Dimensionality Reduction (Wrap-up)

Piyush Rai

Introduction to Machine Learning (CS771A)

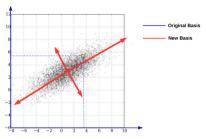
October 11, 2018

Plan for Today

- PCA: The classical view
- Singular Value Decomposition
- A simple technique to compute eigenvectors (Power Iteration)
- Supervised Dimensionality Reduction
- Dimensionality Reduction from Pairwise Distances
- Nonlinear Dimensionality Reduction

Principal Component Analysis: The Key Idea

• We can change the basis in which we represent the data (and get a new co-ordinate system)



- If, in the new basis, data has low variance along some dimension, we can ignore those
 - Above picture: Can represent each point using just the first co-ordinate (very little information loss)
 - This helps in reducing dimensionalty: From $\mathbf{x} = [x_1, x_2]$ to $\mathbf{z} = [z_1, \mathbf{x}]$ (i.e., 2D to 1D)
- PCA finds a new basis such that information loss is minimum if we only keep some dimensions

Basis Represention of Data

ullet Representing a data point $m{x}_n = [x_{n1}, \dots, x_{nD}]^{\top}$ in the standard orthonormal basis $\{m{e}_1, \dots, m{e}_D\}$

$$\boldsymbol{x}_n = \sum_{d=1}^D x_{nd} \boldsymbol{e}_d$$

.. where \boldsymbol{e}_d is $D \times 1$ vector with all 0s and 1 at d-th entry (also $\boldsymbol{e}_d^{\top} \boldsymbol{e}_d = 1$, $\boldsymbol{e}_d^{\top} \boldsymbol{e}_{d'} = 0$, $d \neq d'$).

ullet Suppose we represent the same data point in a new orthonormal basis $\{oldsymbol{u}_1,\ldots,oldsymbol{u}_D\}$

$$\boldsymbol{x}_n = \sum_{d=1}^D z_{nd} \boldsymbol{u}_d$$

where the new co-ordinates for \boldsymbol{x}_n are $\boldsymbol{z}_n = [z_{n1}, \dots, z_{nD}]$

ullet Note that each new co-ordinate z_{dn} is a projection of $oldsymbol{x}_n$ along direction $oldsymbol{u}_d$

$$z_{nd} = \boldsymbol{x}_n^{\top} \boldsymbol{u}_d = \boldsymbol{u}_d^{\top} \boldsymbol{x}_n$$
 (verify)

Keeping Only Few Directions..

- ullet So we saw that we can represent data in a new vector space as $oldsymbol{x}_n = \sum_{d=1}^D z_{nd} oldsymbol{u}_d$
- We can ignore the directions along which the projection z_{nd} is small, and approximate x_n as

$$\mathbf{x}_n \approx \hat{\mathbf{x}}_n = \sum_{d=1}^K z_{nd} \mathbf{u}_d = \sum_{d=1}^K (\mathbf{x}_n^\top \mathbf{u}_d) \mathbf{u}_d = \sum_{d=1}^K (\mathbf{u}_d \mathbf{u}_d^\top) \mathbf{x}_n$$

ullet Now we have a K < D dimensional representation $oldsymbol{z}_n = [z_{n1}, \dots, z_{nK}]$

$$\boldsymbol{z}_n = \boldsymbol{\mathsf{U}}_K^{ op} \boldsymbol{x}_n$$
 (verify)

where $\mathbf{U}_K = [\mathbf{u}_1, \dots, \mathbf{u}_K]$ is the $D \times K$ "projection matrix"

- ullet The reconstruction error of this approximation is $||m{x}_n \hat{m{x}}_n||^2 = ||m{x}_n \sum_{d=1}^K (m{u}_d m{u}_d^{ op}) m{x}_n||^2$
- How to choose K directions u_1, \ldots, u_k such that this reconstruction error is minimum?

Directions that Minimize Reconstruction Error..

- Assume **S** is the $D \times D$ cov. matrix: $\mathbf{S} = \frac{1}{N} \mathbf{X}_n \mathbf{X}_n^\top = \frac{1}{N} \mathbf{X}^\top \mathbf{X}$ (assuming already centered data)
- The reconstruction error for the entire data is given by

$$\mathcal{L}(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_K) = \sum_{n=1}^N ||\boldsymbol{x}_n - \hat{\boldsymbol{x}}_n||^2 = \sum_{n=1}^N ||\boldsymbol{x}_n - \sum_{d=1}^K (\boldsymbol{u}_d \boldsymbol{u}_d^\top) \boldsymbol{x}_n||^2 = C - \sum_{d=1}^K \boldsymbol{u}_d^\top \mathbf{S} \boldsymbol{u}_d \quad \text{(verify)}$$

.. where C is a constant that does not depend on $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_K$

- Note: $u_d^{\mathsf{T}} \mathsf{S} u_d$ is also the variance the data when projected along direction u_d (exercise)
- ullet Finding each the optimal direction $oldsymbol{u}_d$ requires solving

$$\arg\min_{\boldsymbol{u}_d} \mathcal{L}(\boldsymbol{u}_1,\dots,\boldsymbol{u}_K) = \arg\max_{\boldsymbol{u}_d} \quad \boldsymbol{u}_d^\top \mathbf{S} \boldsymbol{u}_d \qquad \text{s.t. } \boldsymbol{u}_d^\top \boldsymbol{u}_d = 1$$

ullet Thus minimizing recon. error w.r.t. $oldsymbol{u}_d$ equivalent to maximizing the variance of data along $oldsymbol{u}_d$

Direction of Maximum Variance

- ullet The objective function: $rg \max_{m{u}_d} m{u}_d^{ op} \mathbf{S} m{u}_d + \lambda_d (1 m{u}_d^{ op} m{u}_d)$
- Taking the derivative w.r.t. u_d and setting to zero gives

$$\mathbf{S} \mathbf{u}_d = \lambda_d \mathbf{u}_d$$

- Thus \boldsymbol{u}_d is an eigenvector of **S** (with corresponding eigenvalue λ_d)
- But which of **S**'s (D possible) eigenvectors it is?
- Note that since $\boldsymbol{u}_d^{\top}\boldsymbol{u}_d=1$, the variance of projected data is

$$oldsymbol{u}_d^{ op} \mathbf{S} oldsymbol{u}_d = \lambda_d$$

- ullet Thus the variance is maximized when $oldsymbol{u}_d$ is the (top) eigenvector with largest eigenvalue λ_1
- \bullet We denote the top eigenvector as u_1 and it called the first Principal Component (PC)
- Other directions can also be found likewise (with each being orthogonal to all previous ones) using the eigendecomposition of **S**(this is basically the PCA algorithm)

Principal Component Analysis

- ullet Center the data (subtract the mean $\mu = \frac{1}{N} \sum_{n=1}^N oldsymbol{x}_n$ from each data point)
- Compute the covariance matrix **S** using the centered data as

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X}$$
 (note: **X** assumed $D \times N$ here)

- Do an eigendecomposition of the covariance matrix **S** (many methods exist)
- ullet Take top K leading eigenvectors $\{m{u}_k\}_{k=1}^K$ with largest eigenvalues $\{\lambda_k\}_{k=1}^K$
- ullet The K-dimensional projection/embedding of the $N \times D$ data matrix old X is given by

$$Z = XU_K$$

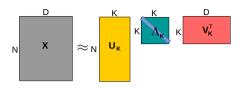
where $\mathbf{U}_K = [\mathbf{u}_1 \ \dots \ \mathbf{u}_K]$ is $D \times K$ and embedding matrix \mathbf{Z} is $N \times K$

Singular Value Decomposition (SVD)



- We can represent any matrix **X** of size $N \times D$ using SVD as $\mathbf{X} = \mathbf{U} \wedge \mathbf{V}^{\top} = \sum_{k=1}^{\min(N,D)} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^{\top}$
- $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_N]$ is $N \times N$, each $\mathbf{u}_n \in \mathbb{R}^N$ a left singular vector of \mathbf{X}
 - **U** is orthonormal: $\boldsymbol{u}_n^{\top}\boldsymbol{u}_{n'}=0$ for $n\neq n'$, and $\boldsymbol{u}_n^{\top}\boldsymbol{u}_n=1\Rightarrow \mathbf{U}\mathbf{U}^{\top}=\mathbf{I}_N$
- Λ is $N \times D$ with only min(N, D) diagonal entries singular values
- $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_D]$ is $D \times D$, each $\mathbf{v}_d \in \mathbb{R}^D$, a right singular vector of \mathbf{X}
 - ullet V is orthonormal: $oldsymbol{v}_d^ op oldsymbol{v}_{d'} = 0$ for d
 eq d', and $oldsymbol{v}_d^ op oldsymbol{v}_d = 1 \Rightarrow oldsymbol{V}oldsymbol{V}^ op = oldsymbol{I}_D$
- ullet Note: If old X is symmetric then it is known as eigenvalue decomposition (and old U = old V in that case)

Low-Rank Approximation via SVD



• Rank-K approximation of **X** (where $K \ll \min(N, D)$) using K largest in magnitude λ_k 's as

$$\mathbf{X} pprox \hat{\mathbf{X}} = \sum_{k=1}^K \lambda_k \mathbf{u}_k \mathbf{v}_k^{\top} = \mathbf{U}_K \Lambda_K \mathbf{V}_K^{\top}$$

- The above SVD approximation can be shown to minimize the reconstruction error
 - Fact: SVD gives the best rank-K approximation of a matrix
- PCA basically does SVD on the covariance matrix S (singular vectors = eigenvectors)
 - Since **S** is symmetric. **U** = **V**

Computing Eigenvectors: Power Method

- Computing eigenvectors is expensive in general ($O(D^3)$ for finding D eigenvectors)
- For naïve methods, even to get one eigenvector, we need to perform full eigendecomposition
- If we want K < D eigenvectors, there are some more efficient methods
- Power Method is one such approach: Sequentially finds the top K eigenvectors of a cov matrix

$$\mathbf{S} = \sum_{k=1}^{D} \lambda_k \boldsymbol{u}_k \boldsymbol{u}_k^{ op}$$

- The overall cost for this method is $O(KD^2)$
- Based on the fact that for any vector $\mathbf{x} = \sum_{k=1}^{D} z_k \mathbf{u}_k$

$$\mathbf{S}\mathbf{x} = \sum_{k=1}^{D} z_k \lambda_k \mathbf{u}_k, \quad \text{and} \quad \underbrace{(\mathbf{SS}...,\mathbf{S})}_{M \text{ times}} \mathbf{x} = \sum_{k=1}^{D} z_k \lambda_k^M \mathbf{u}_k$$

Computing Eigenvectors: Power Method

So we saw that we have

$$\underbrace{(\mathbf{SS}...,\mathbf{S})}_{M \text{ times}} \mathbf{x} = \sum_{k=1}^{D} z_k \lambda_k^M \mathbf{u}_k$$

• Assuming $\lambda_1 > \lambda_2 \geq \lambda_3 \dots$ then for large M

$$\underbrace{(\mathsf{SS}\ldots,\mathsf{S})}_{M \text{ times}} \boldsymbol{x} \approx z_1 \lambda_1^M \boldsymbol{u}_1$$

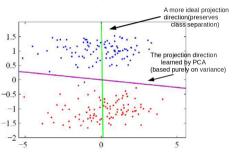
- This gives us a simple algorithm to get the top eigenvector
 - Initialize $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_D)$
 - For $m=1,\ldots,M$, compute x_m as $x_m=\mathbf{S}x_{m-1}$ and normalize it as $x_m=x_m/||x_m||_2$
 - After convergence, x_M is the largest eigenvector and $||Sx_M||$ is the largest eigenvalue
- The main dominant cost is computing $\mathbf{S} \mathbf{x}_{m-1}$ which is $O(D^2)$.

Power Method for All of Top-K Eigenvectors?

- Can use Power Method with a "peeling" techique to get all the top K eigenvectors
- The basic procedure would be
 - Initialize $S^{(0)} = S$
 - For k = 1, ..., K

• Each power iteration is $O(D^2)$, overall cost for getting K eigenvectors is $O(KD^2)$

• Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve class separation, e.g., when doing classification)



- A better option would be to project such that
 - Points within the same class are close (low intra-class variance)
 - Points from different classes are well separated (the class means are far apart)

- Many techniques. A simple yet popular one is Fisher discriminant analysis
- For simplicity, assume two classes (can be generalized for more than 2 classes too)
- ullet Suppose a projection direction $oldsymbol{u}$. After projection the means of the two classes are

$$\mu_1 = \frac{1}{N_1} \sum_{n: y_n = 1} \boldsymbol{u}^{\top} \boldsymbol{x}_n, \quad \mu_2 = \frac{1}{N_2} \sum_{n: y_n = 2} \boldsymbol{u}^{\top} \boldsymbol{x}_n$$

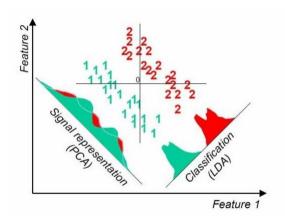
• Total variance will be $s_1^2 + s_2^2$ where

$$s_1^2 = \frac{1}{N_1} \sum_{n: y_n = 1} (\boldsymbol{u}^{\top} \boldsymbol{x}_n - \mu_1)^2, \quad s_2^2 = \frac{1}{N_2} \sum_{n: y_n = 2} (\boldsymbol{u}^{\top} \boldsymbol{x}_n - \mu_2)^2$$

• Fisher discriminant analysis finds the optimal projection direction as

$$\arg\max_{\pmb{u}} \frac{(\mu_1 - \mu_2)^2}{s_1^2 + s_2^2}$$

ullet Solution for $oldsymbol{u}$ depends on eigendecomposition of within class and between class covariance matrices



Can be generalized for projections to more than 1 dimensional space

Dimensionality Reduction given Pairwise Distances between Points

Dimensionality Reduction by Preserving Pairwise Distances

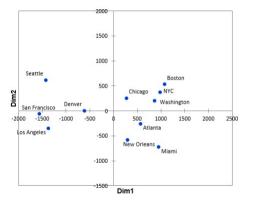
- PPCA/PCA/SVD etc assume we are given points x_1, \ldots, x_N as vectors (e.g., in D dim)
- However often the data is given in form of distances d_{ij} for i = 1, ..., N, j = 1, ..., N
- Can't apply PPCA/PCA/SVD etc for such data
- In these cases, we want to project the data such that pairwise distances are preserved

$$\hat{\mathbf{Z}} = rg \min_{\mathbf{Z}} \mathcal{L}(\mathbf{Z}) = rg \min_{\mathbf{Z}} \sum_{i,i=1}^{N} (d_{ij} - ||\mathbf{z}_i - \mathbf{z}_j||)^2$$

- If d_{ij} is large/small then we want $||z_i z_j||$ to be large/small
- Multi-dimensional Scaling (MDS) is one such algorithm
- Can show show that preserving <u>all</u> pairwise <u>Euclidean</u> distances = doing PCA :-)
- Important: Often it is better to only preserve distances between nearest neighbors (helps in learning nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Multi-dimensional Scaling: An Illustration

Result of applying MDS (with K=2) on pairwise distances between some US cities

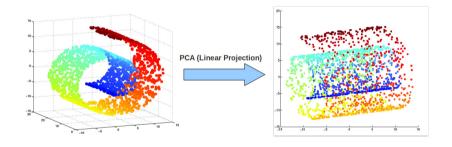


MDS produces a 2D embedding such that geographically close cities are also close in embedding space.

Nonlinear Dimensionality Reduction

Beyond Linear Projections...

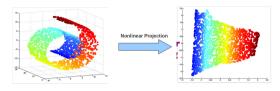
• Consider the swiss-roll dataset (points lying close to a manifold)



• Linear projection methods (e.g., PCA) can't capture intrinsic nonlinearities

Nonlinear Dimensionality Reduction

• We want to a learn nonlinear low-dim projection



- Some ways of doing this
 - Nonlinearize a linear dimensionality reduction method. E.g.:
 - Mixture of linear dim-red models like mixture of PPCA (already seen)
 - Kernel PCA (nonlinear PCA)
 - Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,
 - Locally Linear Embedding (LLE), Isomap
 - Maximum Variance Unfolding
 - Laplacian Eigenmap, and others such as SNE/tSNE, etc.
 - .. or use unsupervised deep learning techniques (later)
 - Today, we will briefly look at KPCA, LLE, SNE/tSNE

Kernel PCA

• Recall PCA: Given N observations $\{x_1, \dots, x_N\}$, $\forall x_n \in \mathbb{R}^D$, we define the $D \times D$ covariance matrix (assuming centered data $\sum_n x_n = 0$)

$$\mathbf{S} = rac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{ op}$$

- PCA computes eigenvectors \mathbf{u}_i which satisfy $\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i \ \forall i = 1, \dots, D$
- Let's assume a kernel k with associated M dimensional nonlinear map ϕ
- $M \times M$ covariance matrix in this space (assume centered data $\sum_{n} \phi(\mathbf{x}_{n}) = \mathbf{0}$)

$$\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^{\top}$$

- Kernel PCA: Compute eigenvectors \mathbf{v}_i satisfying: $\mathbf{C}\mathbf{v}_i = \lambda_i \mathbf{v}_i \ \forall i = 1, \dots, M$
- We would like to do this without having to compute **C** or $\phi(x_n)$'s (note: M can be very large)
- This boils down to doing eigendecomposition of the $N \times N$ kernel matrix **K** (PRML 12.3)

Locally Linear Embedding (LLE)

- Basic idea: If two points are local neighbors in the original space then they should be local neighbors in the projected space too
- Given data x_1, \ldots, x_N , LLE is typically formulated as

$$\hat{\mathbf{W}} = \arg\min_{\mathbf{W}} \sum_{i=1}^{N} ||\mathbf{x}_i - \sum_{j \in \mathcal{N}(i)} W_{ij} \mathbf{x}_j||^2$$

where $\mathcal{N}(i)$ denotes the set of nearest (say K) neighbors of \mathbf{x}_i in the original D-dim space

• LLE learns z_n, \ldots, z_N such that the same neighborhood structure exists in low-dim space too

$$\hat{\mathbf{Z}} = rg \min_{\mathbf{Z}} \sum_{i=1}^{N} ||\mathbf{z}_i - \sum_{j \in \mathcal{N}(i)} W_{ij} \mathbf{z}_j||^2$$

• Basically, if point i can be reconstructed from its neighbors in the original space, the same weights W_{ij} should be able to reconstruct it in the new space too.

SNE and t-SNE

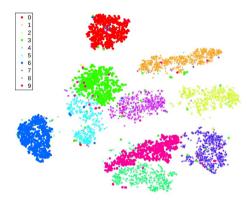
- Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)
- SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)
- Uses the idea of preserving probabilistically defined neighborhoods
- SNE, for each point *i*, define the probability of point *j* being its neighbor as

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma^2)} \qquad q_{j|i} = \frac{\exp(-||z_i - z_j||^2/2\sigma^2)}{\sum_{k \neq i} \exp(-||z_i - z_k||^2/2\sigma^2)}$$

- The p's denotes probabilities in original space, the q's denote prob. in embedded space
- SNE learns z_i 's such that distribution P and Q is as close as possible by minimizing KL(P||Q)
- t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE
 - Learns z_i's by minimizing symmetric KL divergence
 - ullet Uses Student t distribution instead of Gaussian for defining $q_{j|i}$

SNE and t-SNE

Especially useful for visualizing data by projecting into 2D or 3D



Result of visualizing MNIST digits data in 2D (Figure from van der Maaten and Hinton, 2008)