Latent Variable Models for Dimensionality Reduction

Piyush Rai

Introduction to Machine Learning (CS771A)

October 4, 2018
Recap: Latent Variable Models, ALT-OPT, and EM

- We saw that doing MLE/MAP for latent variable models is difficult in general

\[
\Theta = \arg \max_{\Theta} \log p(X|\Theta) = \arg \max_{\Theta} \log \sum_{Z} p(X, Z|\Theta) \quad \text{(if } Z \text{ is discrete)}
\]

\[
= \arg \max_{\Theta} \log \int_{Z} p(X, Z|\Theta) dZ \quad \text{(if } Z \text{ is continuous)}
\]

- We saw that ALT-OPT and EM can be two ways to make MLE/MAP easier in such models

- At a high-level, they solve for the MLE of \(\Theta\) by solving a slightly modified problem

ALT-OPT: \(\hat{\Theta} = \arg \max_{\Theta} \log p(X, \hat{Z}|\Theta)\) \((\text{where } \hat{Z} \text{ is a “good” estimate of } Z)\)

EM: \(\hat{\Theta} = \arg \max_{\Theta} \mathbb{E}_{p(Z|X, \Theta)}[\log p(X, Z|\Theta)]\)

- But since \(Z\) and \(\Theta\) are usually “coupled”, both ALT-OPT and EM need an alternating procedure

- Instead of maximizing \(\log p(X|\Theta)\) (incomplete-data log-lik - ILL), they maximize \(\log p(X, Z|\Theta)\) (complete-data log-lik - CLL) or expected CLL

- For most models, arg max of CLL or expected CLL is usually much easier than arg max of ILL
Recap: ALT-OPT and EM

- ALT-OPT does the following
 1. Initialize $\Theta = \hat{\Theta}$
 2. Estimate Z as $\hat{Z} = \arg \max_Z \log p(Z|X, \hat{\Theta})$
 3. Estimate Θ as $\hat{\Theta} = \arg \max_{\Theta} \log p(X, \hat{Z}|\Theta)$
 4. Go to step 2 if not converged

- Step 2 (arg max) of ALT-OPT could potentially throw away a lot of information about Z

- EM addresses it using “soft” version of ALT-OPT
 1. Initialize $\Theta = \hat{\Theta}$
 2. Compute the posterior distribution of Z, i.e., $p(Z|X, \hat{\Theta})$
 3. Estimate Θ by maximizing the expected CLL $\hat{\Theta} = \mathbb{E}_{p(Z|X, \hat{\Theta})} [\log p(X, Z|\Theta)]$
 4. Go to step 2 if not converged

- ALT-OPT is an approx. of EM: Replaces posterior $p(Z|X, \Theta)$ by a point distribution at its mode
Brief Detour: Generative Stories
Generative Stories..

- Most probabilistic models we’ve seen can be described by an imaginative “generative story”
- In this story, we first generate everything that the data depends on, and then generate the data
- Here is a brief outline of what this story looks like
 1. Generate all the global model parameters Θ
 \[Θ \sim p(Θ) \]
 2. For \(n = 1, \ldots, N \)
 \[z_n \sim p(z|Θ) \quad (z_n \text{ can be an observed label } y_n \text{ or a latent variable, e.g., cluster id}) \]
 \[x_n \sim p(x|z = z_n, Θ) \quad (x_n \text{ is generated conditioned on } z_n) \]
- This procedure generates \(\{(x_n, z_n)\}_{n=1}^{N} \) from the joint distribution \(p(x, z|Θ) = p(z|Θ)p(x|z, Θ) \)
- Note: In this story, we don’t show step 1 if we aren’t using any prior distribution on Θ
- Note: If there are no labels or latent variables \(z_n \), then we will just have \(x_n \sim p(x|Θ) \)

Intro to Machine Learning (CS771A)
Generative Story: Some Common Examples

- Can have it if at least some part of the data is generated using a probability distribution

 (Note: Generation of global parameters Θ not shown below)

Generative Classification (Gaussian Class-Conditionals)
- For $n = 1, \ldots, N$
 - Generate y_n as $y_n \sim \text{multinoulli}(\pi_1, \ldots, \pi_K)$
 - Generate x_n as $x_n \sim \mathcal{N}(\mu_{y_n}, \Sigma_{y_n})$

Gaussian Mixture Model
- For $n = 1, \ldots, N$
 - Generate z_n as $z_n \sim \text{multinoulli}(\pi_1, \ldots, \pi_K)$
 - Generate x_n as $x_n \sim \mathcal{N}(\mu_{z_n}, \Sigma_{z_n})$

Probabilistic Dimensionality Reduction (Probabilistic PCA)
(assuming data and latent variables to be Gaussians)
- For $n = 1, \ldots, N$
 - Generate z_n as $z_n \sim \mathcal{N}(0, I_K)$
 - Generate x_n as $x_n \sim \mathcal{N}(Wz_n, \sigma^2 I_D)$

Discriminative Models for Regression/Classification
- For $n = 1, \ldots, N$
 - Generate y_n as
 \[y_n \sim \mathcal{N}(w^T x_n, \sigma^2) \]
 \[y_n \sim \text{Bernoulli}(\sigma(w^T x_n)) \]
 - x not modeled

- The model need not have latent variables (e.g. generative classification, discriminative models)
Latent Variable Models for Dimensionality Reduction
A Simple Model for Data Compression/Dimensionality-Reduction

- Consider a set of observations \(x_1, \ldots, x_N \), with \(x_n \in \mathbb{R}^D \)
- Let's approximate each \(x_n \) by a linear combination of \(K \) vectors \(w_1, w_2, \ldots, w_K \) \((K \ll D) \)

\[
x_n \approx \sum_{k=1}^{K} z_{nk} w_k \quad \text{or} \quad x_n \approx Wz_n
\]

where \(W = [w_1 \ldots w_K] \) is \(D \times K \), each \(w_k \in \mathbb{R}^D \), and \(z_n = [z_{n1} \ldots z_{nK}] \in \mathbb{R}^K \)

- \(z_{nk} \) tell us much of “component” \(w_k \) is present in the observation \(x_n \)
- Can think of \(z_n \in \mathbb{R}^K \) as a “compressed” latent representation of \(x_n \in \mathbb{R}^D \)
- A good compression \(z_n \) will be one for which \(x_n \) is as close as possible to \(Wz_n \)
In the linear model, we represented \(x_n \) approximately as \(x_n \approx Wz_n \).

The probabilistic view: Model \(x_n \) by a \(D \)-dim Gaussian with mean vector \(Wz_n \):

\[
p(x_n|z_n, W, \sigma^2) = \mathcal{N}(Wz_n, \sigma^2 I_D)
\]

Equivalently:
\[
x_n = Wz_n + \epsilon_n \quad \text{where} \quad \epsilon_n \sim \mathcal{N}(0, \sigma^2 I_D)
\]

Let’s assume a prior \(p(z_n) = \mathcal{N}(0, I_K) \) on the latent variable \(z_n \).

A low-dim latent variable \(z_n \) transformed to “generate” a high-dim observation \(x_n \).

This is a “reverse” way of thinking: A generative model for dimensionality reduction.

This model is popularly known as **Probabilistic Principal Component Analysis (PPCA)**.

The standard non-probabilistic PCA is a special case (probabilistic version has several advantages).
Some More Motivation for PPCA...

- Suppose we’re modeling D-dim data using a (say zero mean) Gaussian
 \[p(x) = \mathcal{N}(0, \Sigma) \]
 where Σ is a $D \times D$ p.s.d. cov. matrix, $\mathcal{O}(D^2)$ parameters needed

- Consider modeling the same data using PPCA: $p(x|z) = \mathcal{N}(Wz, \sigma^2 I_D)$, $p(z) = \mathcal{N}(0, I_K)$

- For this Gaussian PPCA, the marginal distribution $p(x) = \int p(x, z) dz$ is
 \[p(x|W, \sigma^2) = \mathcal{N}(0, WW^T + \sigma^2 I_D) \]
 (using Gaussian marginal results)

- Cov. matrix is close to low-rank as $\sigma^2 \to 0$. Only $(DK + 1)$ parameters needed (nice when $D \gg N$)
 - PPCA = Low-rank Gaussian. Fewer parameters to learn; less chance of overfitting
Benefits of Generative Models for Dimensionality Reduction

- One benefit: Once the model parameters are learned, we can even **generate new data**, e.g.,
 - Generate a random z using the distribution $\mathcal{N}(0, I_K)$
 - Generate x conditioned on this z from $\mathcal{N}(Wz, \sigma^2 I_D)$

Note: The above random samples are generated using a slightly more sophisticated latent variable model (VAE with ALI-BiGAN inference), not the simple PPCA (but it is similar in spirit to PPCA).

- Many other benefits. For example, can do dim-red, even if x_n has part of it as missing.
Learning the PPCA Model

- Since we are doing dim-red, the goal is to "recover" z_n (and W, σ^2) given $x_n, \forall n$
- The likelihood $p(x_n|z_n) = \mathcal{N}(Wz_n, \sigma^2 I_D)$ is Gaussian. The loss function = NLL will be

$$
\mathcal{L}(Z, W, \sigma^2) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} ||x_n - Wz_n||^2 + \frac{ND}{2} \log(2\pi\sigma^2) \quad \text{(Exercise: Verify)}
$$

$$
= \frac{1}{2\sigma^2} ||X - ZW^\top||_F^2 + \frac{ND}{2} \log(2\pi\sigma^2) \quad (X : N \times D, Z : N \times K, W : D \times K)
$$

- Nice! So this loss is simply the reconstruction error. We can minimize it w.r.t. Z, W, σ^2
- For simplicity, let's treat σ^2 as a constant. Then the loss function will be

$$
\mathcal{L}(Z, W) = ||X - ZW^\top||_F^2
$$

- Dimensionality reduction then simply boils down to solving the following problem

$$
\{\hat{Z}, \hat{W}\} = \arg\min_{Z, W} ||X - ZW^\top||_F^2
\quad \text{(Alert: This is NOT doing MLE but } \arg\max_{Z, W} \sum_{n=1}^{N} \log p(x_n|z_n))
$$

- Can solve it using ALT-OPT to solve it. Another (better) way will be to do a proper MLE using EM
We saw that the PPCA problem reduced to

\[\{\hat{Z}, \hat{W}\} = \arg\min_{Z,W} \|X - ZW^T\|_F^2 \]

The ALT-OPT algorithm for PPCA will alternate between the following two steps:

1. Initialize \(Z = \hat{Z} \)
2. Solve \(\hat{W} = \arg\min_W \|X - \hat{Z}W^T\|_F^2 \)
3. Solve \(\hat{Z} = \arg\min_Z \|X - Z\hat{W}^T\|_F^2 \)
4. Go to step 2 if not yet converged

Step 2 is just like multi-output regression with \(\hat{Z} \) as feature matrix and \(X \) as label matrix.

Step is also like multi-output regression.

Note that the problem is essentially a matrix factorization of \(X \).
MLE for PPCA (or why it is hard..)

- To do MLE, we need to maximize $\log p(X|W, \sigma^2) = \sum_{n=1}^{N} \log p(x_n|W, \sigma^2)$ with z_n integrated out.

- MLE on the objective $p(x_n|W, \sigma^2)$ can be done but turns out to be a bit expensive. In particular:

$$\log p(X|\Theta) = -\frac{N}{2} (D \log 2\pi + \log |C| + \text{trace}(C^{-1}S))$$

where S is the data covariance matrix, $C^{-1} = \sigma^{-1}I - \sigma^{-1}WM^{-1}W^T$ and $M = W^TW + \sigma^2I$.

- The MLE solution is given by (don’t worry about the proof)\dagger

$$W_{ML} = U_K (L_K - \sigma_{ML}^2 I)^{1/2} R$$

$$\sigma_{ML}^2 = \frac{1}{D-K} \sum_{k=K+1}^{D} \lambda_k \quad \text{(noise variance = mean of “discarded” eigenvalues)}$$

where U_K is $D \times K$ matrix of top K eigvecs of S, L_K: $K \times K$ diagonal matrix of top K eigvals $\lambda_1, \ldots, \lambda_K$, R is a $K \times K$ arbitrary rotation matrix (equivalent to PCA for $R = I$ and $\sigma^2 \to 0$).

- Need to do eigen-decomposition of $D \times D$ data covariance matrix S. EXPENSIVE!!!

\dagger Probabilistic Principal Component Analysis (Tipping and Bishop, 1999)
Learning PPCA via EM

- Instead of maximizing the ILL log $p(X|W, \sigma^2) = \mathcal{N}(0, WW^\top + \sigma^2 I_D)$, EM maximizes exp. CLL
- This is done by iterating between the following two steps
 - E Step: Infer the posterior $p(z_n|x_n)$ given current estimate of $\Theta = (W, \sigma^2)$ (needed for expectations)
 $$p(z_n|x_n, W, \sigma^2) = \mathcal{N}(M^{-1}W^\top x_n, \sigma^2 M^{-1})$$
 (where $M = WW^\top + \sigma^2 I_K$)
 - M Step: Maximize the expected complete data log-lik. (CLL) $\mathbb{E}[\log p(X, Z|\Theta)]$ w.r.t. Θ
- The CLL (and expected CLL) for PPCA has a simple expression. The CLL is
 $$\log p(X, Z|W, \sigma^2) = \log \prod_{n=1}^N p(x_n, z_n|W, \sigma^2) = \log \prod_{n=1}^N p(x_n|z_n, W, \sigma^2)p(z_n) = \sum_{n=1}^N \{\log p(x_n|z_n, W, \sigma^2) + \log p(z_n)\}$$
- Using $p(x_n|z_n, W, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{D/2}} \exp \left[-\frac{(x_n-Wz_n)^\top (x_n-Wz_n)}{2\sigma^2}\right]$ and $p(z_n) \propto \exp \left[-\frac{z_n^\top z_n}{2}\right]$ and simplifying
 $$\text{CLL} = -\sum_{n=1}^N \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2}||x_n||^2 - \frac{1}{\sigma^2} z_n^\top W^\top x_n + \frac{1}{2\sigma^2} \text{tr}(z_n z_n^\top W^\top W) + \frac{1}{2} \text{tr}(z_n z_n^\top) \right\}$$
 (Exercise: Verify)
Learning PPCA via EM

- The expected complete data log-likelihood $\mathbb{E}[\log p(X, Z|W, \sigma^2)]$

\[
= - \sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||x_n||^2 - \frac{1}{\sigma^2} \mathbb{E}[z_n]^T W^T x_n + \frac{1}{2\sigma^2} \text{tr}(\mathbb{E}[z_n z_n^T]W^T W) + \frac{1}{2} \text{tr}(\mathbb{E}[z_n z_n^T]) \right\}
\]

- Taking the derivative of $\mathbb{E}[\log p(X, Z|W, \sigma^2)]$ w.r.t. W and setting to zero

$$W = \left[\sum_{n=1}^{N} x_n \mathbb{E}[z_n]^T \right] \left[\sum_{n=1}^{N} \mathbb{E}[z_n z_n^T] \right]^{-1}$$

(Exercise: verify; can also be done “online”)

- To compute W, we need two posterior expectations $\mathbb{E}[z_n]$ and $\mathbb{E}[z_n z_n^T]$

- These can be easily obtained from the posterior $p(z_n|x_n)$ computed in E step

$$p(z_n|x_n, W) = \mathcal{N}(M^{-1}W^T x_n, \sigma^2 M^{-1})$$

where $M = W^T W + \sigma^2 I_K$

$$\mathbb{E}[z_n] = M^{-1}W^T x_n$$

$$\mathbb{E}[z_n z_n^T] = \mathbb{E}[z_n] \mathbb{E}[z_n]^T + \text{cov}(z_n) = \mathbb{E}[z_n] \mathbb{E}[z_n]^T + \sigma^2 M^{-1}$$

- Note: The noise variance σ^2 can also be estimated (take deriv., set to zero..)
Summary: The Full EM Algorithm for PPCA

- Specify K, initialize W and σ^2 randomly. Also center the data ($x_n = x_n - \frac{1}{N} \sum_{n=1}^{N} x_n$)

- **E step:** For each n, compute $p(z_n|x_n)$ using current W and σ^2. Compute exp. for the M step

$$p(z_n|x_n, W) = \mathcal{N}(M^{-1}W^T x_n, \sigma^2 M^{-1})$$

where $M = W^T W + \sigma^2 I_K$

$$E[z_n] = M^{-1}W^T x_n$$

$$E[z_n^T z_n^T] = \text{cov}(z_n) + E[z_n] E[z_n]^T = E[z_n] E[z_n]^T + \sigma^2 M^{-1}$$

- **M step:** Re-estimate W and σ^2

$$W_{new} = \left[\sum_{n=1}^{N} x_n E[z_n]^T \right] \left[\sum_{n=1}^{N} E[z_n z_n^T] \right]^{-1}$$

$$\sigma_{new}^2 = \frac{1}{ND} \sum_{n=1}^{N} \left\{ ||x_n||^2 - 2 E[z_n]^T W_{new}^T x_n + \text{tr} \left(E[z_n z_n^T] W_{new}^T W_{new} \right) \right\}^{-1}$$

- Set $W = W_{new}$ and $\sigma^2 = \sigma_{new}^2$. If not converged (monitor $p(X|\Theta)$), go back to E step

- **Note:** For $\sigma^2 = 0$, this EM algorithm can also be used to efficiently solve standard PCA (note that this EM algorithm doesn’t require any eigen-decomposition)