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Announcements

Quiz graded and scores sent

Homework 3 out. Due on Oct 31, 11:59pm. Please start early.

We will finish homework 1 and 2 grading soon

Start thinking about your course project (if not working on it already)
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Recap: Dimensionality Reduction - The Compression View

xn ≈
K∑

k=1

znkw k

xn ≈ Wzn
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Recap: Probabilistic PCA

A probabilistic model that maps a low-dim z via a linear mapping to generate a high-dim x

zn ∼ N (0, IK )

xn|zn ∼ N (Wzn, σ
2ID)

p(xn) = N (0,WW> + σ2ID)︸ ︷︷ ︸
Low-rank Gaussian as σ2 → 0

Many improvements possible (non-Gaussian distributions, nonlinear mappings, etc)
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Recap: Such Models Can Learn to Generate Real-Looking Data..

Learn the model parameters from training data {x1, . . . , xN}, e.g., using MLE

Generate a random z from p(z) and a random new sample x conditioned on that z using p(x |z)
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Learning the PPCA Model

One way: Maximize (conditional) log-likelihood
∑N

n=1 log p(xn|zn), or minimize its negative

L(Z,W, σ2) =
1

2σ2

N∑
n=1

||xn −Wzn||2 +
ND

2
log(2πσ2)

=
1

2σ2
||X− ZW>||2F +

ND

2
log(2πσ2)

For known σ2, learning PPCA boils down to solve

{Ẑ, Ŵ} = arg min
Z,W
||X− ZW>||2F

Similar to doing matrix factorization of X by minimizing the reconstruction error

Can solve it using ALT-OPT (Z given W, and W given Z)

Another (better) way: will be to do a proper MLE on log p(xn)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Contd.) 6



Learning the PPCA Model

One way: Maximize (conditional) log-likelihood
∑N

n=1 log p(xn|zn), or minimize its negative

L(Z,W, σ2) =
1

2σ2

N∑
n=1

||xn −Wzn||2 +
ND

2
log(2πσ2)

=
1

2σ2
||X− ZW>||2F +

ND

2
log(2πσ2)

For known σ2, learning PPCA boils down to solve
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MLE for PPCA

Doing MLE for PPCA requires maximizing

log p(X|Θ) = −N

2
(D log 2π + log |C|+ trace(C−1S))

where S is the data covariance matrix, C−1 = σ−1I− σ−1WM−1W>and M = W>W + σ2I

Assuming both W and σ2 as unknowns, their MLE solution is given by

WML = UK (LK − σ2
MLI)

1/2R

σ2
ML =

1

D − K

D∑
k=K+1

λk

where UK is D × K matrix of top K eigvecs of S, LK : K × K diagonal matrix of top K eigvals
λ1, . . . , λK , R is a K × K arbitrary rotation matrix (equivalent to PCA for R = I and σ2 → 0)

Need to do eigen-decomposition of D × D data covariance matrix S. EXPENSIVE!!!

Also, can’t do MLE like this if each xn has some missing entries

†Probabilistic Principal Component Analysis (Tipping and Bishop, 1999)
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MLE for PPCA using EM

Using EM for MLE for PPCA has several benefits

No need to do expensive eigen-decomposition

Works even when xn may have some missing entries (HW3 has a problem related to this)

EM does MLE by maximizing the expected CLL

{W, σ2} = arg max
W,σ2

Ep(Z|X,W,σ2)[log p(X,Z|W, σ2)]

This is done by iterating between the following two steps

E Step: For n = 1, . . . ,N, infer the posterior p(zn|xn) given current estimate of Θ = (W, σ2)

p(zn|xn,W, σ2) = N (M−1W>xn, σ
2M−1) (where M = W>W + σ2IK )

M Step: Maximize the expected CLL E[p(X,Z|W, σ2)] w.r.t. W, σ2
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MLE for PPCA using EM

The expected complete data log-likelihood E[log p(X,Z|W, σ2)]

= −
N∑

n=1

{
D

2
log σ2 +

1

2σ2
||xn||2 −

1

σ2
E[zn]>W>xn +

1

2σ2
tr(E[znz>n ]W>W) +

1

2
tr(E[znz>n ])

}

Taking the derivative of E[log p(X,Z|W, σ2)] w.r.t. W and setting to zero

W =

[
N∑

n=1

xnE[zn]
>
][

N∑
n=1

E[znz
>
n ]

]−1

To compute W, we need two posterior expectations E[zn] and E[znz>n ]

These can be easily obtained from the posterior p(zn|xn) computed in E step

p(zn|xn,W) = N (M−1W>xn, σ
2M−1) where M = W>W + σ

2IK
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E[znz
>
n ] = E[zn]E[zn]

> + cov(zn) = E[zn]E[zn]
> + σ

2M−1

Note: The noise variance σ2 can also be estimated (take deriv., set to zero..)
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The Full EM Algorithm for PPCA

Specify K , initialize W and σ2 randomly. Also center the data (xn = xn − 1
N

∑N
n=1 xn)

E step: For each n, compute p(zn|xn) using current W and σ2. Compute exp. for the M step

p(zn|xn,W) = N (M−1W>xn, σ
2M−1) where M = W>W + σ

2IK

E[zn] = M−1W>xn

E[znz
>
n ] = cov(zn) + E[zn]E[zn]

> = E[zn]E[zn]
> + σ

2M−1

M step: Re-estimate W and σ2

Wnew =

[
N∑

n=1

xnE[zn]
>
][

N∑
n=1

E[znz
>
n ]

]−1

σ
2
new =

1

ND

N∑
n=1

{
||xn||2 − 2E[zn]

>W>newxn + tr
(
E[znz

>
n ]W>newWnew

)}
Set W = Wnew and σ2 = σ2

new . If not converged (monitor p(X|Θ)), go back to E step

Note: For σ2 = 0, this EM algorithm can also be used to efficiently solve standard PCA (note that
this EM algorithm doesn’t require any eigen-decomposition)

Missing entries of xn can be estimated in the E step as p(xmiss
n |xobs

n )
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Why center the data before doing PPCA?

The PPCA model, for each xn, n = 1, . . . ,N, can also be writtten as

xn = µ+ Wzn + εn where εn ∼ N (0, σ2ID)

The marginal distribution is
p(xn) = N (µ,WW> + σ2ID)

The MLE of µ is simply 1
N

∑N
n=1 xn

So we can simply subtract µ from each observation and assume

xn = Wzn + εn

... and apply PPCA without µ
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How to Set “K”?

Several option to select the “best” K , e.g.,

Look at AIC/BIC criteria (NLL + KD or NLL + K logD) and pick the one with smallest K

Use sparsity inducing priors on W and/or zn (set K to some large value; the unnecessary columns of
W will “turn off” automatically as they will be shrunk to zero during inference)

Compute the marginal likelihood (or its approximation) for each K and choose the best model

Nonparametric Bayesian methods (allow K to grow with data)
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Some Applications of PCA/PPCA

Compression/dimensionality reduction is a natural application (use zn instead of xn)

Also used for learning low-dim. “good” features zn from high-dim noisy features xn

Note that this is different from feature selection (zn is a transformed version of xn, not a subset)

Learning the noise variance enables “image denoising”: xn = Wzn + εn; Wzn is the “clean” part

Ability to fill-in missing data enables “image inpainting” (left: image with 80% missing data,
middle: reconstructed, right: original)
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Mixture of PPCA

May be appropriate if data also exists in clusters (suppose M > 1 clusters)

Data in each cluster (say m) can have its own “local” PPCA model defined by {µm,Wm, σ
2
m}

Can use M such PPCA models {µm,Wm, σ
2
m}Mm=1 (one per cluster) for the entire data

Mixtures of PPCA can be seen as playing several roles

Jointly learning clustering and dimensionality reduction

Nonlinear dimensionality reduction

A flexible probability density model: Mixture of low-rank Gaussians
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Mixture of PPCA

For mixture of PPCA, the generative story for each observation xn is as follows

Generate its cluster id as
cn ∼ multinoulli(π1, . . . , πM)

Generate latent variable zn ∈ RK as
zn ∼ N (0, IK )

Generate obervation xn ∈ RD from the c th
n PPCA/FA model

xn ∼ N (µcn + Wcnzn, σ
2
cn ID)

Each PPCA model has its separate mean µcn
(not needed when M = 1 if data is centered)

Exercise: What will be the marginal distribution of xn, i.e.. p(xn|Θ)?

Exercise: Use EM in this model to learn the parameters and latent variables
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(Classic) Principal Component Analysis
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Principal Component Analysis (PCA)

A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

Can be seen as

Learning projection directions that capture maximum variance in data

Learning projection directions that result in smallest reconstruction error

Can also be seen as changing the basis in which the data is represented (and transforming the
features such that new features become decorrelated)

Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)
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PCA as Maximizing Variance
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Variance Captured by Projections

Consider projecting xn ∈ RD on a one-dim subspace (basically, a line) defined by u1 ∈ RD

Projection/embedding of xn along a one-dim subspace u1 = u>1 xn (location of the green point
along the purple line representing u1)

Mean of projections of all the data: 1
N

∑N
n=1 u>1 xn = u>1 ( 1

N

∑N
n=1 xn) = u>1 µ

Variance of the projected data (“spread” of the green points)

1

N

N∑
n=1

(
u>1 xn − u>1 µ

)2
=

1

N

N∑
n=1

{u>1 (xn − µ)}2 = u>1 Su1

S is the D × D data covariance matrix: S = 1
N

∑N
n=1(xn − µ)(xn − µ)> . If data already centered

(µ = 0) then S = 1
N

∑N
n=1 xnx>n = 1

N X>X
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Direction of Maximum Variance

We want u1 s.t. the variance of the projected data is maximized

arg max
u1

u>1 Su1

To prevent trivial solution (max var. = infinite), assume ||u1|| = 1 = u>1 u1

We will find u1 by solving the following constrained opt. problem

arg max
u1

u>1 Su1 + λ1(1− u>1 u1)

where λ1 is a Lagrange multiplier
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Direction of Maximum Variance

The objective function: arg maxu1 u>1 Su1 + λ1(1− u>1 u1)

Taking the derivative w.r.t. u1 and setting to zero gives

Su1 = λ1u1

Thus u1 is an eigenvector of S (with corresponding eigenvalue λ1)

But which of S’s (D possible) eigenvectors it is?

Note that since u>1 u1 = 1, the variance of projected data is

u>1 Su1 = λ1

Var. is maximized when u1 is the (top) eigenvector with largest eigenvalue

The top eigenvector u1 is also known as the first Principal Component (PC)

Other directions can also be found likewise (with each being orthogonal to all previous ones) using
the eigendecomposition of S (this is PCA)
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Principal Component Analysis

Center the data (subtract the mean µ = 1
N

∑N
n=1 xn from each data point)

Compute the covariance matrix S using the centered data as

S =
1

N
X>X

Do an eigendecomposition of the covariance matrix S

Take first K leading eigenvectors {uk}Kk=1 with eigenvalues {λk}Kk=1

The final K dim. projection/embedding of data is given by

Z = XU

where U = [u1 . . . uK ] is D × K and embedding matrix Z is K × N
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Singular Value Decomposition (SVD)

N

D D

D

D

N

N

N=X U
VT

We can represent any matrix X of size N × D using SVD as X = UΛV>

U = [u1, . . . ,uN ] is N × N, each un ∈ RN a left singular vector of X

U is orthonormal: u>n un′ = 0 for n 6= n′, and u>n un = 1⇒ UU> = IN

Λ is N × D with only min(N,D) diagonal entries (all positive) - singular values (decreasing order)

V = [v 1, . . . , vD ] is D × D, each vd ∈ RD , a right singular vector of X

V is orthonormal: v>d v d′ = 0 for d 6= d ′, and v>d v d = 1⇒ VV> = ID

Note: If X is symmetric then it is known as eigenvalue decomposition (and U = V in that case)
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Low-Rank Approximation via SVD

Can also expand the SVD expression as

X =

min(N,D)∑
k=1

λkukv>k

Can write a rank-K approximation of X (where K � min(N,D)) as

X ≈ X̂ =
K∑

k=1

λkukv>k = UKΛKV
>
K

N

D

N

K

X U

K

K

K

D

K

VK
T

K
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PCA/PPCA: Limitations and Extensions

A linear projection method

Won’t work well if data can’t be approximated by a linear subspace

But PCA/PPCA can be kernelized (Kernel PCA or Gaussian Process Latent Variable Models)

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

PCA relies on eigendecomposition of an D × D covariance matrix

Can be slow if done näıvely. Takes O(D3) time

Many faster methods exists (e.g., Power Method)

Note: PPCA doesn’t suffer from this issue (EM can be very efficient!)
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Can be slow if done näıvely. Takes O(D3) time

Many faster methods exists (e.g., Power Method)

Note: PPCA doesn’t suffer from this issue (EM can be very efficient!)

Intro to Machine Learning (CS771A) Dimensionality Reduction (Contd.) 25



PCA/PPCA: Limitations and Extensions

A linear projection method

Won’t work well if data can’t be approximated by a linear subspace

But PCA/PPCA can be kernelized (Kernel PCA or Gaussian Process Latent Variable Models)

Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve
class separation, e.g., when doing classification)

PCA relies on eigendecomposition of an D × D covariance matrix
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Next Class

How to compute singular vectors (SVD) - power method

Nonlinear Dimensionality Reduction

Supervised Dimensionality Reduction

Dimensionality Reduction for Visualization
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