training 
    Set

  Test 
  Data

Validation 
     Set

Never Ever Touch
While Training

Try different values of K and look at the accuracies on the validation set

Note: For each K , we typically try multiple splits of train and validation sets

Select the K that gives the best accuracy on the validation set

Never touch the test set (even if you have access to it) during training to choose the best K

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 21



How to Select K : Cross-Validation

We can use cross-validation to select the “optimal” value of K

Cross-validation - Divide the training data into two parts: actual training set and a validation set

Training 
  Data

  Test 
  Data

(Actual)
Training 
    Set

  Test 
  Data

Validation 
     Set

Never Ever Touch
While Training

Try different values of K and look at the accuracies on the validation set

Note: For each K , we typically try multiple splits of train and validation sets

Select the K that gives the best accuracy on the validation set

Never touch the test set (even if you have access to it) during training to choose the best K

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 21



How to Select K : Cross-Validation

We can use cross-validation to select the “optimal” value of K

Cross-validation - Divide the training data into two parts: actual training set and a validation set

Training 
  Data

  Test 
  Data

(Actual)
Training 
    Set

  Test 
  Data

Validation 
     Set

Never Ever Touch
While Training

Try different values of K and look at the accuracies on the validation set

Note: For each K , we typically try multiple splits of train and validation sets

Select the K that gives the best accuracy on the validation set

Never touch the test set (even if you have access to it) during training to choose the best K

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 21



How to Select K : Cross-Validation

We can use cross-validation to select the “optimal” value of K

Cross-validation - Divide the training data into two parts: actual training set and a validation set

Training 
  Data

  Test 
  Data

(Actual)
Training 
    Set

  Test 
  Data

Validation 
     Set

Never Ever Touch
While Training

Try different values of K and look at the accuracies on the validation set

Note: For each K , we typically try multiple splits of train and validation sets

Select the K that gives the best accuracy on the validation set

Never touch the test set (even if you have access to it) during training to choose the best K

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 21



ε-Ball Nearest Neighbors

Instead of K nearest neighbors, can instead consider an ε-radius ball centered at the test point

x

Ball of radius

Just like selecting K , we can select the optimal ε via cross-validation

Have to be careful to choose ε so as to not get zero neighbors within ε-ball :-)

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 22



Some Aspects about Nearest Neighbor

A simple yet very effective method in practice (if given lots of training data)

Provably has an error-rate that is no worse than twice of the “Bayes optimal” classifier which assumes
knowledge of the true data distribution for each class

Also called a memory-based or instance-based or non-parametric method

No “model” is learned here. Prediction step uses all the training data

Requires lots of storage (need to keep all the training data at test time)

Predction can be slow at test time

For each test point, need to compute its distance from all the training points

Clever data-structures or data-summarization techniques can provide speed-ups

Need to be careful in choosing the distance function to compute distances (especially when the
data dimension D is very large)

The 1-NN can suffer if data contains outliers (we will soon see a geometric illustration), or if
amount of training data is small. Using more neighbors (K > 1) is usually more robust
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Geometry of 1-NN

1-NN induces a Voronoi tessellation of the input space
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The Decision Boundary of 1-NN (for binary classification)

The decision boundary is composed of hyperplanes that form perpendicular bisectors of pairs of
points from different classes

Pic credit: Victor Lavrenko

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 25



Effect of Outliers on 1-NN

How the decision boundary can drastically change when the data contains some outliers

Pic credit: Victor Lavrenko
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Effect of Varying K

Larger K leads to smoother decision boundaries

Too small K (e.g., K = 1) can lead to overfitting, too large K can lead to underfitting

Pic credit: Chris Bishop (PRML)

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 27



Effect of Varying K

Larger K leads to smoother decision boundaries

Too small K (e.g., K = 1) can lead to overfitting, too large K can lead to underfitting

Pic credit: Chris Bishop (PRML)

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 27



Effect of Varying K

Larger K leads to smoother decision boundaries

Too small K (e.g., K = 1) can lead to overfitting, too large K can lead to underfitting

Pic credit: Chris Bishop (PRML)

Intro to Machine Learning (CS771A) Warming-up to ML, and Some Simple Supervised Learners 27



K -NN Behavior for Regression

Pic credit: Victor Lavrenko
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K -NN Behavior for Regression

Pic credit: Alex Smola and Vishy Vishwanathan
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Summary

Looked at two distance-based methods for classification/regression

A “Distance from Means” Method

Nearest Neighbors Method

Both are essentially “local” methods (look at local neighborhood of the test point)

Both are simple to understand and only require knowledge of basic geometry

Have connections to other more advanced methods (as we will see)

Need to be careful when computing the distances (learned Mahalanobis distance metrics, or
“learned features” + Euclidean distance can often do wonders!)
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