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Recap: Latent Variable Models, ALT-OPT, and EM

We saw that doing MLE/MAP for latent variable models is difficult in general

Θ = arg max
Θ

log p(X|Θ) = arg max
Θ

log
∑

Z

p(X,Z|Θ) (if Z is discrete)

= arg max
Θ

log

∫
Z

p(X,Z|Θ)dZ (if Z is continuous)

We saw that ALT-OPT and EM can be two ways to make MLE/MAP easier in such models

At a high-level, they solve for the MLE of Θ by solving a slightly modified problem

ALT-OPT: Θ̂ = arg max
Θ

log p(X, Ẑ|Θ) (where Ẑ is a “good” estimate of Z)

EM: Θ̂ = arg max
Θ

Ep(Z|X,Θ)[log p(X,Z|Θ)]

But since Z and Θ are usually “coupled”, both ALT-OPT and EM need an alternating procedure

Instead of maximizing log p(X|Θ) (incomplete-data log-lik - ILL), they maximize log p(X,Z|Θ)
(complete-data log-lik - CLL) or expected CLL

For most models, arg max of CLL or expected CLL is usually much easier than arg max of ILL
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log p(X, Ẑ|Θ) (where Ẑ is a “good” estimate of Z)

EM: Θ̂ = arg max
Θ

Ep(Z|X,Θ)[log p(X,Z|Θ)]

But since Z and Θ are usually “coupled”, both ALT-OPT and EM need an alternating procedure

Instead of maximizing log p(X|Θ) (incomplete-data log-lik - ILL), they maximize log p(X,Z|Θ)
(complete-data log-lik - CLL) or expected CLL

For most models, arg max of CLL or expected CLL is usually much easier than arg max of ILL

Intro to Machine Learning (CS771A) Latent Variable Models for Dimensionality Reduction 2



Recap: Latent Variable Models, ALT-OPT, and EM

We saw that doing MLE/MAP for latent variable models is difficult in general

Θ = arg max
Θ

log p(X|Θ) = arg max
Θ

log
∑

Z

p(X,Z|Θ) (if Z is discrete)

= arg max
Θ

log

∫
Z

p(X,Z|Θ)dZ (if Z is continuous)

We saw that ALT-OPT and EM can be two ways to make MLE/MAP easier in such models

At a high-level, they solve for the MLE of Θ by solving a slightly modified problem

ALT-OPT: Θ̂ = arg max
Θ

log p(X, Ẑ|Θ)
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Recap: ALT-OPT and EM

ALT-OPT does the following
1 Initialize Θ = Θ̂

2 Estimate Z as Ẑ = arg maxZ log p(Z|X, Θ̂)

3 Estimate Θ as Θ̂ = arg maxΘ log p(X, Ẑ|Θ)

4 Go to step 2 if not converged

Step 2 (arg max) of ALT-OPT could potentially throw away a lot of information about Z

EM addresses it using “soft” version of ALT-OPT

1 Initialize Θ = Θ̂

2 Compute the posterior distribution of Z, i.e., p(Z|X, Θ̂)

3 Estimate Θ by maximizing the expected CLL Θ̂ = Ep(Z|X,Θ̂)[log p(X,Z|Θ)]

4 Go to step 2 if not converged

ALT-OPT is an approx. of EM: Replaces posterior p(Z|X,Θ) by a point distribution at its mode
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2 Estimate Z as Ẑ = arg maxZ log p(Z|X, Θ̂)

3 Estimate Θ as Θ̂ = arg maxΘ log p(X, Ẑ|Θ)
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4 Go to step 2 if not converged

Step 2 (arg max) of ALT-OPT could potentially throw away a lot of information about Z

EM addresses it using “soft” version of ALT-OPT

1 Initialize Θ = Θ̂

2 Compute the posterior distribution of Z, i.e., p(Z|X, Θ̂)

3 Estimate Θ by maximizing the expected CLL Θ̂ = Ep(Z|X,Θ̂)[log p(X,Z|Θ)]

4 Go to step 2 if not converged

ALT-OPT is an approx. of EM: Replaces posterior p(Z|X,Θ) by a point distribution at its mode

Intro to Machine Learning (CS771A) Latent Variable Models for Dimensionality Reduction 3



Recap: ALT-OPT and EM

ALT-OPT does the following
1 Initialize Θ = Θ̂
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Brief Detour: Generative Stories
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Generative Stories..

Most probabilistic models we’ve seen can be described by an imaginative “generative story”

In this story, we first generate everything that the data depends on, and then generate the data

Here is a brief outline of what this story looks like

1 Generate all the global model parameters Θ

Θ ∼ p(Θ)

2 For n = 1, . . . ,N

zn ∼ p(z |Θ) (zn can be an observed label yn or a latent variable, e.g., cluster id)

xn ∼ p(x |z = zn,Θ) (xn is generated conditioned on zn)

This procedure generates {(xn, zn)}Nn=1 from the joint distribution p(x , z |Θ) = p(z |Θ)p(x |z ,Θ)

Note: In this story, we don’t show step 1 if we aren’t using any prior distribution on Θ

Note: If there are no labels or latent variables zn, then we will just have xn ∼ p(x |Θ)
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Generative Stories..

Most probabilistic models we’ve seen can be described by an imaginative “generative story”

In this story, we first generate everything that the data depends on, and then generate the data

Here is a brief outline of what this story looks like

1 Generate all the global model parameters Θ

Θ ∼ p(Θ)

2 For n = 1, . . . ,N

zn ∼ p(z |Θ) (zn can be an observed label yn or a latent variable, e.g., cluster id)
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Generative Story: Some Common Examples

Can have it if at least some part of the data is generated using a probability distribution

Generative Classification (Gaussian Class-Conditionals) Gaussian Mixture Model

Probabilistic Dimensionality Reduction (Probabilistic PCA)
   (assuming data and latent variables to be Gaussians)

Discriminative Models for Regression/Classification

x not modeled

The model need not have latent variables (e.g. generative classification, discriminative models)
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Latent Variable Models for
Dimensionality Reduction
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A Simple Model for Data Compression/Dimensionality-Reduction

Consider a set of observations x1, . . . , xN , with xn ∈ RD

Let’s approximate each xn by a linear combination of K vectors w 1,w 2, . . . ,wK (K � D)

xn ≈
K∑

k=1

znkw k

or xn ≈Wzn

where W = [w 1 . . .wK ] is D × K , each w k ∈ RD , and zn = [zn1 . . . znK ] ∈ RK

znk tell us much of “component” w k is present in the observation xn

Can think of zn ∈ RK as a “compressed” latent representation of xn ∈ RD

A good compression zn will be one for which xn is as close as possible to Wzn
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Dimensionality Reduction: The Probabilistic/Generative View

In the linear model, we represented xn approximately as xn ≈Wzn

The probabilistic view: Model xn by a D-dim Gaussian with mean vector Wzn

p(xn|zn,W, σ2) = N (Wzn, σ
2ID)

Equivalently: xn = Wzn + εn where εn ∼ N (0, σ2ID)

Let’s assume a prior p(zn) = N (0, IK ) on the latent variable zn

A low-dim latent variable zn transformed to “generate” a high-dim observation xn

This is a “reverse” way of thinking: A generative model for dimensionality reduction

This model is popularly known as Probabilistic Principal Component Analysis (PPCA)

The standard non-probabilistic PCA is a special case (probabilistic version has several advantages)
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Some More Motivation for PPCA..

Suppose we’re modeling D-dim data using a (say zero mean) Gaussian

p(x) = N (0,Σ)

where Σ is a D × D p.s.d. cov. matrix, O(D2) parameters needed

Consider modeling the same data using PPCA: p(x |z) = N (Wz , σ2ID), p(z) = N (0, IK )

For this Gaussian PPCA, the marginal distribution p(x) =
∫
p(x , z)dz is

p(x |W, σ2) = N (0,WW> + σ2ID) (using Gaussian marginal results)

Cov. matrix is close to low-rank as σ2 → 0. Only (DK + 1) parameters needed (nice when D � N)

PPCA = Low-rank Gaussian. Fewer parameters to learn; less chance of overfitting
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Benefits of Generative Models for Dimensionality Reduction

One benefit: Once the model parameters are learned, we can even generate new data

, e.g.,

Generate a random z using the distribution N (0, IK )

Generate x conditioned on this z from N (Wz , σ2ID)

Note: The above random samples are generated using a slightly more sophisticated latent variable
model (VAE with ALI-BiGAN inference), not the simple PPCA (but it is similar in spirit to PPCA).

Many other benefits. For example, can do dim-red, even if xn has part of it as missing.
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Learning the PPCA Model

Since we are doing dim-red, the goal is to “recover” zn (and W, σ2) given xn, ∀n

The likelihood p(xn|zn) = N (Wzn, σ
2ID) is Gaussian. The loss function = NLL will be

L(Z,W, σ2) =
1

2σ2

N∑
n=1

||xn −Wzn||2 +
ND

2
log(2πσ2) (Exercise: Verify)

=
1

2σ2
||X− ZW>||2F +

ND

2
log(2πσ2) (X : N × D,Z : N × K ,W : D × K)

Nice! So this loss is simply the reconstruction error. We can minimize it w.r.t. Z,W, σ2

For simplicity, let’s treat σ2 as a constant. Then the loss function will be

L(Z,W) = ||X− ZW>||2F
Dimensionality reduction then simply boils down to solving the following problem

{Ẑ, Ŵ} = arg min
Z,W
||X− ZW>||2F (Alert: This is NOT doing MLE but arg max

N∑
n=1

log p(xn|zn))

Can solve it using ALT-OPT to solve it. Another (better) way will be to do a proper MLE using EM
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Learning PPCA via ALT-OPT

We saw that the PPCA problem reduced to

{Ẑ, Ŵ} = arg min
Z,W
||X− ZW>||2F

The ALT-OPT algorithm for PPCA will alternate between the following two steps

1 Initialize Z = Ẑ

2 Solve Ŵ = arg minW ||X− ẐW>||2F
3 Solve Ẑ = arg minZ ||X− ZŴ>||2F
4 Go to step 2 if not yet converged

Step 2 is just like multi-output regression with Ẑ as feature matrix and X as labal matrix

Step is also like multi-output regression

Note that the problem is essentially a matrix factorization of X
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{Ẑ, Ŵ} = arg min
Z,W
||X− ZW>||2F

The ALT-OPT algorithm for PPCA will alternate between the following two steps

1 Initialize Z = Ẑ
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Step is also like multi-output regression

Note that the problem is essentially a matrix factorization of X

Intro to Machine Learning (CS771A) Latent Variable Models for Dimensionality Reduction 13



Learning PPCA via ALT-OPT

We saw that the PPCA problem reduced to
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2 Solve Ŵ = arg minW ||X− ẐW>||2F
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MLE for PPCA (or why it is hard..)

To do MLE, we need to maximize log p(X|W, σ2) =
∑N

n=1 log p(xn|W, σ2) with zn integrated out

MLE on the objective p(xn|W, σ2) can be done but turns out to be a bit expensive. In particular:

log p(X|Θ) = −N

2
(D log 2π + log |C|+ trace(C−1S))

where S is the data covariance matrix, C−1 = σ−1I− σ−1WM−1W>and M = W>W + σ2I

The MLE solution is given by (don’t worry about the proof)†

WML = UK (LK − σ2
MLI)1/2R

σ
2
ML =

1

D − K

D∑
k=K+1

λk (noise variance = mean of “discarded” eigenvalues)

where UK is D × K matrix of top K eigvecs of S, LK : K × K diagonal matrix of top K eigvals
λ1, . . . , λK , R is a K × K arbitrary rotation matrix (equivalent to PCA for R = I and σ2 → 0)

Need to do eigen-decomposition of D × D data covariance matrix S. EXPENSIVE!!!

†Probabilistic Principal Component Analysis (Tipping and Bishop, 1999)
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Learning PPCA via EM

Instead of maximizing the ILL log p(X|W, σ2) = N (0,WW> + σ2ID), EM maximizes exp. CLL

This is done by iterating between the following two steps

E Step: Infer the posterior p(zn|xn) given current estimate of Θ = (W, σ2) (needed for expectations)

p(zn|xn,W, σ2) = N (M−1W>xn, σ
2M−1) (where M = W>W + σ2IK )

M Step: Maximize the expected complete data log-lik. (CLL) E[log p(X,Z|Θ)] w.r.t. Θ

The CLL (and expected CLL) for PPCA has a simple expression. The CLL is
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The expected complete data log-likelihood E[log p(X,Z|W, σ2)]

= −
N∑

n=1

{
D

2
log σ2 +

1

2σ2
||xn||2 −

1

σ2
E[zn]>W>xn +

1

2σ2
tr(E[znz>n ]W>W) +

1

2
tr(E[znz>n ])

}

Taking the derivative of E[log p(X,Z|W, σ2)] w.r.t. W and setting to zero

W =

[
N∑

n=1

xnE[zn]>
][

N∑
n=1

E[znz
>
n ]

]−1

(Exercise: verify; can also be done “online”)

To compute W, we need two posterior expectations E[zn] and E[znz>n ]

These can be easily obtained from the posterior p(zn|xn) computed in E step

p(zn|xn,W) = N (M−1W>xn, σ
2M−1) where M = W>W + σ

2IK

E[zn] = M−1W>xn

E[znz
>
n ] = E[zn]E[zn]> + cov(zn) = E[zn]E[zn]> + σ

2M−1

Note: The noise variance σ2 can also be estimated (take deriv., set to zero..)
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Summary: The Full EM Algorithm for PPCA

Specify K , initialize W and σ2 randomly. Also center the data (xn = xn − 1
N

∑N
n=1 xn)

E step: For each n, compute p(zn|xn) using current W and σ2. Compute exp. for the M step

p(zn|xn,W) = N (M−1W>xn, σ
2M−1) where M = W>W + σ

2IK

E[zn] = M−1W>xn

E[znz
>
n ] = cov(zn) + E[zn]E[zn]> = E[zn]E[zn]> + σ

2M−1

M step: Re-estimate W and σ2

Wnew =

[
N∑

n=1

xnE[zn]>
][

N∑
n=1

E[znz
>
n ]

]−1

σ
2
new =

1

ND

N∑
n=1

{
||xn||2 − 2E[zn]>W>newxn + tr

(
E[znz

>
n ]W>newWnew

)}
Set W = Wnew and σ2 = σ2

new . If not converged (monitor p(X|Θ)), go back to E step

Note: For σ2 = 0, this EM algorithm can also be used to efficiently solve standard PCA (note that
this EM algorithm doesn’t require any eigen-decomposition)
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