
Dimensionality Reduction (Wrap-up)

Piyush Rai

Introduction to Machine Learning (CS771A)

October 11, 2018

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 1

Plan for Today

PCA: The classical view

Singular Value Decomposition

A simple technique to compute eigenvectors (Power Iteration)

Supervised Dimensionality Reduction

Dimensionality Reduction from Pairwise Distances

Nonlinear Dimensionality Reduction

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 2

Principal Component Analysis: The Key Idea

We can change the basis in which we represent the data (and get a new co-ordinate system)

Original Basis

New Basis

If, in the new basis, data has low variance along some dimension, we can ignore those

Above picture: Can represent each point using just the first co-ordinate (very little information loss)

This helps in reducing dimensionalty: From x = [x1, x2] to z = [z1,�Zz2] (i.e., 2D to 1D)

PCA finds a new basis such that information loss is minimum if we only keep some dimensions

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 3

Principal Component Analysis: The Key Idea

We can change the basis in which we represent the data (and get a new co-ordinate system)

Original Basis

New Basis

If, in the new basis, data has low variance along some dimension, we can ignore those

Above picture: Can represent each point using just the first co-ordinate (very little information loss)

This helps in reducing dimensionalty: From x = [x1, x2] to z = [z1,�Zz2] (i.e., 2D to 1D)

PCA finds a new basis such that information loss is minimum if we only keep some dimensions

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 3

Principal Component Analysis: The Key Idea

We can change the basis in which we represent the data (and get a new co-ordinate system)

Original Basis

New Basis

If, in the new basis, data has low variance along some dimension, we can ignore those

Above picture: Can represent each point using just the first co-ordinate (very little information loss)

This helps in reducing dimensionalty: From x = [x1, x2] to z = [z1,�Zz2] (i.e., 2D to 1D)

PCA finds a new basis such that information loss is minimum if we only keep some dimensions

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 3

Principal Component Analysis: The Key Idea

We can change the basis in which we represent the data (and get a new co-ordinate system)

Original Basis

New Basis

If, in the new basis, data has low variance along some dimension, we can ignore those

Above picture: Can represent each point using just the first co-ordinate (very little information loss)

This helps in reducing dimensionalty: From x = [x1, x2] to z = [z1,�Zz2] (i.e., 2D to 1D)

PCA finds a new basis such that information loss is minimum if we only keep some dimensions

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 3

Principal Component Analysis: The Key Idea

We can change the basis in which we represent the data (and get a new co-ordinate system)

Original Basis

New Basis

If, in the new basis, data has low variance along some dimension, we can ignore those

Above picture: Can represent each point using just the first co-ordinate (very little information loss)

This helps in reducing dimensionalty: From x = [x1, x2] to z = [z1,�Zz2] (i.e., 2D to 1D)

PCA finds a new basis such that information loss is minimum if we only keep some dimensions

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 3

Basis Represention of Data

Representing a data point xn = [xn1, . . . , xnD]> in the standard orthonormal basis {e1, . . . , eD}

xn =
D∑

d=1

xnded

.. where ed is D × 1 vector with all 0s and 1 at d-th entry

(also e>d ed = 1, e>d ed′ = 0, d 6= d ′).

Suppose we represent the same data point in a new orthonormal basis {u1, . . . ,uD}

xn =
D∑

d=1

zndud

where the new co-ordinates for xn are zn = [zn1, . . . , znD]

Note that each new co-ordinate zdn is a projection of xn along direction ud

znd = x>n ud = u>d xn (verify)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 4

Basis Represention of Data

Representing a data point xn = [xn1, . . . , xnD]> in the standard orthonormal basis {e1, . . . , eD}

xn =
D∑

d=1

xnded

.. where ed is D × 1 vector with all 0s and 1 at d-th entry (also e>d ed = 1, e>d ed′ = 0, d 6= d ′).

Suppose we represent the same data point in a new orthonormal basis {u1, . . . ,uD}

xn =
D∑

d=1

zndud

where the new co-ordinates for xn are zn = [zn1, . . . , znD]

Note that each new co-ordinate zdn is a projection of xn along direction ud

znd = x>n ud = u>d xn (verify)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 4

Basis Represention of Data

Representing a data point xn = [xn1, . . . , xnD]> in the standard orthonormal basis {e1, . . . , eD}

xn =
D∑

d=1

xnded

.. where ed is D × 1 vector with all 0s and 1 at d-th entry (also e>d ed = 1, e>d ed′ = 0, d 6= d ′).

Suppose we represent the same data point in a new orthonormal basis {u1, . . . ,uD}

xn =
D∑

d=1

zndud

where the new co-ordinates for xn are zn = [zn1, . . . , znD]

Note that each new co-ordinate zdn is a projection of xn along direction ud

znd = x>n ud = u>d xn (verify)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 4

Basis Represention of Data

Representing a data point xn = [xn1, . . . , xnD]> in the standard orthonormal basis {e1, . . . , eD}

xn =
D∑

d=1

xnded

.. where ed is D × 1 vector with all 0s and 1 at d-th entry (also e>d ed = 1, e>d ed′ = 0, d 6= d ′).

Suppose we represent the same data point in a new orthonormal basis {u1, . . . ,uD}

xn =
D∑

d=1

zndud

where the new co-ordinates for xn are zn = [zn1, . . . , znD]

Note that each new co-ordinate zdn is a projection of xn along direction ud

znd = x>n ud = u>d xn (verify)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 4

Basis Represention of Data

Representing a data point xn = [xn1, . . . , xnD]> in the standard orthonormal basis {e1, . . . , eD}

xn =
D∑

d=1

xnded

.. where ed is D × 1 vector with all 0s and 1 at d-th entry (also e>d ed = 1, e>d ed′ = 0, d 6= d ′).

Suppose we represent the same data point in a new orthonormal basis {u1, . . . ,uD}

xn =
D∑

d=1

zndud

where the new co-ordinates for xn are zn = [zn1, . . . , znD]

Note that each new co-ordinate zdn is a projection of xn along direction ud

znd = x>n ud = u>d xn (verify)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 4

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n

=
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud

=
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud

=
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Keeping Only Few Directions..

So we saw that we can represent data in a new vector space as xn =
∑D

d=1 zndud

We can ignore the directions along which the projection znd is small, and approximate xn as

xn ≈ x̂n =
K∑

d=1

zndud =
K∑

d=1

(x>n ud)ud =
K∑

d=1

(udu>d)xn

Now we have a K < D dimensional representation zn = [zn1, . . . , znK]

zn = U>K xn (verify)

where UK = [u1, . . . ,uK] is the D × K “projection matrix”

The reconstruction error of this approximation is ||xn − x̂n||2 = ||xn −
∑K

d=1(udu>d)xn||2

How to choose K directions u1, . . . ,uk such that this reconstruction error is minimum?

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 5

Directions that Minimize Reconstruction Error..

Assume S is the D × D cov. matrix: S = 1
N xnx>n = 1

NX
>X (assuming already centered data)

The reconstruction error for the entire data is given by

L(u1, . . . ,uK) =
N∑

n=1

||xn − x̂n||2 =
N∑

n=1

||xn −
K∑

d=1

(udu>d)xn||2 = C −
K∑

d=1

u>d Sud (verify)

.. where C is a constant that does not depend on u1, . . . ,uK

Note: u>d Sud is also the variance the data when projected along direction ud (exercise)

Finding each the optimal direction ud requires solving

arg min
ud

L(u1, . . . ,uK) = arg max
ud

u>d Sud s.t. u>d ud = 1

Thus minimizing recon. error w.r.t. ud equivalent to maximizing the variance of data along ud

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 6

Directions that Minimize Reconstruction Error..

Assume S is the D × D cov. matrix: S = 1
N xnx>n = 1

NX
>X (assuming already centered data)

The reconstruction error for the entire data is given by

L(u1, . . . ,uK) =
N∑

n=1

||xn − x̂n||2

=
N∑

n=1

||xn −
K∑

d=1

(udu>d)xn||2 = C −
K∑

d=1

u>d Sud (verify)

.. where C is a constant that does not depend on u1, . . . ,uK

Note: u>d Sud is also the variance the data when projected along direction ud (exercise)

Finding each the optimal direction ud requires solving

arg min
ud

L(u1, . . . ,uK) = arg max
ud

u>d Sud s.t. u>d ud = 1

Thus minimizing recon. error w.r.t. ud equivalent to maximizing the variance of data along ud

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 6

Directions that Minimize Reconstruction Error..

Assume S is the D × D cov. matrix: S = 1
N xnx>n = 1

NX
>X (assuming already centered data)

The reconstruction error for the entire data is given by

L(u1, . . . ,uK) =
N∑

n=1

||xn − x̂n||2 =
N∑

n=1

||xn −
K∑

d=1

(udu>d)xn||2

= C −
K∑

d=1

u>d Sud (verify)

.. where C is a constant that does not depend on u1, . . . ,uK

Note: u>d Sud is also the variance the data when projected along direction ud (exercise)

Finding each the optimal direction ud requires solving

arg min
ud

L(u1, . . . ,uK) = arg max
ud

u>d Sud s.t. u>d ud = 1

Thus minimizing recon. error w.r.t. ud equivalent to maximizing the variance of data along ud

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 6

Directions that Minimize Reconstruction Error..

Assume S is the D × D cov. matrix: S = 1
N xnx>n = 1

NX
>X (assuming already centered data)

The reconstruction error for the entire data is given by

L(u1, . . . ,uK) =
N∑

n=1

||xn − x̂n||2 =
N∑

n=1

||xn −
K∑

d=1

(udu>d)xn||2 = C −
K∑

d=1

u>d Sud (verify)

.. where C is a constant that does not depend on u1, . . . ,uK

Note: u>d Sud is also the variance the data when projected along direction ud (exercise)

Finding each the optimal direction ud requires solving

arg min
ud

L(u1, . . . ,uK) = arg max
ud

u>d Sud s.t. u>d ud = 1

Thus minimizing recon. error w.r.t. ud equivalent to maximizing the variance of data along ud

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 6

Directions that Minimize Reconstruction Error..

Assume S is the D × D cov. matrix: S = 1
N xnx>n = 1

NX
>X (assuming already centered data)

The reconstruction error for the entire data is given by

L(u1, . . . ,uK) =
N∑

n=1

||xn − x̂n||2 =
N∑

n=1

||xn −
K∑

d=1

(udu>d)xn||2 = C −
K∑

d=1

u>d Sud (verify)

.. where C is a constant that does not depend on u1, . . . ,uK

Note: u>d Sud is also the variance the data when projected along direction ud (exercise)

Finding each the optimal direction ud requires solving

arg min
ud

L(u1, . . . ,uK) = arg max
ud

u>d Sud s.t. u>d ud = 1

Thus minimizing recon. error w.r.t. ud equivalent to maximizing the variance of data along ud

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 6

Directions that Minimize Reconstruction Error..

Assume S is the D × D cov. matrix: S = 1
N xnx>n = 1

NX
>X (assuming already centered data)

The reconstruction error for the entire data is given by

L(u1, . . . ,uK) =
N∑

n=1

||xn − x̂n||2 =
N∑

n=1

||xn −
K∑

d=1

(udu>d)xn||2 = C −
K∑

d=1

u>d Sud (verify)

.. where C is a constant that does not depend on u1, . . . ,uK

Note: u>d Sud is also the variance the data when projected along direction ud (exercise)

Finding each the optimal direction ud requires solving

arg min
ud

L(u1, . . . ,uK) = arg max
ud

u>d Sud s.t. u>d ud = 1

Thus minimizing recon. error w.r.t. ud equivalent to maximizing the variance of data along ud

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 6

Directions that Minimize Reconstruction Error..

Assume S is the D × D cov. matrix: S = 1
N xnx>n = 1

NX
>X (assuming already centered data)

The reconstruction error for the entire data is given by

L(u1, . . . ,uK) =
N∑

n=1

||xn − x̂n||2 =
N∑

n=1

||xn −
K∑

d=1

(udu>d)xn||2 = C −
K∑

d=1

u>d Sud (verify)

.. where C is a constant that does not depend on u1, . . . ,uK

Note: u>d Sud is also the variance the data when projected along direction ud (exercise)

Finding each the optimal direction ud requires solving

arg min
ud

L(u1, . . . ,uK) = arg max
ud

u>d Sud s.t. u>d ud = 1

Thus minimizing recon. error w.r.t. ud equivalent to maximizing the variance of data along ud

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 6

Directions that Minimize Reconstruction Error..

Assume S is the D × D cov. matrix: S = 1
N xnx>n = 1

NX
>X (assuming already centered data)

The reconstruction error for the entire data is given by

L(u1, . . . ,uK) =
N∑

n=1

||xn − x̂n||2 =
N∑

n=1

||xn −
K∑

d=1

(udu>d)xn||2 = C −
K∑

d=1

u>d Sud (verify)

.. where C is a constant that does not depend on u1, . . . ,uK

Note: u>d Sud is also the variance the data when projected along direction ud (exercise)

Finding each the optimal direction ud requires solving

arg min
ud

L(u1, . . . ,uK) = arg max
ud

u>d Sud s.t. u>d ud = 1

Thus minimizing recon. error w.r.t. ud equivalent to maximizing the variance of data along ud

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 6

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S

(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Direction of Maximum Variance

The objective function: arg maxud
u>d Sud + λd(1− u>d ud)

Taking the derivative w.r.t. ud and setting to zero gives

Sud = λdud

Thus ud is an eigenvector of S (with corresponding eigenvalue λd)

But which of S’s (D possible) eigenvectors it is?

Note that since u>d ud = 1, the variance of projected data is

u>d Sud = λd

Thus the variance is maximized when ud is the (top) eigenvector with largest eigenvalue λ1

We denote the top eigenvector as u1 and it called the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S(this is basically the PCA algorithm)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 7

Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
X>X (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S (many methods exist)

Take top K leading eigenvectors {uk}Kk=1 with largest eigenvalues {λk}Kk=1

The K -dimensional projection/embedding of the N × D data matrix X is given by

Z = XUK

where UK = [u1 . . . uK] is D × K and embedding matrix Z is N × K

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 8

Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
X>X (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S (many methods exist)

Take top K leading eigenvectors {uk}Kk=1 with largest eigenvalues {λk}Kk=1

The K -dimensional projection/embedding of the N × D data matrix X is given by

Z = XUK

where UK = [u1 . . . uK] is D × K and embedding matrix Z is N × K

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 8

Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
X>X (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S (many methods exist)

Take top K leading eigenvectors {uk}Kk=1 with largest eigenvalues {λk}Kk=1

The K -dimensional projection/embedding of the N × D data matrix X is given by

Z = XUK

where UK = [u1 . . . uK] is D × K and embedding matrix Z is N × K

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 8

Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
X>X (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S (many methods exist)

Take top K leading eigenvectors {uk}Kk=1 with largest eigenvalues {λk}Kk=1

The K -dimensional projection/embedding of the N × D data matrix X is given by

Z = XUK

where UK = [u1 . . . uK] is D × K and embedding matrix Z is N × K

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 8

Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
X>X (note: X assumed D × N here)

Do an eigendecomposition of the covariance matrix S (many methods exist)

Take top K leading eigenvectors {uk}Kk=1 with largest eigenvalues {λk}Kk=1

The K -dimensional projection/embedding of the N × D data matrix X is given by

Z = XUK

where UK = [u1 . . . uK] is D × K and embedding matrix Z is N × K

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 8

Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV>

=
∑min(N,D)

k=1 λkukv>k

U = [u1, . . . ,uN] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries - singular values

V = [v 1, . . . , vD] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 9

Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV> =
∑min(N,D)

k=1 λkukv>k

U = [u1, . . . ,uN] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries - singular values

V = [v 1, . . . , vD] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 9

Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV> =
∑min(N,D)

k=1 λkukv>k

U = [u1, . . . ,uN] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries - singular values

V = [v 1, . . . , vD] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 9

Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV> =
∑min(N,D)

k=1 λkukv>k

U = [u1, . . . ,uN] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries - singular values

V = [v 1, . . . , vD] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 9

Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV> =
∑min(N,D)

k=1 λkukv>k

U = [u1, . . . ,uN] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries - singular values

V = [v 1, . . . , vD] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 9

Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV> =
∑min(N,D)

k=1 λkukv>k

U = [u1, . . . ,uN] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries - singular values

V = [v 1, . . . , vD] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 9

Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV> =
∑min(N,D)

k=1 λkukv>k

U = [u1, . . . ,uN] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries - singular values

V = [v 1, . . . , vD] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 9

Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV> =
∑min(N,D)

k=1 λkukv>k

U = [u1, . . . ,uN] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries - singular values

V = [v 1, . . . , vD] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 9

Low-Rank Approximation via SVD

N

D

N

K

X U

K

K

K

D

K

VK
T

K

Rank-K approximation of X (where K � min(N,D)) using K largest in magnitude λk ’s as

X ≈ X̂ =
K∑

k=1

λkukv>k = UKΛKV
>
K

The above SVD approximation can be shown to minimize the reconstruction error

Fact: SVD gives the best rank-K approximation of a matrix

PCA basically does SVD on the covariance matrix S (singular vectors = eigenvectors)

Since S is symmetric, U = V

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 10

Low-Rank Approximation via SVD

N

D

N

K

X U

K

K

K

D

K

VK
T

K

Rank-K approximation of X (where K � min(N,D)) using K largest in magnitude λk ’s as

X ≈ X̂ =
K∑

k=1

λkukv>k = UKΛKV
>
K

The above SVD approximation can be shown to minimize the reconstruction error

Fact: SVD gives the best rank-K approximation of a matrix

PCA basically does SVD on the covariance matrix S (singular vectors = eigenvectors)

Since S is symmetric, U = V

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 10

Low-Rank Approximation via SVD

N

D

N

K

X U

K

K

K

D

K

VK
T

K

Rank-K approximation of X (where K � min(N,D)) using K largest in magnitude λk ’s as

X ≈ X̂ =
K∑

k=1

λkukv>k = UKΛKV
>
K

The above SVD approximation can be shown to minimize the reconstruction error

Fact: SVD gives the best rank-K approximation of a matrix

PCA basically does SVD on the covariance matrix S (singular vectors = eigenvectors)

Since S is symmetric, U = V

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 10

Low-Rank Approximation via SVD

N

D

N

K

X U

K

K

K

D

K

VK
T

K

Rank-K approximation of X (where K � min(N,D)) using K largest in magnitude λk ’s as

X ≈ X̂ =
K∑

k=1

λkukv>k = UKΛKV
>
K

The above SVD approximation can be shown to minimize the reconstruction error

Fact: SVD gives the best rank-K approximation of a matrix

PCA basically does SVD on the covariance matrix S (singular vectors = eigenvectors)

Since S is symmetric, U = V

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 10

Low-Rank Approximation via SVD

N

D

N

K

X U

K

K

K

D

K

VK
T

K

Rank-K approximation of X (where K � min(N,D)) using K largest in magnitude λk ’s as

X ≈ X̂ =
K∑

k=1

λkukv>k = UKΛKV
>
K

The above SVD approximation can be shown to minimize the reconstruction error

Fact: SVD gives the best rank-K approximation of a matrix

PCA basically does SVD on the covariance matrix S (singular vectors = eigenvectors)

Since S is symmetric, U = V

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 10

Computing Eigenvectors: Power Method

Computing eigenvectors is expensive in general (O(D3) for finding D eigenvectors)

For näıve methods, even to get one eigenvector, we need to perform full eigendecomposition

If we want K < D eigenvectors, there are some more efficient methods

Power Method is one such approach: Sequentially finds the top K eigenvectors of a cov matrix

S =
D∑

k=1

λkuku>k

The overall cost for this method is O(KD2)

Based on the fact that for any vector x =
∑D

k=1 zkuk

Sx =
D∑

k=1

zkλkuk , and (SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 11

Computing Eigenvectors: Power Method

Computing eigenvectors is expensive in general (O(D3) for finding D eigenvectors)

For näıve methods, even to get one eigenvector, we need to perform full eigendecomposition

If we want K < D eigenvectors, there are some more efficient methods

Power Method is one such approach: Sequentially finds the top K eigenvectors of a cov matrix

S =
D∑

k=1

λkuku>k

The overall cost for this method is O(KD2)

Based on the fact that for any vector x =
∑D

k=1 zkuk

Sx =
D∑

k=1

zkλkuk , and (SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 11

Computing Eigenvectors: Power Method

Computing eigenvectors is expensive in general (O(D3) for finding D eigenvectors)

For näıve methods, even to get one eigenvector, we need to perform full eigendecomposition

If we want K < D eigenvectors, there are some more efficient methods

Power Method is one such approach: Sequentially finds the top K eigenvectors of a cov matrix

S =
D∑

k=1

λkuku>k

The overall cost for this method is O(KD2)

Based on the fact that for any vector x =
∑D

k=1 zkuk

Sx =
D∑

k=1

zkλkuk , and (SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 11

Computing Eigenvectors: Power Method

Computing eigenvectors is expensive in general (O(D3) for finding D eigenvectors)

For näıve methods, even to get one eigenvector, we need to perform full eigendecomposition

If we want K < D eigenvectors, there are some more efficient methods

Power Method is one such approach: Sequentially finds the top K eigenvectors of a cov matrix

S =
D∑

k=1

λkuku>k

The overall cost for this method is O(KD2)

Based on the fact that for any vector x =
∑D

k=1 zkuk

Sx =
D∑

k=1

zkλkuk , and (SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 11

Computing Eigenvectors: Power Method

Computing eigenvectors is expensive in general (O(D3) for finding D eigenvectors)

For näıve methods, even to get one eigenvector, we need to perform full eigendecomposition

If we want K < D eigenvectors, there are some more efficient methods

Power Method is one such approach: Sequentially finds the top K eigenvectors of a cov matrix

S =
D∑

k=1

λkuku>k

The overall cost for this method is O(KD2)

Based on the fact that for any vector x =
∑D

k=1 zkuk

Sx =
D∑

k=1

zkλkuk , and (SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 11

Computing Eigenvectors: Power Method

Computing eigenvectors is expensive in general (O(D3) for finding D eigenvectors)

For näıve methods, even to get one eigenvector, we need to perform full eigendecomposition

If we want K < D eigenvectors, there are some more efficient methods

Power Method is one such approach: Sequentially finds the top K eigenvectors of a cov matrix

S =
D∑

k=1

λkuku>k

The overall cost for this method is O(KD2)

Based on the fact that for any vector x =
∑D

k=1 zkuk

Sx =
D∑

k=1

zkλkuk

, and (SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 11

Computing Eigenvectors: Power Method

Computing eigenvectors is expensive in general (O(D3) for finding D eigenvectors)

For näıve methods, even to get one eigenvector, we need to perform full eigendecomposition

If we want K < D eigenvectors, there are some more efficient methods

Power Method is one such approach: Sequentially finds the top K eigenvectors of a cov matrix

S =
D∑

k=1

λkuku>k

The overall cost for this method is O(KD2)

Based on the fact that for any vector x =
∑D

k=1 zkuk

Sx =
D∑

k=1

zkλkuk , and (SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 11

Computing Eigenvectors: Power Method

So we saw that we have

(SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Assuming λ1 > λ2 ≥ λ3 . . . then for large M

(SS . . . ,S)︸ ︷︷ ︸
M times

x ≈ z1λ
M
1 u1

This gives us a simple algorithm to get the top eigenvector

Initialize x0 ∼ N (0, ID)

For m = 1, . . . ,M, compute xm as xm = Sxm−1 and normalize it as xm = xm/||xm||2
After convergence, xM is the largest eigenvector and ||SxM || is the largest eigenvalue

The main dominant cost is computing Sxm−1 which is O(D2).

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 12

Computing Eigenvectors: Power Method

So we saw that we have

(SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Assuming λ1 > λ2 ≥ λ3 . . . then for large M

(SS . . . ,S)︸ ︷︷ ︸
M times

x ≈ z1λ
M
1 u1

This gives us a simple algorithm to get the top eigenvector

Initialize x0 ∼ N (0, ID)

For m = 1, . . . ,M, compute xm as xm = Sxm−1 and normalize it as xm = xm/||xm||2
After convergence, xM is the largest eigenvector and ||SxM || is the largest eigenvalue

The main dominant cost is computing Sxm−1 which is O(D2).

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 12

Computing Eigenvectors: Power Method

So we saw that we have

(SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Assuming λ1 > λ2 ≥ λ3 . . . then for large M

(SS . . . ,S)︸ ︷︷ ︸
M times

x ≈ z1λ
M
1 u1

This gives us a simple algorithm to get the top eigenvector

Initialize x0 ∼ N (0, ID)

For m = 1, . . . ,M, compute xm as xm = Sxm−1 and normalize it as xm = xm/||xm||2
After convergence, xM is the largest eigenvector and ||SxM || is the largest eigenvalue

The main dominant cost is computing Sxm−1 which is O(D2).

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 12

Computing Eigenvectors: Power Method

So we saw that we have

(SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Assuming λ1 > λ2 ≥ λ3 . . . then for large M

(SS . . . ,S)︸ ︷︷ ︸
M times

x ≈ z1λ
M
1 u1

This gives us a simple algorithm to get the top eigenvector

Initialize x0 ∼ N (0, ID)

For m = 1, . . . ,M, compute xm as xm = Sxm−1 and normalize it as xm = xm/||xm||2
After convergence, xM is the largest eigenvector and ||SxM || is the largest eigenvalue

The main dominant cost is computing Sxm−1 which is O(D2).

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 12

Computing Eigenvectors: Power Method

So we saw that we have

(SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Assuming λ1 > λ2 ≥ λ3 . . . then for large M

(SS . . . ,S)︸ ︷︷ ︸
M times

x ≈ z1λ
M
1 u1

This gives us a simple algorithm to get the top eigenvector

Initialize x0 ∼ N (0, ID)

For m = 1, . . . ,M, compute xm as xm = Sxm−1 and normalize it as xm = xm/||xm||2

After convergence, xM is the largest eigenvector and ||SxM || is the largest eigenvalue

The main dominant cost is computing Sxm−1 which is O(D2).

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 12

Computing Eigenvectors: Power Method

So we saw that we have

(SS . . . ,S)︸ ︷︷ ︸
M times

x =
D∑

k=1

zkλ
M
k uk

Assuming λ1 > λ2 ≥ λ3 . . . then for large M

(SS . . . ,S)︸ ︷︷ ︸
M times

x ≈ z1λ
M
1 u1

This gives us a simple algorithm to get the top eigenvector

Initialize x0 ∼ N (0, ID)

For m = 1, . . . ,M, compute xm as xm = Sxm−1 and normalize it as xm = xm/||xm||2
After convergence, xM is the largest eigenvector and ||SxM || is the largest eigenvalue

The main dominant cost is computing Sxm−1 which is O(D2).

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 12

Power Method for All of Top-K Eigenvectors?

Can use Power Method with a “peeling” techique to get all the top K eigenvectors

The basic procedure would be

Initialize S(0) = S

For k = 1, . . . ,K

{uk , λk} = POWER-METHOD(S(k−1))

S(k) = S(k−1) − λkuku>k (“Peeling” the covariance matrix)

Each power iteration is O(D2), overall cost for getting K eigenvectors is O(KD2)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 13

Power Method for All of Top-K Eigenvectors?

Can use Power Method with a “peeling” techique to get all the top K eigenvectors

The basic procedure would be

Initialize S(0) = S

For k = 1, . . . ,K

{uk , λk} = POWER-METHOD(S(k−1))

S(k) = S(k−1) − λkuku>k (“Peeling” the covariance matrix)

Each power iteration is O(D2), overall cost for getting K eigenvectors is O(KD2)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 13

Power Method for All of Top-K Eigenvectors?

Can use Power Method with a “peeling” techique to get all the top K eigenvectors

The basic procedure would be

Initialize S(0) = S

For k = 1, . . . ,K

{uk , λk} = POWER-METHOD(S(k−1))

S(k) = S(k−1) − λkuku>k (“Peeling” the covariance matrix)

Each power iteration is O(D2), overall cost for getting K eigenvectors is O(KD2)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 13

Power Method for All of Top-K Eigenvectors?

Can use Power Method with a “peeling” techique to get all the top K eigenvectors

The basic procedure would be

Initialize S(0) = S

For k = 1, . . . ,K

{uk , λk} = POWER-METHOD(S(k−1))

S(k) = S(k−1) − λkuku>k (“Peeling” the covariance matrix)

Each power iteration is O(D2), overall cost for getting K eigenvectors is O(KD2)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 13

Power Method for All of Top-K Eigenvectors?

Can use Power Method with a “peeling” techique to get all the top K eigenvectors

The basic procedure would be

Initialize S(0) = S

For k = 1, . . . ,K

{uk , λk} = POWER-METHOD(S(k−1))

S(k) = S(k−1) − λkuku>k (“Peeling” the covariance matrix)

Each power iteration is O(D2), overall cost for getting K eigenvectors is O(KD2)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 13

Power Method for All of Top-K Eigenvectors?

Can use Power Method with a “peeling” techique to get all the top K eigenvectors

The basic procedure would be

Initialize S(0) = S

For k = 1, . . . ,K

{uk , λk} = POWER-METHOD(S(k−1))

S(k) = S(k−1) − λkuku>k (“Peeling” the covariance matrix)

Each power iteration is O(D2), overall cost for getting K eigenvectors is O(KD2)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 13

Power Method for All of Top-K Eigenvectors?

Can use Power Method with a “peeling” techique to get all the top K eigenvectors

The basic procedure would be

Initialize S(0) = S

For k = 1, . . . ,K

{uk , λk} = POWER-METHOD(S(k−1))

S(k) = S(k−1) − λkuku>k (“Peeling” the covariance matrix)

Each power iteration is O(D2), overall cost for getting K eigenvectors is O(KD2)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 13

Supervised Dimensionality Reduction

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 14

Supervised Dimensionality Reduction

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

A better option would be to project such that

Points within the same class are close (low intra-class variance)

Points from different classes are well separated (the class means are far apart)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 15

Supervised Dimensionality Reduction

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

A better option would be to project such that

Points within the same class are close (low intra-class variance)

Points from different classes are well separated (the class means are far apart)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 15

Supervised Dimensionality Reduction

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

A better option would be to project such that

Points within the same class are close (low intra-class variance)

Points from different classes are well separated (the class means are far apart)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 15

Supervised Dimensionality Reduction

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

A better option would be to project such that

Points within the same class are close (low intra-class variance)

Points from different classes are well separated (the class means are far apart)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 15

Supervised Dimensionality Reduction

Many techniques. A simple yet popular one is Fisher discriminant analysis

For simplicity, assume two classes (can be generalized for more than 2 classes too)

Suppose a projection direction u. After projection the means of the two classes are

µ1 =
1

N1

∑
n:yn=1

u>xn, µ2 =
1

N2

∑
n:yn=2

u>xn

Total variance will be s2
1 + s2

2 where

s2
1 =

1

N1

∑
n:yn=1

(u>xn − µ1)2, s2
2 =

1

N2

∑
n:yn=2

(u>xn − µ2)2

Fisher discriminant analysis finds the optimal projection direction as

arg max
u

(µ1 − µ2)2

s2
1 + s2

2

Solution for u depends on eigendecomposition of within class and between class covariance matrices

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 16

Supervised Dimensionality Reduction

Many techniques. A simple yet popular one is Fisher discriminant analysis

For simplicity, assume two classes (can be generalized for more than 2 classes too)

Suppose a projection direction u. After projection the means of the two classes are

µ1 =
1

N1

∑
n:yn=1

u>xn, µ2 =
1

N2

∑
n:yn=2

u>xn

Total variance will be s2
1 + s2

2 where

s2
1 =

1

N1

∑
n:yn=1

(u>xn − µ1)2, s2
2 =

1

N2

∑
n:yn=2

(u>xn − µ2)2

Fisher discriminant analysis finds the optimal projection direction as

arg max
u

(µ1 − µ2)2

s2
1 + s2

2

Solution for u depends on eigendecomposition of within class and between class covariance matrices

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 16

Supervised Dimensionality Reduction

Many techniques. A simple yet popular one is Fisher discriminant analysis

For simplicity, assume two classes (can be generalized for more than 2 classes too)

Suppose a projection direction u. After projection the means of the two classes are

µ1 =
1

N1

∑
n:yn=1

u>xn, µ2 =
1

N2

∑
n:yn=2

u>xn

Total variance will be s2
1 + s2

2 where

s2
1 =

1

N1

∑
n:yn=1

(u>xn − µ1)2, s2
2 =

1

N2

∑
n:yn=2

(u>xn − µ2)2

Fisher discriminant analysis finds the optimal projection direction as

arg max
u

(µ1 − µ2)2

s2
1 + s2

2

Solution for u depends on eigendecomposition of within class and between class covariance matrices

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 16

Supervised Dimensionality Reduction

Many techniques. A simple yet popular one is Fisher discriminant analysis

For simplicity, assume two classes (can be generalized for more than 2 classes too)

Suppose a projection direction u. After projection the means of the two classes are

µ1 =
1

N1

∑
n:yn=1

u>xn, µ2 =
1

N2

∑
n:yn=2

u>xn

Total variance will be s2
1 + s2

2 where

s2
1 =

1

N1

∑
n:yn=1

(u>xn − µ1)2, s2
2 =

1

N2

∑
n:yn=2

(u>xn − µ2)2

Fisher discriminant analysis finds the optimal projection direction as

arg max
u

(µ1 − µ2)2

s2
1 + s2

2

Solution for u depends on eigendecomposition of within class and between class covariance matrices

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 16

Supervised Dimensionality Reduction

Many techniques. A simple yet popular one is Fisher discriminant analysis

For simplicity, assume two classes (can be generalized for more than 2 classes too)

Suppose a projection direction u. After projection the means of the two classes are

µ1 =
1

N1

∑
n:yn=1

u>xn, µ2 =
1

N2

∑
n:yn=2

u>xn

Total variance will be s2
1 + s2

2 where

s2
1 =

1

N1

∑
n:yn=1

(u>xn − µ1)2, s2
2 =

1

N2

∑
n:yn=2

(u>xn − µ2)2

Fisher discriminant analysis finds the optimal projection direction as

arg max
u

(µ1 − µ2)2

s2
1 + s2

2

Solution for u depends on eigendecomposition of within class and between class covariance matrices

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 16

Supervised Dimensionality Reduction

Many techniques. A simple yet popular one is Fisher discriminant analysis

For simplicity, assume two classes (can be generalized for more than 2 classes too)

Suppose a projection direction u. After projection the means of the two classes are

µ1 =
1

N1

∑
n:yn=1

u>xn, µ2 =
1

N2

∑
n:yn=2

u>xn

Total variance will be s2
1 + s2

2 where

s2
1 =

1

N1

∑
n:yn=1

(u>xn − µ1)2, s2
2 =

1

N2

∑
n:yn=2

(u>xn − µ2)2

Fisher discriminant analysis finds the optimal projection direction as

arg max
u

(µ1 − µ2)2

s2
1 + s2

2

Solution for u depends on eigendecomposition of within class and between class covariance matrices

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 16

Supervised Dimensionality Reduction

Can be generalized for projections to more than 1 dimensional space

Picture courtesy: Stackoverflow

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 17

Dimensionality Reduction given
Pairwise Distances between Points

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 18

Dimensionality Reduction by Preserving Pairwise Distances

PPCA/PCA/SVD etc assume we are given points x1, . . . , xN as vectors (e.g., in D dim)

However often the data is given in form of distances dij for i = 1, . . . ,N, j = 1, . . . ,N

Can’t apply PPCA/PCA/SVD etc for such data

In these cases, we want to project the data such that pairwise distances are preserved

Ẑ = arg min
Z
L(Z) = arg min

Z

N∑
i,j=1

(dij − ||z i − z j ||)2

If dij is large/small then we want ||z i − z j || to be large/small

Multi-dimensional Scaling (MDS) is one such algorithm

Can show show that preserving all pairwise Euclidean distances = doing PCA :-)

Important: Often it is better to only preserve distances between nearest neighbors (helps in learning
nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 19

Dimensionality Reduction by Preserving Pairwise Distances

PPCA/PCA/SVD etc assume we are given points x1, . . . , xN as vectors (e.g., in D dim)

However often the data is given in form of distances dij for i = 1, . . . ,N, j = 1, . . . ,N

Can’t apply PPCA/PCA/SVD etc for such data

In these cases, we want to project the data such that pairwise distances are preserved

Ẑ = arg min
Z
L(Z) = arg min

Z

N∑
i,j=1

(dij − ||z i − z j ||)2

If dij is large/small then we want ||z i − z j || to be large/small

Multi-dimensional Scaling (MDS) is one such algorithm

Can show show that preserving all pairwise Euclidean distances = doing PCA :-)

Important: Often it is better to only preserve distances between nearest neighbors (helps in learning
nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 19

Dimensionality Reduction by Preserving Pairwise Distances

PPCA/PCA/SVD etc assume we are given points x1, . . . , xN as vectors (e.g., in D dim)

However often the data is given in form of distances dij for i = 1, . . . ,N, j = 1, . . . ,N

Can’t apply PPCA/PCA/SVD etc for such data

In these cases, we want to project the data such that pairwise distances are preserved

Ẑ = arg min
Z
L(Z) = arg min

Z

N∑
i,j=1

(dij − ||z i − z j ||)2

If dij is large/small then we want ||z i − z j || to be large/small

Multi-dimensional Scaling (MDS) is one such algorithm

Can show show that preserving all pairwise Euclidean distances = doing PCA :-)

Important: Often it is better to only preserve distances between nearest neighbors (helps in learning
nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 19

Dimensionality Reduction by Preserving Pairwise Distances

PPCA/PCA/SVD etc assume we are given points x1, . . . , xN as vectors (e.g., in D dim)

However often the data is given in form of distances dij for i = 1, . . . ,N, j = 1, . . . ,N

Can’t apply PPCA/PCA/SVD etc for such data

In these cases, we want to project the data such that pairwise distances are preserved

Ẑ = arg min
Z
L(Z) = arg min

Z

N∑
i,j=1

(dij − ||z i − z j ||)2

If dij is large/small then we want ||z i − z j || to be large/small

Multi-dimensional Scaling (MDS) is one such algorithm

Can show show that preserving all pairwise Euclidean distances = doing PCA :-)

Important: Often it is better to only preserve distances between nearest neighbors (helps in learning
nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 19

Dimensionality Reduction by Preserving Pairwise Distances

PPCA/PCA/SVD etc assume we are given points x1, . . . , xN as vectors (e.g., in D dim)

However often the data is given in form of distances dij for i = 1, . . . ,N, j = 1, . . . ,N

Can’t apply PPCA/PCA/SVD etc for such data

In these cases, we want to project the data such that pairwise distances are preserved

Ẑ = arg min
Z
L(Z) = arg min

Z

N∑
i,j=1

(dij − ||z i − z j ||)2

If dij is large/small then we want ||z i − z j || to be large/small

Multi-dimensional Scaling (MDS) is one such algorithm

Can show show that preserving all pairwise Euclidean distances = doing PCA :-)

Important: Often it is better to only preserve distances between nearest neighbors (helps in learning
nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 19

Dimensionality Reduction by Preserving Pairwise Distances

PPCA/PCA/SVD etc assume we are given points x1, . . . , xN as vectors (e.g., in D dim)

However often the data is given in form of distances dij for i = 1, . . . ,N, j = 1, . . . ,N

Can’t apply PPCA/PCA/SVD etc for such data

In these cases, we want to project the data such that pairwise distances are preserved

Ẑ = arg min
Z
L(Z) = arg min

Z

N∑
i,j=1

(dij − ||z i − z j ||)2

If dij is large/small then we want ||z i − z j || to be large/small

Multi-dimensional Scaling (MDS) is one such algorithm

Can show show that preserving all pairwise Euclidean distances = doing PCA :-)

Important: Often it is better to only preserve distances between nearest neighbors (helps in learning
nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 19

Dimensionality Reduction by Preserving Pairwise Distances

PPCA/PCA/SVD etc assume we are given points x1, . . . , xN as vectors (e.g., in D dim)

However often the data is given in form of distances dij for i = 1, . . . ,N, j = 1, . . . ,N

Can’t apply PPCA/PCA/SVD etc for such data

In these cases, we want to project the data such that pairwise distances are preserved

Ẑ = arg min
Z
L(Z) = arg min

Z

N∑
i,j=1

(dij − ||z i − z j ||)2

If dij is large/small then we want ||z i − z j || to be large/small

Multi-dimensional Scaling (MDS) is one such algorithm

Can show show that preserving all pairwise Euclidean distances = doing PCA :-)

Important: Often it is better to only preserve distances between nearest neighbors (helps in learning
nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 19

Dimensionality Reduction by Preserving Pairwise Distances

PPCA/PCA/SVD etc assume we are given points x1, . . . , xN as vectors (e.g., in D dim)

However often the data is given in form of distances dij for i = 1, . . . ,N, j = 1, . . . ,N

Can’t apply PPCA/PCA/SVD etc for such data

In these cases, we want to project the data such that pairwise distances are preserved

Ẑ = arg min
Z
L(Z) = arg min

Z

N∑
i,j=1

(dij − ||z i − z j ||)2

If dij is large/small then we want ||z i − z j || to be large/small

Multi-dimensional Scaling (MDS) is one such algorithm

Can show show that preserving all pairwise Euclidean distances = doing PCA :-)

Important: Often it is better to only preserve distances between nearest neighbors (helps in learning
nonlinear projections), methods like locally linear embedding (LLE) and Isomap do this.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 19

Multi-dimensional Scaling: An Illustration

Result of applying MDS (with K = 2) on pairwise distances between some US cities

MDS produces a 2D embedding such that geographically close cities are also close in embedding space.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 20

Nonlinear Dimensionality Reduction

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 21

Beyond Linear Projections..

Consider the swiss-roll dataset (points lying close to a manifold)

Linear projection methods (e.g., PCA) can’t capture intrinsic nonlinearities

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 22

Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Some ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Mixture of linear dim-red models like mixture of PPCA (already seen)
Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,

Locally Linear Embedding (LLE), Isomap
Maximum Variance Unfolding
Laplacian Eigenmap, and others such as SNE/tSNE, etc.

.. or use unsupervised deep learning techniques (later)

Today, we will briefly look at KPCA, LLE, SNE/tSNE

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 23

Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Some ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Mixture of linear dim-red models like mixture of PPCA (already seen)
Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,

Locally Linear Embedding (LLE), Isomap
Maximum Variance Unfolding
Laplacian Eigenmap, and others such as SNE/tSNE, etc.

.. or use unsupervised deep learning techniques (later)

Today, we will briefly look at KPCA, LLE, SNE/tSNE

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 23

Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Some ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Mixture of linear dim-red models like mixture of PPCA (already seen)
Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,

Locally Linear Embedding (LLE), Isomap
Maximum Variance Unfolding
Laplacian Eigenmap, and others such as SNE/tSNE, etc.

.. or use unsupervised deep learning techniques (later)

Today, we will briefly look at KPCA, LLE, SNE/tSNE

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 23

Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Some ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Mixture of linear dim-red models like mixture of PPCA (already seen)
Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,

Locally Linear Embedding (LLE), Isomap
Maximum Variance Unfolding
Laplacian Eigenmap, and others such as SNE/tSNE, etc.

.. or use unsupervised deep learning techniques (later)

Today, we will briefly look at KPCA, LLE, SNE/tSNE

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 23

Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Some ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Mixture of linear dim-red models like mixture of PPCA (already seen)
Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,

Locally Linear Embedding (LLE), Isomap
Maximum Variance Unfolding
Laplacian Eigenmap, and others such as SNE/tSNE, etc.

.. or use unsupervised deep learning techniques (later)

Today, we will briefly look at KPCA, LLE, SNE/tSNE

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 23

Nonlinear Dimensionality Reduction

We want to a learn nonlinear low-dim projection

Some ways of doing this

Nonlinearize a linear dimensionality reduction method. E.g.:

Mixture of linear dim-red models like mixture of PPCA (already seen)
Kernel PCA (nonlinear PCA)

Using manifold based methods that intrinsically preserve nonlinear geometry, e.g.,

Locally Linear Embedding (LLE), Isomap
Maximum Variance Unfolding
Laplacian Eigenmap, and others such as SNE/tSNE, etc.

.. or use unsupervised deep learning techniques (later)

Today, we will briefly look at KPCA, LLE, SNE/tSNE

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 23

Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s (note: M can be very large)

This boils down to doing eigendecomposition of the N × N kernel matrix K (PRML 12.3)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 24

Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s (note: M can be very large)

This boils down to doing eigendecomposition of the N × N kernel matrix K (PRML 12.3)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 24

Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s (note: M can be very large)

This boils down to doing eigendecomposition of the N × N kernel matrix K (PRML 12.3)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 24

Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s (note: M can be very large)

This boils down to doing eigendecomposition of the N × N kernel matrix K (PRML 12.3)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 24

Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s (note: M can be very large)

This boils down to doing eigendecomposition of the N × N kernel matrix K (PRML 12.3)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 24

Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s (note: M can be very large)

This boils down to doing eigendecomposition of the N × N kernel matrix K (PRML 12.3)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 24

Kernel PCA

Recall PCA: Given N observations {x1, . . . , xN}, ∀xn ∈ RD , we define the D × D covariance
matrix (assuming centered data

∑
n xn = 0)

S =
1

N

N∑
n=1

xnx>n

PCA computes eigenvectors u i which satisfy Su i = λiu i ∀i = 1, . . . ,D

Let’s assume a kernel k with associated M dimensional nonlinear map φ

M ×M covariance matrix in this space (assume centered data
∑

n φ(xn) = 0)

C =
1

N

N∑
n=1

φ(xn)φ(xn)>

Kernel PCA: Compute eigenvectors v i satisfying: Cv i = λiv i ∀i = 1, . . . ,M

We would like to do this without having to compute C or φ(xn)’s (note: M can be very large)

This boils down to doing eigendecomposition of the N × N kernel matrix K (PRML 12.3)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 24

Locally Linear Embedding (LLE)

Basic idea: If two points are local neighbors in the original space then they should be local
neighbors in the projected space too

Given data x1, . . . , xN , LLE is typically formulated as

Ŵ = arg min
W

N∑
i=1

||x i −
∑

j∈N (i)

Wijx j ||2

where N (i) denotes the set of nearest (say K) neighbors of x i in the original D-dim space

LLE learns zn, . . . , zN such that the same neighborhood structure exists in low-dim space too

Ẑ = arg min
Z

N∑
i=1

||z i −
∑

j∈N (i)

Wijz j ||2

Basically, if point i can be reconstructed from its neighbors in the original space, the same weights
Wij should be able to reconstruct it in the new space too.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 25

Locally Linear Embedding (LLE)

Basic idea: If two points are local neighbors in the original space then they should be local
neighbors in the projected space too

Given data x1, . . . , xN , LLE is typically formulated as

Ŵ = arg min
W

N∑
i=1

||x i −
∑

j∈N (i)

Wijx j ||2

where N (i) denotes the set of nearest (say K) neighbors of x i in the original D-dim space

LLE learns zn, . . . , zN such that the same neighborhood structure exists in low-dim space too

Ẑ = arg min
Z

N∑
i=1

||z i −
∑

j∈N (i)

Wijz j ||2

Basically, if point i can be reconstructed from its neighbors in the original space, the same weights
Wij should be able to reconstruct it in the new space too.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 25

Locally Linear Embedding (LLE)

Basic idea: If two points are local neighbors in the original space then they should be local
neighbors in the projected space too

Given data x1, . . . , xN , LLE is typically formulated as

Ŵ = arg min
W

N∑
i=1

||x i −
∑

j∈N (i)

Wijx j ||2

where N (i) denotes the set of nearest (say K) neighbors of x i in the original D-dim space

LLE learns zn, . . . , zN such that the same neighborhood structure exists in low-dim space too

Ẑ = arg min
Z

N∑
i=1

||z i −
∑

j∈N (i)

Wijz j ||2

Basically, if point i can be reconstructed from its neighbors in the original space, the same weights
Wij should be able to reconstruct it in the new space too.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 25

Locally Linear Embedding (LLE)

Basic idea: If two points are local neighbors in the original space then they should be local
neighbors in the projected space too

Given data x1, . . . , xN , LLE is typically formulated as

Ŵ = arg min
W

N∑
i=1

||x i −
∑

j∈N (i)

Wijx j ||2

where N (i) denotes the set of nearest (say K) neighbors of x i in the original D-dim space

LLE learns zn, . . . , zN such that the same neighborhood structure exists in low-dim space too

Ẑ = arg min
Z

N∑
i=1

||z i −
∑

j∈N (i)

Wijz j ||2

Basically, if point i can be reconstructed from its neighbors in the original space, the same weights
Wij should be able to reconstruct it in the new space too.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 25

Locally Linear Embedding (LLE)

Basic idea: If two points are local neighbors in the original space then they should be local
neighbors in the projected space too

Given data x1, . . . , xN , LLE is typically formulated as

Ŵ = arg min
W

N∑
i=1

||x i −
∑

j∈N (i)

Wijx j ||2

where N (i) denotes the set of nearest (say K) neighbors of x i in the original D-dim space

LLE learns zn, . . . , zN such that the same neighborhood structure exists in low-dim space too

Ẑ = arg min
Z

N∑
i=1

||z i −
∑

j∈N (i)

Wijz j ||2

Basically, if point i can be reconstructed from its neighbors in the original space, the same weights
Wij should be able to reconstruct it in the new space too.

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 25

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Also nonlin. dim-red methods, especially suited for projecting to 2D or 3D (thus for visualization)

SNE stands for Stochastic Neighbor Embedding (Hinton and Roweis, 2002)

Uses the idea of preserving probabilistically defined neighborhoods

SNE, for each point i , define the probability of point j being its neighbor as

pj|i =
exp(−||x i − x j ||2/2σ2)∑
k 6=i exp(−||x i − xk ||2/2σ2)

qj|i =
exp(−||z i − z j ||2/2σ2)∑
k 6=i exp(−||z i − zk ||2/2σ2)

The p’s denotes probabilities in original space, the q’s denote prob. in embedded space

SNE learns z i ’s such that distribution P and Q is as close as possible by minimizing KL(P||Q)

t-SNE (van der Maaten and Hinton, 2008) offers a couple of improvements to original SNE

Learns z i ’s by minimizing symmetric KL divergence

Uses Student t distribution instead of Gaussian for defining qj|i

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 26

SNE and t-SNE

Especially useful for visualizing data by projecting into 2D or 3D

Result of visualizing MNIST digits data in 2D (Figure from van der Maaten and Hinton, 2008)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Wrap-up) 27

